2015年历年天津市数学中考真题及答案
2015年天津市中考数学试卷

一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个 选项中,只有一项是符合题目要求的) 1. (3 分)计算(﹣18)÷6 的结果等于( A.﹣3 B.3 ) )
1 3
C.﹣
D.
1 3
2. (3 分)cos45°的值等于( A.
1
√2 √3 C. D . √3 2 2 2 3. (3 分)在一些美术字中,有的汉字是轴对称图形.下面 4 个汉字中,可以看
第3页(共23页)
三、解答题(本大题共 7 小题,共 66 分.解答应写出文字说明、演算算步骤或 推理过程) 19. (8 分)解不等式组{ ������ + 3 ≥ 6,① 2������ − 1 ≤ 9,②
请结合题意填空,完成本题的解答. (Ⅰ)不等式①,得 (Ⅱ)不等式②,得 ; ;
(Ⅲ)把不等式①和②的解集在数轴上表示出来
第4页(共23页)
21. (10 分)已知 A、B、C 是⊙O 上的三个点.四边形 OABC 是平行四边形,过 点 C 作⊙O 的切线,交 AB 的延长线于点 D. (Ⅰ)如图①,求∠ADC 的大小.
̂ 交于点 F,连 (Ⅱ)如图②,经过点 O 作 CD 的平行线,与 AB 交于点 E,与������������
16. (3 分)如图,在△ABC 中,DE∥BC,分别交 AB,AC 于点 D、E.若 AD=3, DB=2,BC=6,则 DE 的长为 .
17. (3 分)如图,在正六边形 ABCDEF 中,连接对角线 AC,CE,DF,EA,FB, 可以得到一个六角星.记这些对角线的交点分别为 H,I,J,K,L、M,则图 中等边三角形共有 个.
B.
作是轴对称图形的是(
2015年天津市中考数学试题及答案

2015年天津市初中毕业生学业考试试卷数 学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-18) ÷6的结果等于(A )-3(B )3(C )13-(D )13(2)cos 45︒的值等于(A )12(B )22(C )32(D )3(3)在一些美术字中,有的汉字是轴对称图形. 下面4个汉字中,可以看作是轴对称图形的是吉 祥 如 意(A ) (B ) (C ) (D )(4)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2 270 000人次.将2 270 000用科学记数法表示应为 (A )70.22710⨯ (B )62.2710⨯(C )522.710⨯(D )422710⨯(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A ) (B )E'A'EBDC A(C ) (D ) (6)估计11的值在(A )1和2之间 (B )2和3之间 (C )3和4之间(D )4和5之间(7)在平面直角坐标系中,把点P (-3,2)绕原点O 顺时针旋转180°,所得到的对应点P ′的坐标为(A )(3,2) (B )(2,-3)(C )(-3,-2) (D )(3,-2)(8)分式方程233x x=-的解为 (A )x = 0 (B )x = 3 (C )x = 5(D )x = 9(9)已知反比例函数6y x=,当13x <<时,y 的取值范围是 (A )01y << (B )12y << (C )26y << (D )6y > (10)已知一个表面积为12dm 2的正方体,则这个正方体的棱长为(A )1dm (B )2dm(C )6dm (D )3dm (11)如图,已知在ABCD 中, AE ⊥BC 于点E ,以点B 为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△第(5)题BA ′E ′,连接DA ′. 若∠ADC =60°,∠ADA ′=50°,则∠DA ′E ′的大小为 (A )130° (B )150° (C )160° (D )170° (12)已知抛物线213662y x x =-++与x 轴交于点A ,点B ,与y 轴交于点C ,若D 为AB 的中点,则CD 的长为(A )154 (B )92 (C )132 (D )152二、填空题(本大题共6小题,每小题3分,共18分) (13)计算25x x 的结果等于 .(14)若一次函数2y x b =+(b 为常数)的图象经过点(1,5),则b 的值为 . (15)不透明的袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别. 从袋子中随机取出1个球,则它是红球的概率为 .(16)如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 若AD =3,DB =2,BC =6,则DE 的长为 .(17)如图,在正六边形ABCDEF 中, 连接对角线AC ,BD ,CE ,DF ,EA ,FB ,可以得到一个第(16)题ECD AB第(17)题L KJI HM FEDCBA六角星. 记这些对角线的交点分别为H ,I ,J ,K ,L ,M ,则图中等边三角形共有 个.(18)如图,在每个小正方形的边长为1的网格中,点A , B , C , D 均在格点上,点E , F 分别为线段BC ,DB 上的动点,且BE =DF . (Ⅰ)如图①,当BE =52时,计算AE AF +的值等于 ; (Ⅱ)当AE AF +取得最小值时,请在如图②所示的网格中,用无刻度...的直尺,画出线段AE ,AF ,并简要说明点E 和点F 的位置是如何找到的(不要求证明) .FABC DEABCD三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程) (19)(本小题8分)解不等式组3219.x x +⎧⎨-⎩≥6, ①≤②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得__________________; (Ⅱ)解不等式②,得__________________; (Ⅲ)把不等式①和②的解集在数轴上表示出来:345621图①图②第(18)题第(20)题(Ⅳ)原不等式组的解集为__________________.(20)(本小题8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图①和图②. 请根据相关信息,解答下列问题:(Ⅰ)该商场服装部营业员人数为_________,图①中m 的值为_________; (Ⅱ)求统计的这组销售额数据的平均数、众数和中位数.图①图②2578 3人数销售额/万元12 15 18 21 24 2 4 6 8 21万元 32%18万元 m %24万元 12%12万元 8%15万元 20%第(21)题(21)(本小题10分)已知A , B ,C 是⊙O 上的三个点,四边形OABC 是平行四边形,过点C 作⊙O 的切线,交AB 的延长线于点D .(Ⅰ)如图①,求∠ADC 的大小;(Ⅱ)如图②,经过点O 作CD 的平行线,与AB 交于点E ,与AB 交于点F ,连接AF ,求 ∠FAB 的大小.图①图②D CBOAF ED CB OA第(22)题(22)(本小题10分)如图,某建筑物BC 顶部有一旗杆AB ,且点A ,B ,C 在同一直线上. 小红在D 处观测旗杆顶部A 的仰角为47°,观测旗杆底部B 的仰角为42°. 已知点D 到地面的距离DE 为1.56m ,EC =21m ,求旗杆AB 的高度和建筑物BC 的高度(结果保留小数点后一位).参考数据:tan 47°≈1.07,tan 42°≈0.90.(23)(本小题10分)1号探测气球从海拔5 m 处出发,以1m/min 的速度上升. 与此同时,2号探测气球从海拔15m 处出发,以0.5m/min 的速度上升. 两个气球都匀速上升了50min.42°47°EA D CB设气球上升时间为x min(0≤x≤50).(Ⅰ)根据题意,填写下表上升时间/min 10 30 (x)1号探测气球所在位置的海拔/m 15 …2号探测气球所在位置的海拔/m 30 …(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?(24)(本小题10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(3,0),点B(0,1),点O(0,0). 过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′. 设OM =m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.第(24)题(Ⅰ)如图①,当点A ′与顶点B 重合时,求点M 的坐标;(Ⅱ)如图②,当点A ′落在第二象限时,A ′M 与OB 相交于点C ,试用含m 的式子表示S ;(Ⅲ)当S =324时,求点M 的坐标(直接写出结果即可).图①图②yx(A')NAO BMy xCA'NAO BM(25)(本小题10分)已知二次函数2y x bx c =++( b ,c 为常数). (Ⅰ)当b =2,c =-3时,求二次函数的最小值;(Ⅱ)当c =5时,若在函数值y =1的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式;(Ⅲ)当c =b 2时,若在自变量x 的值满足b ≤x ≤b +3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.证明:连接AD,AB.在答案图中易知BH =5,HP︰PB =HK︰BC =1︰4,则BP =4=AD,且∠CBH =∠ADB,BE =DF,所以△EBP≌△FDA,故EP =AF,则E应为AP与BC交点时,AE+AF和最小.另一方面,DM =5,DG︰GM =DC︰MN =3︰2,则DG =3=AB,且∠GDF =∠ABE=90°,DF = BE,所以△FDG≌△EBA,故GF = AE,则F应为AG与BD交点时,AE+AF和最小.因此,上图中的E,F两点即为所示求.y x A'NA O BM 附解析:由第(Ⅰ)、(Ⅱ)问可得,33303853336324333m S m S S m m .<<<≤===<<当时,,当时,,因此,时,的取值范围应为 此时情况如右图所示,重叠部分即为△A ′MN ,A ′M =AM =3m -,∠NA ′M =∠NAM =30°,由MN ⊥AB ,得∠A ′NM =90°,∴32m MN -=,3(3)cos302m A N A M ⋅-''=⋅=, 则1133(3)2222A MN m m S S MN A N '∆--'==⋅=⋅⋅. 若324S =,则133(3)322224m m --⋅⋅=, 整理,得21(3)3m -=, 解得,1233m =,2233m =-(舍去). 因此,当324S =时,点M 的坐标为(233,0).。
2015年天津市中考数学试卷-答案

故选:D.
【提示】求出 AB 中点 D 的坐标是解决问题的关键.
【考点】抛物线与 x 轴的交点
第Ⅱ卷
二、填空题
13.【答案】 x7 【解析】 x2 x5 x25 x7 ,故答案为: x7 .
【提示】同底数幂的乘法底数不变指数相加. 【考点】同底数幂的乘法 14.【答案】3 【解析】把点 (1,5) 代入 y 2x b ,得 5 21 b ,解得 b 3 .故答案是:3.
【提示】当 k>0 时,在每一个象限内, y 随 x 的增大而减小;当 k<0 时,在每一个象限, y 随 x 的增大而增
大.
【考点】反比例函数的性质
10.【答案】B
【解析】因为正方体的表面积公式: s 6a2 ,可得: 6a2 12 ,解得: a 2 .故选 B.
【提示】关键是根据公式进行计算.
天津市 2015 年初中毕业生学业考试
数学答案解析
第Ⅰ卷
一、选择题 1.【答案】A 【解析】 ( 18) 6 3 .故选:A. 【提示】解决本题的关键是熟记有理数除法的法则. 【考点】有理数的除法 2.【答案】B 【解析】 cos45= 2 ,故选 B.
2 【提示】解答本题的关键是掌握几个特殊角的三角函数值. 【考点】特殊角的三角函数值 3.【答案】A 【解析】A.是轴对称图形,故本选项正确;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故 本选项错误;D.不是轴对称图形,故本选项错误.故选 A. 【提示】轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 【考点】轴对称图形 4.【答案】B 【解析】将 2 270 000 用科学记数法表示为 2.27 106 ,故选 B. 【提示】科学记数法的表示形式为 a 10n 的形式,其中1≤ a <10 ,n 为整数,表示时关键要正确确定 a 的
2015年天津市中考数学试卷-答案

【提示】解决本题的关键是根据题意,列出函数解析式.
【考点】一次函数的应用
24.【答案】(Ⅰ)在 中,点 ,∴ ,由 ,可得: ,根据题意,由折叠可知 ,∴ ,在 中,由勾股定理, ,可得: ,解得 ,∴点 的坐标为 .
∴当 时, .故选C.
【提示】当 时,在每一个象限内, 随 的增大而减小;当 时,在每一个象限, 随 的增大而增大.
【考点】反比例函数的性质
10.【答案】B
【解析】因为正方体的表面积公式: ,可得: ,解得: .故选B.
【提示】关键是根据公式进行计算.
【考点】算术平方根
11.【答案】C
【解析】∵四边形 是平行四边形, ,∴ ,∵ ,
∵四边形 是平行四边形,∴ ,即 ,有 ,
∴ ;
(Ⅱ)如图②,连接 ,则 ,∵四边形 是平行四边形,∴ ,∴ ,即 是等边三角形,∴ ,由 ,又 ,得 ,
∴ ,∴ ,∴ ,∴ .
【提示】熟练掌握定理是解题的关键.
【考点】切线的性质,平行四边形的性质
22.【答案】旗杆 的高度约是 ,建筑物 的高度约是20.5米
(2)取格点 ,连接 ,相交于点 ,连接 ,与 相交,得点 ,取格点 连接 ,相交于点 ,连接 ,与 相交,得点 ,线段 即为所求.
【解析】(1)根据勾股定理可得: ,因为 ,所以可得 ,根据勾股定理可得: ,所以 ,故答案为: .
(2)如图,
首先确定 点,要使 最小,根据三角形两边之和大于第三边可知,需要将 移到 的延长线上,因此可以构造全等三角形,首先选择格点 使 ,其次需要构造长度 使 ,
2015年天津数学中考试卷+答案

2015年天津市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(-18)÷6的结果等于( )A.-3B.3C.-1D.12.cos 45°的值等于( )A.12B.22C.2D.3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )4.据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2 270 000人次.将2 270 000用科学记数法表示应为( )A.0.227×107B.2.27×106C.22.7×105D.227×1045.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )6.估计11的值在( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.在平面直角坐标系中,把点P(-3,2)绕原点O顺时针旋转180°,所得到的对应点P'的坐标为( )A.(3,2)B.(2,-3)C.(-3,-2)D.(3,-2)8.分式方程2-=的解为( )A.x=0B.x=3C.x=5D.x=99.已知反比例函数y=6,当1<x<3时,y的取值范围是( )A.0<y<1B.1<y<2C.2<y<6D.y>610.已知一个表面积为12 dm2的正方体,则这个正方体的棱长为( )A.1 dmB.2 dmC.6 dmD.3 dm11.如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA'E',连结DA'.若∠ADC=60°,∠ADA'=50°,则∠DA'E'的大小为( )A.1 0°B.150°C.160°D.170°12.已知抛物线y=-16x2+2x+6与x轴交于点A,点B,与y轴交于点C,若D为AB的中点,则CD的长为( )A.154B.2C.12D.152第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.计算x2·x5的结果等于.14.若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为.15.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=3,DB=2,BC=6,则DE的长为.17.如图,在正六边形ABCDEF中,连结对角线AC,BD,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L,M,则图中等边三角形共有个.18.在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,点E,F分别为线段BC,DB 上的动点,且BE=DF.时,计算AE+AF的值等于;(Ⅰ)如图①,当BE=52(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度...的直尺,画出线段AE,AF,并简要说明点E和点F的位置是如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(本小题8分)解不等式组6,①2-1 .②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.(本小题8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)该商场服装部营业员的人数为,图①中m的值为;(Ⅱ)求统计的这组销售额数据的平均数、众数和中位数.21.(本小题10分)已知A,B,C是☉O上的三个点,四边形OABC是平行四边形,过点C作☉O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小;(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连结AF,求∠FAB的大小.22.(本小题10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上.小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°.已知点D到地面的距离DE为1.56 m,EC=21 m,求旗杆AB的高度和建筑物BC的高度(结果保留小数点后一位).参考数据:tan 47°≈1.07,tan 42°≈0. 0.23.(本小题10分)1号探测气球从海拔5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升.两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当 0≤x≤50时,两个气球所在位置的海拔最多相差多少米?24.(本小题10分)将一个直角三角形纸片ABO放置在平面直角坐标系中,点A(,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A 的对应点A'.设OM=m,折叠后的△A'MN与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A'与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A'落在第二象限时,A'M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).2425.(本小题10分)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=-3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+ 的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.答案全解全析:一、选择题1.A 两个不等于0的数相除,同号得正,异号得负,并把绝对值相除,所以(-18)÷6=-3.故选A.2.B 本题考查特殊角的三角函数值.cos 45°= 22.3.A 轴对称图形的定义:如果一个图形沿某一条直线对折,对折后的两部分是完全重合的,那么就称这样的图形为轴对称图形,据此可判断B 、C 、D 都不符合轴对称图形的定义.故选A.4.B 科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,故选B. 评析 确定n 的值是解题的关键.5.A 主视图是从一个物体的正面观察时所看到的图形.从正面观察所给图形,可看到大小一样的四个正方形.故选A.6.C ∵ <11<16,∴ < 11<4.故选C.7.D 在平面直角坐标系中,任意一点A(x,y)绕原点O 顺时针旋转180°,所得到的对称点是A'(-x,-y),故点P(-3,2)关于原点的对称点是P'(3,-2).故选D.8.D 去分母得2x=3x-9,移项、合并同类项得x=9,经检验,x=9是分式方程的解.故选D. 9.C 由反比例函数的性质可得,当1<x<3时,y 随x 的增大而减小,故2<y<6.故选C.10.B 设这个正方体的棱长为x dm,由已知得,6x 2=12,解得x= 负值舍去),故这个正方体的棱长是 2 dm.故选B.11.C 在▱ABCD 中,因为∠ADC=60°,所以∠CBA=60°.在△A EB 中,因为∠EBA=60°,∠AEB= 0°,所以∠EAB= 0°.又因为AD∥BC,∠ADA'=50°,所以∠BA'D=180°-50°=1 0°.由旋转的性质知,∠E'A'B=∠EAB= 0°,所以∠DA'E'=1 0°+ 0°=160°.故选C.评析 根据旋转的性质和平行线的性质即可求解.12.D 由题意知,点D 是抛物线的对称轴与x 轴的交点,所以点D 的坐标为2,0 .对于y=-16x 2+2x+6,令x=0,得y=6,所以C(0,6).所以CD= 2-0 2(0-6)2= 2254=152.故选D.二、填空题13.答案 x 7解析 根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,可得x 2·x 5=x 2+5=x 7. 14.答案 3解析 ∵一次函数y=2x+b(b 为常数)的图象经过点(1,5),∴2+b=5,∴b= . 15.答案 2解析 ∵不透明袋子中装有9个球,其中有2个红球,∴从袋子中随机取出1个球,它是红球的概率为2 . 16.答案185 解析 ∵DE∥BC,∴ = ,∴ = ,∴ 2= 6,∴DE=185. 评析 本题考查平行线分线段成比例定理.由DE∥BC 可得 =,从而可计算出DE 的长. 17.答案 8解析 题图中的等边三角形可分为两大类:第一类:分别以B,A,F,E,D,C 为顶点的小等边三角形,有△BHM,△AML,△FLK,△EKJ,△DJI,△CIH,共6个;第二类:分别以B,F,D 和A,C,E 为顶点的大等边三角形,有△BFD 和△ACE,共2个. 故题图中等边三角形共有6+2=8(个). 18.答案 (Ⅰ)5 612; (Ⅱ)如图,取格点H,K,连结BH,CK,相交于点P.连结AP,与BC 相交于点E.取格点M,N,连结DM,CN,相交于点G.连结AG,与BD 相交于点F.线段AE,AF 即为所求.解析 (Ⅰ)由题图①可知,AD=4,AB=3,则DB= 4=5,因为BE=52,BE=DF,所以DF=52,所以F 是Rt△ABD 斜边BD 的中点,所以AF=12BD=52.因为AE= 2 522=612,所以AE+AF=5 612. (Ⅱ)如图,取格点H,K,连结BH,CK,相交于点P.连结AP,与BC 相交于点E.取格点M,N,连结DM,CN,相交于点G.连结AG,与BD 相交于点F.线段AE,AF 即为所求.三、解答题19.解析 (Ⅰ)x≥ . (Ⅱ)x≤5.(Ⅲ)(Ⅳ) ≤x≤5.20.解析 (Ⅰ)25,28. (Ⅱ)观察条形统计图,∵ =12 2 15 5 18 7 21 8 2425=18.6,∴这组数据的平均数是18.6.∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.评析 本题考查利用扇形统计图和条形统计图计算样本容量以及平均数、众数和中位数.21.解析(Ⅰ)∵CD是☉O的切线,C为切点,∴OC⊥CD,即∠OCD= 0°.∵四边形OABC是平行四边形,∴AB∥OC,即AD∥OC.有∠ADC+∠OCD=180°.∴∠ADC=180°-∠OCD= 0°.(Ⅱ)如图,连结OB,则OB=OA=OC.∵四边形OABC是平行四边形,∴OC=AB.∴OA=OB=AB.即△AOB是等边三角形,于是,∠AOB=60°.由OF∥CD,又∠ADC= 0°,得∠AEO=∠ADC= 0°.∴OF⊥AB.有=.∠AOB= 0°.∴∠FOB=∠FOA=12∴∠FAB=1∠FOB=15°.2评析本题考查平行四边形的性质和圆中角度的计算.22.解析如图,根据题意,DE=1.56,EC=21,∠ACE= 0°,∠DEC= 0°.过点D作DF⊥AC,垂足为F,则∠DFC= 0°,∠ADF=47°,∠BDF=42°,可得四边形DECF为矩形,∴DF=EC=21,FC=DE=1.56.在Rt△DFA中,tan∠ADF=,∴AF=DF·tan 47°≈21×1.07=22.47.在Rt△DFB中,tan∠BDF=,∴BF=DF·tan 42°≈21×0. 0=18. 0.于是,AB=AF-BF=22.47-18. 0= .57≈ .6,BC=BF+FC=18. 0+1.56=20.46≈20.5.答:旗杆AB的高度约为3.6 m,建筑物BC的高度约为20.5 m.评析本题考查解直角三角形,属容易题.23.解析(Ⅰ)题表中第二行从左至右依次填入35;x+5.第三行从左至右依次填入20;0.5x+15.(Ⅱ)两个气球能位于同一高度.根据题意,x+5=0.5x+15,解得x=20,有x+5=25.答:此时,气球上升了20 min,都位于海拔25 m的高度.(Ⅲ)当 0≤x≤50时,由题意,可知1号气球所在位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差y m,则y=(x+5)-(0.5x+15)=0.5x-10.∵0.5>0,∴y 随x 的增大而增大.∴当x=50时,y 取得最大值15.答:两个气球所在位置的海拔最多相差15 m.24.解析 (Ⅰ)在Rt△ABO 中,点A( ,0),点B(0,1), 点O(0,0),∴OA= ,OB=1. 由OM=m,得AM=OA-OM= 根据题意,由折叠可知△BMN≌△AMN, 有BM=AM= -m.在Rt△MOB 中,由勾股定理得,BM 2=OB 2+OM 2, 得( 2=1+m 2,解得m=. ∴点M 的坐标为,0 .(Ⅱ)在Rt△ABO 中,tan∠OAB===, ∴∠OAB= 0°.由MN⊥AB,得∠MNA= 0°.∴在Rt△AMN 中,得MN=AM·sin∠OAB=12( AN=AM·cos∠OAB=2( -m). ∴S △AMN =12MN·AN=8( 2.由折叠可知△A'MN≌△AMN,有∠A'=∠OAB= 0°, ∴∠A'MO=∠A'+∠OAB=60°.∴在Rt△COM 中,CO=OM·tan∠A'MO= m. ∴S △COM =12OM·CO=2m 2. 又S △ABO =12OA·OB= 2,于是,S=S △ABO -S △AMN -S △COM = 2- 8( 2-2m 2,即S=-5 8m 2+ 4m+8 0.(Ⅲ) 2,0 .评析 本题考查图形的折叠与解直角三角形,有一定难度.25.解析 (Ⅰ)当b=2,c=-3时,二次函数的解析式为y=x 2+2x-3,即y=(x+1)2-4. ∴当x=-1时,二次函数取得最小值-4.(Ⅱ)当c=5时,二次函数的解析式为y=x 2+bx+5.由题意,得方程x 2+bx+5=1,即x 2+bx+4=0有两个相等的实数根.有Δ=b 2-16=0,解得b 1=4,b 2=-4.∴此时二次函数的解析式为y=x 2+4x+5或y=x 2-4x+5.(Ⅲ)当c=b 2时,二次函数的解析式为y=x 2+bx+b 2.它的图象是开口向上,对称轴为x=-2的抛物线. ①若-2<b,即b>0,在自变量x 的值满足b≤x≤b+ 的情况下,与其对应的函数值y 随x 的增大而增大,故当x=b 时,y=b 2+b·b+b 2=3b 2为最小值.∴ b 2=21,解得b 1=- 舍),b 2= ②若b≤-2≤b+ ,即-2≤b≤0,当x=-2时,y= - 2 2+b· -2 +b 2=4b 2为最小值.∴4b 2=21,解得b 1=-2 7(舍),b 2=2 7(舍). ③若- 2>b+3,即b<-2,则在自变量x 的值满足b≤x≤b+ 的情况下,与其对应的函数值y 随x 的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b 2=3b 2+9b+9为最小值.∴ b2+9b+9=21,即b2+3b-4=0.解得b1=1(舍),b2=-4.综上所述,b=7或b=-4.∴此时二次函数的解析式为y=x2+7x+7或y=x2-4x+16.评析本题考查二次函数的相关知识,第(Ⅰ)问考查最值问题,将第(Ⅱ)问转化为方程有两个相等的实数根问题即可解决,第(Ⅲ)问考查分类讨论的思想方法.属中等难度题.11。
2015年天津市中考数学试题及参考答案(word解析版)

2015年天津市中考数学试题及参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.计算(﹣18)÷6的结果等于( )A .﹣3B .3C .13-D .132.cos45°的值等于( )A .12B .2C .2D 3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .4.据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为( )A .0.227×l07B .2.27×106C .22.7×l05D .227×1045.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6 )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间7.在平面直角坐标系中,把点P (﹣3,2)绕原点O 顺时针旋转180°,所得到的对应点P′的坐标为( )A .(3,2)B .(2,﹣3)C .(﹣3,﹣2)D .(3,﹣2)8.分式方程233x x=-的解为( ) A .x=0 B .x=5 C .x=3 D .x=9 9.己知反比例函数6y x =,当1<x <3时,y 的取值范围是( ) A .0<y <l B .1<y <2 C .2<y <6 D .y >610.己知一个表面积为12dm 2的正方体,则这个正方体的棱长为( )A .1dmB dmCD .3dm11.如图,已知▱ABCD 中,AE ⊥BC 于点E ,以点B 为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )A .130°B .150°C .160°D .170°12.已知抛物线213662y x x =-++与x 轴交于点A ,点B ,与y 轴交于点C .若D 为AB 的中点,则CD 的长为( )A .154B .92C .132D .152二、填空题(本大题共6小题,每小题3分,共18分)13.计算;x 2•x 5的结果等于 .14.若一次函数y=2x+b (b 为常数)的图象经过点(1,5),则b 的值为 .15.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D 、E .若AD=3,DB=2,BC=6,则DE 的长为 .17.如图,在正六边形ABCDEF 中,连接对角线AC ,CE ,DF ,EA ,FB ,可以得到一个六角星.记这些对角线的交点分别为H ,I ,J ,K ,L 、M ,则图中等边三角形共有 个.18.在每个小正方形的边长为1的网格中.点A ,B ,D 均在格点上,点E 、F 分别为线段BC 、DB 上的动点,且BE=DF .(Ⅰ)如图①,当BE=52时,计算AE+AF 的值等于 . (Ⅱ)当AE+AF 取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE ,AF ,并简要说明点E 和点F 的位置如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分)19.(8分)解不等式组36219xx+⎧⎨-⎩≥①≤②.请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得;(Ⅱ)不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为.(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与AB交于点F,连接AF,求∠FAB 的大小.22.(10分)如图,某建筑物BC顶部有釕一旗杆AB,且点A,B,C在同一条直线上,小红在D 处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:上升时间/min 10 30 (x)1号探测气球所在位置的海拔/m 15 …2号探测气球所在位置的海拔/m 30 …(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当时,求点M的坐标(直接写出结果即可).25.(10分)已知二次函数y=x 2+bx+c (b ,c 为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l 的怙况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b 2时,若在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.计算(﹣18)÷6的结果等于( )A .﹣3B .3C .13D .13【知识考点】有理数的除法.【思路分析】根据有理数的除法,即可解答.【解答过程】解:(﹣18)÷6=﹣3.故选:A .【总结归纳】本题考查了有理数的除法,解决本题的关键是熟记有理数除法的法则.2.cos45°的值等于( )A .12B C D 【知识考点】特殊角的三角函数值.【思路分析】将特殊角的三角函数值代入求解.【解答过程】解:cos45°. 故选B .【总结归纳】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .【知识考点】轴对称图形.【思路分析】根据轴对称图形的概念求解.【解答过程】解:A 、是轴对称图形,故本选项正确;。
2015年天津中考数学真题试卷附答案(word)
2015年天津中考数学真题试卷附答案(word)2015年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
请在答题卡上填写姓名、考生号、考点校、考场号、座位号,并在规定位置粘贴考试用条形码。
答案应填写在答题卡上,而非试卷上。
考试结束后,请将试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.每题选出答案后,请用2B铅笔在答题卡上对应题目的答案标号的信息点涂黑。
如需改动,请用橡皮擦干净后再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算(18)÷6的结果等于A) -3B) 3C) -1/3D) 1/32.cos45°的值等于A) 1/2B) √2/2C) 1D) √3/23.在一些美术字中,有的汉字是轴对称图形。
下面4个汉字中,可以看作是轴对称图形的是A)B)C)D)4.据2015年5月4日《XXX》报道,“五一”三天假期,全市共接待海内外游客约xxxxxxx人次。
将xxxxxxx用科学记数法表示应为A) 0.227×10^7B) 2.27×10^6C) 22.7×10^5D) 227×10^45.右图是一个由4个相同的正方体组成的立体图形,它的主视图是A)B)C)D)6.估计11的值在A) 1和2之间B) 2和3之间C) 3和4之间D) 4和5之间7.在平面直角坐标系中,把点P绕原点O顺时针旋转180°,所得到的对应点(-3,2)P'的坐标为A) (3,2)B) (2,-2)C) (-3,-2)D) (-2,3)8.分式方程23/(x-3x)=2的解为A) x=-1B) x=3C) x=5D) x=99.已知反比例函数y=x/(kx+1),当1<x<3时,y的取值范围是A) 1<k<2B) 1<y<2C) 2<y<6D) y>610.已知一个表面积为12dm^2的正方体,则这个正方体的棱长为A) 1dm已知函数f(x)=x^3-3x+2,求f(2)的值。
2015年天津市中考数学试卷
2015年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣ D.2.(3分)cos45°的值等于()A.B.C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.4.(3分)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A.0.227×lO7B.2.27×106C.22.7×l05D.227×1045.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2) B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)8.(3分)分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=99.(3分)己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>610.(3分)已知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm11.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160° D.170°12.(3分)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x2•x5的结果等于.14.(3分)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为.15.(3分)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.17.(3分)如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有个.18.(3分)在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得;(Ⅱ)不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.22.(10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).25.(10分)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.2015年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣ D.【分析】根据有理数的除法,即可解答.【解答】解:(﹣18)÷6=﹣3.故选:A.【点评】本题考查了有理数的除法,解决本题的关键是熟记有理数除法的法则.2.(3分)cos45°的值等于()A.B.C.D.【分析】将特殊角的三角函数值代入求解.【解答】解:cos45°=.故选B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.(3分)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A.0.227×lO7B.2.27×106C.22.7×l05D.227×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将2270000用科学记数法表示为2.27×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.(3分)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】由于9<11<16,于是<<,从而有3<<4.【解答】解:∵9<11<16,∴<<,∴3<<4.故选C.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.7.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2) B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【分析】将点P绕原点O顺时针旋转180°,实际上是求点P关于原点的对称点的坐标.【解答】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(﹣3,2),∴点P′的坐标(3,﹣2).故选:D.【点评】本题考查了坐标与图形的变换﹣旋转,熟练掌握关于原点的对称点的坐标特征是解决问题的关键.8.(3分)分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=9【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故选D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(3分)己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>6【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.【解答】解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=6,当x=3时,y=2,∴当1<x<3时,2<y<6.故选C.【点评】本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x 的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.10.(3分)已知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm【分析】根据正方体的表面积公式:s=6a2,解答即可.【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选B.【点评】此题主要考查正方体的表面积公式的灵活运用,关键是根据公式进行计算.11.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160° D.170°【分析】根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=∠BAE=30°,从而得到答案.【解答】解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选:C.【点评】本题主要考查了平行四边形的性质,三角形内角和定理及推论,旋转的性质,此题难度不大,关键是能综合运用以上知识点求出∠DA′B和∠BA′E′.12.(3分)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.【分析】令y=0,则﹣x2+x+6=0,由此得到A、B两点坐标,由D为AB的中点,知OD的长,x=0时,y=6,所以OC=6,根据勾股定理求出CD即可.【解答】解:令y=0,则﹣x2+x+6=0,解得:x1=12,x2=﹣3∴A、B两点坐标分别为(12,0)(﹣3,0)∵D为AB的中点,∴D(4.5,0),∴OD=4.5,当x=0时,y=6,∴OC=6,∴CD==.故选:D.【点评】本题主要考查了二次函数与一元二次方程的关系和抛物线的对称性,求出AB中点D的坐标是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x2•x5的结果等于x7.【分析】根据同底数幂的乘法,可得答案.【解答】解:x2•x5=x2+5=x7,故答案为:x7.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.14.(3分)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为3.【分析】把点(1,5)代入函数解析式,利用方程来求b的值.【解答】解:把点(1,5)代入y=2x+b,得5=2×1+b,解得b=3.故答案是:3.【点评】本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.15.(3分)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共4+3+2=9个球,有2个红球,∴从袋子中随机摸出一个球,它是红球的概率为,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为 3.6.【分析】根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.【解答】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.【点评】本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.17.(3分)如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有8个.【分析】在正六边形ABCDEF的六个顶点是圆的六等分点,即可求得图中每个角的度数,即可判断等边三角形的个数.【解答】解:等边三角形有△AML、△BHM、△CHI、△DIJ、△EKJ、△FLK、△ACE、△BDF共有8个.故答案是:8.【点评】本题考查了正六边形的性质,正确理解正六边形ABCDEF的六个顶点是圆的六等分点是关键.18.(3分)在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF 即为所求..【分析】(1)根据勾股定理得出DB=5,进而得出AF=2.5,由勾股定理得出AE=,再解答即可;(2)首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH==4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.【解答】解:(1)根据勾股定理可得:DB=,因为BE=DF=,所以可得AF==2.5,根据勾股定理可得:AE=,所以AE+AF=,故答案为:;(2)如图,首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH==4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.故答案为:取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.【点评】此题考查最短路径问题,关键是根据轴对称的性质进行分析解答.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得x≥3;(Ⅱ)不等式②,得x≤5;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为3≤x≤5.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(Ⅰ)不等式①,得x≥3;(Ⅱ)不等式②,得x≤5;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为3≤x≤5.故答案分别为:x≥3,x≤5,3≤x≤5.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为25,图①中m的值为28(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.【分析】(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;【解答】解:(1)根据条形图2+5+7+8+3=25(人),m=100﹣20﹣32﹣12﹣8=28;故答案为:25,28.(2)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6,∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21,∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.【点评】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.【分析】(Ⅰ)由CD是⊙O的切线,C为切点,得到OC⊥CD,即∠OCD=90°由于四边形OABC是平行四边形,得到AB∥OC,即AD∥OC,根据平行四边形的性质即可得到结果.(Ⅱ)如图,连接OB,则OB=OA=OC,由四边形OABC是平行四边形,得到OC=AB,△AOB是等边三角形,证得∠AOB=60°,由OF∥CD,又∠ADC=90°,得∠AEO=∠ADC=90°,根据垂径定理即可得到结果.【解答】解:(Ⅰ)∵CD是⊙O的切线,C为切点,∴OC⊥CD,即∠OCD=90°∵四边形OABC是平行四边形,∴AB∥OC,即AD∥OC,有∠ADC+∠OCD=180°,∴∠ADC=180°﹣∠OCD=90°;(Ⅱ)如图②,连接OB,则OB=OA=OC,∵四边形OABC是平行四边形,∴OC=AB,∴OA=OB=AB,即△AOB是等边三角形,∴∠AOB=60°,由OF∥CD,又∠ADC=90°,得∠AEO=∠ADC=90°,∴OF⊥AB,∴,∴∠FOB=∠FOA=∠AOB=30°,∴.【点评】本题考查了切线的性质,平行四边形的性质,垂径定理,等边三角形的判定,熟练掌握定理是解题的关键.22.(10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?【分析】(Ⅰ)根据“1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升”,得出1号探测气球、2号探测气球的函数关系式;(Ⅱ)两个气球能位于同一高度,根据题意列出方程,即可解答;(Ⅲ)由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差ym,则y=(x+5)﹣(0.5x+15)=0.5x﹣10,根据x的取值范围,利用一次函数的性质,即可解答.【解答】解:(Ⅰ)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20,故答案为:35,x+5,20,0.5x+15.(Ⅱ)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度.(Ⅲ)当30≤x≤50时,由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差ym,则y=(x+5)﹣(0.5x+15)=0.5x﹣10,∵0.5>0,∴y随x的增大而增大,∴当x=50时,y取得最大值15,答:两个气球所在位置海拔最多相差15m.【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数解析式.24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,由MN⊥AB,可得:∠MNA=90°,∴在Rt△AMN中,MN=AM•sin∠OAB=,AN=AN•cos∠OAB=,∴,由折叠可知△A'MN≌△AMN,则∠A'=∠OAB=30°,∴∠A'MO=∠A'+∠OAB=60°,∴在Rt△COM中,可得CO=OM•tan∠A'MO=m,∴,∵,∴,即;(Ⅲ)①当点A′落在第二象限时,把S的值代入(2)中的函数关系式中,解方程求得m,根据m的取值范围判断取舍,两个根都舍去了;②当点A′落在第一象限时,则S=SRt△AMN,根据(2)中Rt△AMN的面积列方程求解,根据此时m的取值范围,把S=代入,可得点M的坐标为(,0).【点评】此题考查了一次函数的综合问题,关键是利用勾股定理、三角形的面积,三角函数的运用进行分析.25.(10分)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.【分析】(Ⅰ)把b=2,c=﹣3代入函数解析式,求二次函数的最小值;(Ⅱ)根据当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,得到x2+bx+5=1有两个相等是实数根,求此时二次函数的解析式;(Ⅲ)当c=b2时,写出解析式,分三种情况减小讨论即可.【解答】解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x 的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣时,y=;当a<0时,抛物线在对称轴左侧,y 随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣时,y=;确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.。
2015年天津市中考数学试卷-答案
【提示】当 时,在每一个象限内, 随 的增大而减小;当 时,在每一个象限, 随 的增大而增大.
【考点】反比例函数的性质
10.【答案】B
【解析】因为正方体的表面积公式: ,可得: ,解得: .故选B.
【提示】关键是根据公式进行计算.
【考点】算术平方根
11.【答案】C
【解析】∵四边形 是平行四边形, ,∴ ,∵ ,
(Ⅲ)当 时,由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差 ,则 ,∵ ,∴ 随 的增大而增大,∴当 时, 取得最大值15,答:两个气球所在位置海拔最多相差 .
【提示】解决本题的关键是根据题意,列出函数解析式.
【考点】一次函数的应用
24.【答案】(Ⅰ)在 中,点 ,∴ ,由 ,可得: ,根据题意,由折叠可知 ,∴ ,在 中,由勾股定理, ,可得: ,解得 ,∴点 的坐标为 .
【提示】主视图是从物体的正面看得到的视图.
【考点】简单组合体的三视图
6.【答案】C
【解析】∵ ,∴ ,∴ .故选C.
【提示】解题关键是确定无理数的整数部分即可解决问题.
【考点】估算无理数的大小
7.【答案】D
【解析】根据题意得,点 关于原点的对称点是点 ,∵ 点坐标为 ,∴点 的坐标 .故选:D.
【提示】熟练掌握关于原点的对称点的坐标特征是解决问题的关键.
【考点】二次函数的最值,二次函数的性质
【考点】坐标与图形变化—旋转
8.【答案】D
【解析】去分母得: ,解得: ,经检验 是分式方程的解,故选D.
【提示】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
2015年天津市中考数学试卷
2015年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣18)÷6的结果等于()A.﹣3B.3C.﹣D.2.(3分)cos45°的值等于()A.B.C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.4.(3分)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A.0.227×lO7B.2.27×106C.22.7×l05D.227×104 5.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)8.(3分)分式方程=的解为()A.x=0B.x=3C.x=5D.x=99.(3分)已知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2C.2<y<6D.y>610.(3分)已知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm11.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°12.(3分)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x2•x5的结果等于.14.(3分)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为.15.(3分)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.17.(3分)如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有个.18.(3分)在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算算步骤或推理过程)19.(8分)解不等式组,,请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得;(Ⅱ)不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.22.(10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC 的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).25.(10分)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.2015年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣18)÷6的结果等于()A.﹣3B.3C.﹣D.【解答】解:(﹣18)÷6=﹣3.故选:A.2.(3分)cos45°的值等于()A.B.C.D.【解答】解:cos45°=.故选:B.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.4.(3分)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A.0.227×lO7B.2.27×106C.22.7×l05D.227×104【解答】解:将2270000用科学记数法表示为2.27×106.故选:B.5.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:A.6.(3分)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【解答】解:∵9<11<16,∴<<,∴3<<4.故选:C.7.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【解答】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(﹣3,2),∴点P′的坐标(3,﹣2).故选:D.8.(3分)分式方程=的解为()A.x=0B.x=3C.x=5D.x=9【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故选:D.9.(3分)已知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2C.2<y<6D.y>6【解答】解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=6,当x=3时,y=2,∴当1<x<3时,2<y<6.故选:C.10.(3分)已知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选:B.11.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°【解答】解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选:C.12.(3分)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.【解答】解:令y=0,则﹣x2+x+6=0,解得:x1=12,x2=﹣3∴A、B两点坐标分别为(12,0)(﹣3,0)∵D为AB的中点,∴D(4.5,0),∴OD=4.5,当x=0时,y=6,∴OC=6,∴CD=.=.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x2•x5的结果等于x7.【解答】解:x2•x5=x2+5=x7,故答案为:x7.14.(3分)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为3.【解答】解:把点(1,5)代入y=2x+b,得5=2×1+b,解得b=3.故答案是:3.15.(3分)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【解答】解:∵共4+3+2=9个球,有2个红球,∴从袋子中随机摸出一个球,它是红球的概率为,故答案为:.16.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为 3.6.【解答】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.17.(3分)如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有8个.【解答】解:等边三角形有△AML、△BHM、△CHI、△DIJ、△EKJ、△FLK、△ACE、△BDF共有8个.故答案是:8.18.(3分)在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求..【解答】解:(1)根据勾股定理可得:DB=,因为BE=DF=,所以可得AF==2.5,根据勾股定理可得:AE=.,所以AE+AF=,故答案为:;(2)如图,首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH==4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.故答案为:取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算算步骤或推理过程)19.(8分)解不等式组,,请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得x≥3;(Ⅱ)不等式②,得x≤5;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为3≤x≤5.【解答】解:(Ⅰ)不等式①,得x≥3;(Ⅱ)不等式②,得x≤5;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为3≤x≤5.故答案分别为:x≥3,x≤5,3≤x≤5.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为25,图①中m的值为28(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.【解答】解:(1)根据条形图2+5+7+8+3=25(人),m=100﹣20﹣32﹣12﹣8=28;故答案为:25,28.(2)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6,∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21,∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.【解答】解:(Ⅰ)∵CD是⊙O的切线,C为切点,∴OC⊥CD,即∠OCD=90°∵四边形OABC是平行四边形,∴AB∥OC,即AD∥OC,有∠ADC+∠OCD=180°,∴∠ADC=180°﹣∠OCD=90°;(Ⅱ)如图②,连接OB,则OB=OA=OC,∵四边形OABC是平行四边形,∴OC=AB,∴OA=OB=AB,即△AOB是等边三角形,∴∠AOB=60°,由OF∥CD,又∠ADC=90°,得∠AEO=∠ADC=90°,∴OF⊥AB,∴,∴∠FOB=∠FOA=∠AOB=30°,∴.22.(10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC 的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?【解答】解:(Ⅰ)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20,故答案为:35,x+5,20,0.5x+15.(Ⅱ)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度.(Ⅲ)当30≤x≤50时,由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差ym,则y=(x+5)﹣(0.5x+15)=0.5x﹣10,∵0.5>0,∴y随x的增大而增大,∴当x=50时,y取得最大值15,答:两个气球所在位置海拔最多相差15m.24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,由MN⊥AB,可得:∠MNA=90°,∴在Rt△AMN中,MN=AM•sin∠OAB=,AN=AN•cos∠OAB=,∴,由折叠可知△A'MN≌△AMN,则∠A'=∠OAB=30°,∴∠A'MO=∠A'+∠OAB=60°,∴在Rt△COM中,可得CO=OM•tan∠A'MO=m,∴,∵,∴,即<<;(Ⅲ)①当点A′落在第二象限时,把S的值代入(2)中的函数关系式中,解方程求得m,根据m的取值范围判断取舍,两个根都舍去了;②当点A′落在第一象限时,则S=SRt△AMN,根据(2)中Rt△AMN的面积列方程求解,根据此时m的取值范围,把S=代入,可得点M的坐标为(,0).25.(10分)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.【解答】解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.。