交流异步电动机调速系统控制策略
交流异步电动机变频调速系统设计报告

交流异步电动机变频调速系统设计报告一、引言异步电动机在工业生产中具有广泛的应用,通过变频调速系统可以实现对异步电动机的精确控制,提高生产效率和控制精度。
本文将详细介绍异步电动机变频调速系统设计的原理和过程。
二、系统设计原理异步电动机通过变频器驱动,实现调速功能。
变频器将交流电源转换为直流电源,通过PWM技术将直流电转换为交流电,进而控制电机的转速。
变频器的主要组成部分包括整流器、中间环节直流母线、逆变器和控制电路。
整流器将交流电源转换为直流电源,并通过滤波电路削波,保持直流电的稳定性。
中间环节直流母线存储电能,为逆变器提供稳定的电源。
逆变器将直流电源转换为交流电源,并通过PWM调制技术调整交流电的频率和幅值,从而控制电机的转速。
控制电路通过传感器采集电机的运行状态,并通过对逆变器的控制信号实现控制目标。
三、系统设计步骤1.确定系统需求:根据应用场景和任务要求,确定对异步电动机的调速要求,包括速度范围、控制精度等。
2.选择电机和变频器:根据系统需求,选择适合的异步电动机和变频器,确保其参数和性能满足需求。
3.设计电路连接:根据电机和变频器的技术规格,设计电机与变频器的连线方式和电路连接,确保信号传输畅通。
4.设计控制系统:根据系统需求,设计控制系统包括传感器、控制电路和控制算法等,确保对电机的精确控制。
5.实施系统调试:将设计好的电路和控制系统进行组装和调试,确保系统能够正常工作。
6.测试系统性能:对系统进行性能测试,包括速度响应、负载变化等测试,验证系统的设计目标是否达到。
7.优化系统性能:根据测试结果,对系统进行调整和优化,提高系统的性能和稳定性。
8.编写设计报告:整理系统设计过程、实施步骤和测试结果,撰写设计报告。
四、系统设计考虑因素1.变频器和电机的匹配性:选择变频器时需要考虑其输出能力是否足够满足电机的需求,包括最大输出功率、额定电流等。
2.控制系统的精确性:设计控制系统时需要考虑传感器的精度、控制器的计算性能等因素,确保控制系统能够精确控制电机的转速。
浅析交流异步电动机调速方式

n ( S =1 ) 一
化的项 目 和成本的管理人员;加强劳动纪律 ,压 电磁 调速 电动机 由笼 型 电动机 、电磁 转 : 缩非生产用工和辅助用工,严格控制非生产人员 差离合器和 直流励磁 电源 ( 控制器 )三部 分组
缺点 。所以 ,提高调速效 率、提高功率 因数 、 减少高次谐波 、提高性能价格 比始终是关注 重 1 、调速效率
参考 艾詹 f 吕明. 1 】 输变电工程项 目 成本管理之我见 阅. 国
家电网报, 0 9(3 20 0 )
变频调速是改变 电动机 定子电源的频率 , 统 主要设备室提供 变频电源的变频 器 ,变频 器 可分 成交流一直流一 交流变频器和 交流一 交流
速范围都较小 。 四 结语
3 、串级调速
目前变频调 速系统节电效果显著 ,在 工业
十一五 将变 串级调速是指绕 线式电动机转子 回路 中串 企业适用 范围广泛 ,也是 国家 “
关键词: 电 机 调速 节 动 能
入 可调节的 附加 电势来 改变 电动机的转矩 和转 频器使用 作为电机节能 的主要 措施推广原 因之
一
浅析交流异步电动机 调速方式
唐二峰’ 赵学军 国投新疆罗布泊钾盐有限责任公司 摘要誊简 流异步电 述交 动机目前调速方式
对 调速 方 式及 发展 方 向进行 了阐述 。
05 .%,节点效果一般为2 % 5 %,性能是其他 5 0 各种交流调速技术所不能比拟的。 2 、电动机调速范 围 变频 调速、定子调压调速和 电磁 转差离合 器调速 的调速范 围较大 其他各种调速 方法 的调
交流异步电机调速系统实验报告

交流异步电机调速系统实验报告引言在电力系统中,电机调速是一个非常重要且复杂的问题。
随着技术的不断发展,异步电机调速系统成为了广泛应用的一种方案。
本实验旨在通过搭建和调试一个交流异步电机调速系统,来研究其调速性能和控制策略。
实验目的1.理解交流异步电机调速系统的工作原理;2.掌握电机调速系统的基本组成和实验搭建方法;3.研究不同控制策略对电机调速性能的影响;4.分析实验结果,评价不同控制策略的优劣。
实验原理1.异步电机工作原理:异步电机由主电路和励磁电路组成。
主电路中的三相对称电压产生一个旋转磁场,而励磁电路中的电压和电流则产生感应转子电动势和转矩,使得电机运转起来。
2.异步电机调速原理:异步电机调速主要通过控制转子电阻、定子电压以及改变电机的励磁电流来实现。
常见的调速方法有直接转矩控制(DTC)、矢量控制(VC)等。
实验设备和步骤1.实验设备:–交流异步电动机–实验控制器–电压调节器–电流测量仪–速度测量仪–控制软件2.实验步骤:1.搭建电机调速系统的硬件连接,确保各设备按照要求连接并接通电源。
2.在控制软件中选择合适的控制策略,并设置调速参数。
3.运行实验控制器,观察电机的调速性能,并记录实验数据。
4.根据实验数据分析电机的调速性能,并评价不同控制策略的优劣。
实验结果分析根据实验数据,我们可以得出以下结论:1.不同控制策略对电机调速性能的影响:–直接转矩控制(DTC)可以实现较好的转矩和速度响应,但对转子电阻参数变化较为敏感。
–矢量控制(VC)具有较好的转矩和速度响应特性,并且对转子电阻参数变化不敏感。
2.不同电机负载对调速系统的影响:–在轻载情况下,不同控制策略的性能相对较为接近。
–在重载情况下,矢量控制(VC)表现出较好的调速稳定性和承载能力。
结论本实验通过搭建和调试交流异步电机调速系统,研究了不同控制策略对电机调速性能的影响,并分析了不同负载下的调速系统性能。
通过实验结果,我们得出了以下结论:1.矢量控制(VC)相比直接转矩控制(DTC)具有更好的转矩和速度响应特性,且对转子电阻参数变化不敏感。
三相异步电动机双速可逆变频调速PLC控制

三相异步电动机双速可逆变频调速PLC控制异步电动机变频调速所要求的变频电源几乎都采用静止式变频器。
利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的开关顺序,即可以达到对输出进行换相的目的,很容易实现电动机的正、反转切换。
本文介绍了PLC在三相交流异步电动机变频调速系统方面的设计,说明了系统的控制策略和工作原理,探讨三相异步电动机双速可逆变频调速PLC控制。
1、PLC在三相交流异步电动机变频调速系统设计三相交流异步电动机变频调速系统,以可编程序控制器PLC 作为核心控制部件,通过速度传感器将电动机的转速信号传给PLC, PLC经过控制规律的运算后,给出控制信号,改变电动机输入电压的频率,来调节电动机的转速,从而构成了一个闭环的速度控制系统。
如图1 所示。
2、三相异步电动变频器电路连接的要点2.1变频器前面一定要加接触器输入侧接触器的作用。
一般说来,在断路器和变频器之间,应该有接触器。
a. 可通过按钮开关方便地控制变频器的通电与断电。
b. 发生故障时可自动切断变频器电源,如:变频器自身发生故障,报警输出端子动作时,可使接触器KM迅速断电,从而使变频器立即脱离电源。
另外,当控制系统中有其他故障信号时,也可迅速切断变频器电源。
2.2变频器与电动机之间是否接输出接触器并不要求和工频进行切换时,变频器与电动机接触器,则有可能在变频器的输出频率较高的致变频器跳闸。
a. 当一台变频器只控制一台电动机,且并不要求和工频进行切换时,变频器与电动机之间不要接输出接触器。
因为如果接入了输出接触器,则有可能在变频器的输出频率较高的情况下启动电动机,产生较大的启动电流,导致变频器跳闸。
b. 必须接输出接触器的情况有两种:当一台变频器接多台电动机时,每台电动机必须要有单独控制的接触器。
另外,在变频和工频需要切换的情况下,当电动机接至工频电源时,必须切断和变频器之间的联系。
通用变频器,一般都是采用交、直、交的方式组成,利用普通的电网电源运行的交流拖动系统,为了实现电动机的正、反转切换,必须利用触器等装置对电源进行换相切换。
三相交流异步电机的变频控制

(6-5-4)
可以看出,Φm减小导致电机允许输出转矩 T下降,则电机利用率下降, 电机的最大转矩也将降低,严重时可能发生负载转矩超过最大转矩,电机 就带不动了,即所谓堵转现象。 又当定子电压U1不变,减小f1时,Φm上升会造成磁路饱合,励磁电流 会上升,铁心过热,功率因数下降,电机带负载能力降低。 故在调频调速中,要求在变频的同时改变定子电压U1,以维持Φm接近 不变,即U1/ f1=常数,这样电机输出转矩T保持不变。 恒 压 频 比 控 制 也 称 为 变 压 变 频 控 制 ( VVVF-Variation Voltage Variation Frequency频率可变、电压可变)
■
5
项目6 数控机床的主轴伺服系统
由上述分析可知改变频率f1,可平滑调节同步转速。但在实际调速时, 只改变频率是不够的,现在来看一下变频时电动机的机械特性的变化情况, 由电机学知:
E1 4.44 K r1 f1 N1 m
式中 E1—感应电势;
(6-5-2)
Kr1—基波绕组系数; N1—定子每相绕组串联匝数; Φm—每极气隙磁通量。
■
11
项目6 数控机床的主轴伺服系统 交-直-交变频主电路
整流部分把交流电压转换为直流电压; 电容能使直流电压波纹平直; 逆变器把直流逆变为等效交流同时完成调频和调压任务。 控制电路向逆变器发出指令,按规律导通各个器件,使直流变为三相等效 交流。
■
12
项目6 数控机床的主轴伺服系统
恒压频比控制的交-直-交变频控制电路
■
10
项目6 数控机床的主轴伺服系统
3.变频器自身调压、变频 • 采用不可控整流器,改变输出电压脉冲列的脉冲宽度,便 可达到调节输出电压的目的。其控制信号通常是正弦波脉 宽调制信号(SPWM)。 • 因采用不可控整流,功率因数高;因用PWM逆变,谐波可 以大大减少,且结构简单,性能优良。是应用最广泛的变 频控制方式。 • 我们以变频器自身调压、变频为例,详细介绍。
异步电动机V -F控制策略优化

异步电动机V /F控制策略优化摘要:本文在传统VF 控制算法的基础上,提出了一种包括预励磁、定子电流抑制、谐振抑制等功能的VF控制策略优化方案。
通过预励磁,可以增大电机启动瞬间的转矩输出;通过电流抑制功能,可以限制电机启动过程的电流幅值,避免过流跳闸;谐振抑制功能可以消除电机在某些特定频段的振荡现象。
仿真和实验都证明了以上算法的正确性和有效性。
1引言变频器驱动控制一般分为VF开环控制、矢量控制以及直接转矩控制等。
VF控制属于开环控制,控制算法简单,实现成本低,不依赖电机参数,系统鲁棒性高,但是转速控制精度不高,动态响应慢。
矢量控制则可以通过旋转坐标变换对磁通和转矩实现解耦控制,使交流电机具有类似直流电机的优良控制特性,转速控制精度高,但是这种控制方法受电机参数影响较大。
直接转矩控制则是保持定子磁链幅值恒定,通过控制电机负载角来直接控制电磁转矩,具有较快的动态响应。
相对于矢量控制和直接转矩控制来说,VF控制在转速控制精度和动态响应速度等指标上都存在一定的差距,但是由于其实现方法简单、成本低,鲁棒性高,在交流调速领域依然有十分广泛的应用。
此外,从系统通用性的角度来说,VF控制也是交流变频驱动领域最基本、适用场合较多的一种控制方式。
因此,在传统VF控制方式的基础上,进行控制策略的完善和优化,已减少或弥补其在控制精度和响应速度等方面的不足就成为一项重要的工作。
本文提出了一种通过预励磁、定子电流抑制、谐振抑制等功能来优化VF控制性能的控制策略,并通过仿真和实验对控制策略进行了分析和验证。
2VF控制原理根据电机学原理,异步电动机的相电动势表达式为式中,f1为定子电源频率,N1为定子每相绕组匝数,KN1为绕组系数,φm为主磁通。
可以看出,当E1/f1的值保持不变时,主磁通φm保持不变。
但是电动势E1不能直接控制,因此我们通过控制定子电压U1与频率f1的比值保持不变,从而使主磁通保持恒定。
当频率较高时,定子电压较高,可以忽略定子电阻的电压降;但是在低频时,定子电阻压降的影响不可忽略,需要通过定子电压补偿的方式改善VF控制的低频性能。
交流异步电动机变压变频调速系统设计与仿真

交流异步电动机变压变频调速系统设计与仿真异步电动机变压变频调速系统是一种常见的电动机调速系统,可以实现电动机转速的精确控制和调节。
本文将介绍异步电动机变压变频调速系统的设计和仿真。
首先,异步电动机的调速原理简要介绍。
异步电动机是一种常用的交流电动机,其转速通常由额定电压和频率决定。
通过改变电动机的电压和频率,可以实现对电动机的调速。
变压变频调速系统通过调节电压和频率的大小,改变电动机的转速。
在设计异步电动机变压变频调速系统之前,首先要确定电动机的参数。
电动机的参数包括额定功率、额定电压、额定电流等,这些参数可以从电动机的标牌上获取。
另外,还需要确定变压变频器的参数,包括额定电压范围、频率范围等。
这些参数将决定整个系统的性能。
设计异步电动机变压变频调速系统的关键是选取合适的变压变频器。
变压变频器是将电网的交流电转换为可调频率和可调电压的交流电的装置。
根据电动机的额定电压和变压变频器的额定电压范围,选取合适的变压变频器,以满足调速系统的要求。
设计异步电动机变压变频调速系统的下一步是进行系统的电路设计。
电路设计包括电动机的接线和变压变频器的接线。
电动机的接线要根据电动机的型号和相数来进行,确保电机的正常运行。
变压变频器的接线要根据变压变频器的接线图进行,确保变压变频器与电动机的连接正确。
完成电路设计后,还需要进行系统的控制设计。
控制设计包括电机的启动和停止控制、电机的转速控制等。
启动和停止控制一般采用按钮控制或者遥控控制,可以通过按钮或者遥控装置来启动和停止电动机。
转速控制一般采用PID控制器进行,通过调节变压变频器的输出电压和频率,来实现对电动机转速的控制和调节。
完成设计后,可以使用仿真软件进行系统的仿真。
常用的仿真软件有MATLAB/Simulink、PSIM等。
通过仿真可以验证系统的设计是否正确,并进行性能评估。
仿真结果可以用来优化系统的设计,提高系统的性能。
综上所述,异步电动机变压变频调速系统的设计和仿真是一个系统工程,需要从确定电动机和变压变频器的参数开始,进行电路设计和控制设计,最后进行仿真验证。
交流异步电动机矢量控制调速系统设计

目录摘要I1绪论11.1交流调速技术概况11。
2异步电动机矢量控制原理22矢量控制理论42.1矢量控制42.2异步电机的动态数学模型52.3坐标变换73矢量控制系统硬件设计93。
1矢量控制结构框图93.2矢量控制系统的电流闭环控制方式思想9 3。
3各个子系统模块103.4矢量控制的异步电动机调速系统模块124 SIMULINK仿真134.1MATLAB/S IMULINK概述134。
2仿真参数134。
3仿真结果145总结16参考文献17摘要异步电机的物理模型之所以复杂,关键在于各个磁通间的耦合。
本设计把异步电动机模型解耦成有磁链和转速分别控制的简单模型,就可以模拟直流电动机的控制模型来控制交流电动机。
综合矩阵变换的控制策略及异步电动机转子磁场定向理论,采用计算机仿真方法分别建立了矩阵变换仿真模型以及基于矩阵变换的异步电动机矢量控制系统仿真模型,对矩阵变换的控制原理、输入、输出性能以及矢量控制系统的优质的抗扰能力及四象限运行特性进行分析验证,展现了该新型交流调速系统的广阔发展前景,并针对基于矩阵变换的异步电动机矢量控制系统的特点,着重对矢量控制单元进行了软件设计。
直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果.本文研究了矢量控制系统中磁链调节器的设计方法。
并用MATLAB最终得到了仿真结果。
关键词:坐标变换;矢量控制;MATLAB/simulink1绪论1.1交流调速技术概况工农业生产、交通运输、国防军事以及日常生活中广泛应用着电机传动,其中很多机械有调速要求,如车辆、电梯、机床及造纸机械等,而风机、水泵等为了减少损耗,节约电能也需要调速。
过去由于直流调速系统调速方法简单、转矩易于控制,比较容易得到良好的动态特性,因此高性能的传动系统都采用直流电机,直流调速系统在变速传动领域中占统治地位。
但是直流电机的机械接触式换向器结构复杂、制造成本高、运行中容易产生火花、需要经常的维护检修,使得直流传动系统的运营成本很高,特别是由于换向问题的存在,直流电机无法做成高速大容量的机组,如目前3000转/分左右的高速直流电机最大容量只有400千瓦左右,低速的也只能做到几千千瓦,远远不能适应现代生产向高速大容量化发展的要求.交流电机高效调速方法的典型是变频调速,它既适用于异步电机,也适用于同步电机.交流电机采用变频调速不但能实现无极调速,而且根据负载的特性不同,通过适当调节电压和频率之间的关系,可使电机始终运行在高效区,并保证良好的动态特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交流异步电动机调速系统控制策略
发表时间:2018-10-01T12:18:49.203Z 来源:《基层建设》2018年第27期作者:刘英敏
[导读] 摘要:为了提高异步电动机调速系统的精确性,本文主要分析了三种较为成熟的控制策略,同时分析了现代控制理论在交流异步电动机调速系统的应用控制策略的未来发展方向,期望能够推动系统控制策略的不断完善发展。
齐鲁石化运维中心炼油电气山东淄博 255434
摘要:为了提高异步电动机调速系统的精确性,本文主要分析了三种较为成熟的控制策略,同时分析了现代控制理论在交流异步电动机调速系统的应用控制策略的未来发展方向,期望能够推动系统控制策略的不断完善发展。
关键词:交流异步电动机;调速系统;策略;方向
交流异步电动机是一种将电能转化为机械能的电力拖动装置,其主要成分包括定子、转子和气隙。
定子绕阻在接通三相交流电之后能够产生磁场,而且还切割了转子,进而获得转矩。
交流异步电动机具有结构简单、运行稳定、价格实惠、安装和维护方便等优点,使其得到了广泛的应用。
交流异步电动机常见的调速方法有降压调速、转子串电阻调速和变极对数调速等,其中的变压变频调速的调速范围宽、灵活性较强,应用较为广泛。
变压变频调速时的转差功率能够保持稳定,在配以一定的技术后能够保持高性能,能够与直流调速系统想媲美。
本文以现代控制理论为基础分析了对异步电动机的变压变频调控策略的分析。
一、基于静态模型的控制策略
对异步电动机的调速的本质在于对电磁转矩的控制。
传统的异步电动机交流调速系统以T型稳态等电路建立了数学模型,但对电磁转矩的控制率低。
但其也有结构简单、工作场合要求低等特点,在风机和水泵中得到了广泛的应用。
1.对转速开环、恒压频比的控制
对转速开环和恒压频比控制的核心在于对电压和频率的控制,确保电压频率比保持稳定不变的情况下,以改变异步电动机的同步转速进行调速。
在这一过程中,当电磁转矩不变时,转差频率不变,负载时的转速不变,通过改变电子电压频率来稳步改变转速。
由于转速开环、恒压频比不能控制电磁转矩,其动态性能较差,调速范围也十分有限。
2.转速闭环、转差频率控制
能够控制电磁转矩就能够提高系统的动态性能。
在转速开环、恒压频比上进行转速闭环控制,当电压频率陡然增加时,电机转速较为迟疑,造成转差额较大,电机转速提高,进而实现了对转速的控制。
二、基于动态模型的传统控制策略
上述的一种控制策略从稳态的电路出发,在稳态的情况下气隙恒定,动态性较差。
要向实现动态性的调速,就要控制异步电动机的磁通和电磁转矩,常见的控制策略是矢量控制、直接转矩控制等。
1.矢量控制
矢量控制起源于感应电机磁场定向控制,并在感应电机定子电压上逐渐形成了矢量控制理论。
矢量控制能够将定子电流分解成励磁分量和转矩分量,并在各自控制器的独立控制下实现了控制。
矢量控制的关键在于保持转子磁链的恒定,因此就需要随时掌握转子磁链的信号。
在初始阶段,人们尝试使用磁链传感器检测转子磁链,但其工艺和技术不太理想,而且转速低时的脉动分量大大超出了平常。
当前的矢量控制系统多使用软测量的方法,例如电压、电流信号等。
2.直接转矩控制
矢量控制在理论上实现了磁链和转矩的解耦控制,但其坐标变换和转子磁链的准确性限制了矢量控制范围的准确性。
而直接转矩控制系统通过双位控制器控制电磁转矩,选择合适的电压矢量控制电机,转矩响应速度快,稳定性也更高。
三、现代控制策略
传统控制策略会收到电机参数和扰动的影响,因此,现代控制理论与矢量控制、直接控制理论相结合,并且通过设计参数辨识器、观测器等修正模型,提高系统的鲁棒性。
1.滑模变结构控制
滑模变结构控制是通过变革结构控制实现控制,其实质是通过不连续的控制率使其按照要求的轨迹运动,常与矢量控制和直接转矩控制相结合使用。
传统的滑模控制器只有滑动到面上时才具备不确定的干扰抑制力,常见的简单的办法是提高增益性使系统能够快速收敛到滑动面,但随之抖动也家具,使系统变得不稳定。
全滑模控制具有全程性,在通过滑动模块控制的基础上,需要设计一个非线性的动态滑模来消除滑模控制,使系统具备全过程的鲁棒性,克服了原有的缺点。
滑模变结构控制还有另外一个缺点,即当达到滑动后,滑动面向平衡点运动的轨迹难以得到控制,容易产生抖动。
2.自适应控制
由于异步电动机的参数与电机工作状态联系紧密,而矢量控制和直接转矩控制的动态性能也容易受到参数的变化,其自适应控制受到了广泛关注。
自适应控制系统中常见的调速系统包括自适应控制和自适应观测器。
模型自适应控制器以参考模型的输出为理想输出,以控制被控制对象的动态性和参考模型的动态性一致,其中涉及到的问题有负载转矩的矫正、速度控制器等。
为了解决这些问题,需要掌握状态变量,如定子电流、转速等,但还需要定转子磁链自适应观测器,其以磁链为工具,以实际输出量和预估输出量为基准进行矫正,能够实现对转子电阻和转速的有效辨识。
另外,还有一种自适应观测器——卡尔曼滤波器,它具有观测和滤波功能,能够消除系统噪音,提高了观测器的精度,使其鲁棒性更强。
但交流调速系统以非现行系统为主,人们多以交流调速系统方程建立卡尔曼滤波方程,并加入了参数辨识、转速观测等,使观测器更加简化。
3.模糊控制
在矢量控制系统中,以转速和电流控制器为设计对象均能够将其设计成模糊控制器,进而掌握电极参数的变化和负载扰动的抑制能力。
模糊控制常用在直接转矩控制中,更好地实现了定子电阻的控制,有效地实现了对异步电动机定子电阻的检测。
4.神经网络控制
神经网络控制的非线性模型包括神经网络辨识器和神经网络控制器的设计。
神经网络能够矫正定、转子电阻,能够有效消除其对转子
磁链的影响,提高转子磁链和电磁转矩的准确值。
由于转子磁链中包括三相电流和转速的非线性函数,电磁转矩通过转子磁链和转速来表示,因此,电磁转矩就成为了三相电流和转速的非线性函数。
因此,应恰当使用神经网络来实现2个非线性函数,得到转子磁链和电磁转矩,保证了电机参数的准确性。
结语
交流异步电动机调速系统较为复杂,传统的控制方法较多,但对电机数学模型的依赖性较大,而且电机参数的变化也较大,不确定性扰动较多,使得这些电机数学模型不太精确。
随着现代控制理论的研究和发展,现代控制理论和实践取得了较大的进步,但还需要进一步的研究,例如如何使电机模型更加精确,如何使用非线性控制器提高交流调速系统的性能。
参考文献:
[1]袁淑梅.交流异步电动机调速系统控制策略综述[J].山东工业技术,2016(12):285.
[2]丁辉,胡协和.交流异步电动机调速系统控制策略综述[J].浙江大学学报(工学版),2011,45(01):50-58.
[3]何光东.交流伺服控制技术研究[D].浙江大学,1998.。