20.1.1中位数和众数

合集下载

20.1.中位数和众数导学单

20.1.中位数和众数导学单

八年级数学学科土城子中学问题导学单课题20.1.2 中位数和众数设计者张晓梅审核者潘明玲学习时间 6. 学生姓名一.阅读教材119页----120页内容,完成下列问题。

1、自主检测小练习:在一次环保知识竞赛中,某班50名学生成绩如下表所示:得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1分别求出这些学生成绩的众数、中位数和平均数.2、看懂119页例6.完成下列内容。

例6、某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩。

为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,数据如下(单位:万元):17 18 16 13 24 15 28 26 18 1922 17 16 19 32 30 16 14 15 2615 32 23 17 15 15 28 28 16 19问题:1、选用频数分布表或条形图整理数据。

(任选一个)2、回答以下三个问题:(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由。

(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由。

3.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)甲群:13、13、14、15、15、15、16、17、17乙群:3、4、4、5、5、6、6、54、57(1)甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。

(2)乙群游客的平均年龄是岁,中位数是岁,众数是岁。

其中能较好反映乙群游客年龄特征的是。

归纳:平均数计算要用到,它能够充分利用所有的数据信息,但它受极端值的影响较大.是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,不受极端值的影响,这是它的一个优势,的计算很少也不受极端值的影响.。

人教版新教案word版:第二十章 数据的分析

人教版新教案word版:第二十章  数据的分析

第二十章 数据的分析20.1 数据的集中趋势 20.1.1 平均数 第1课时 平均数 教学目标1.了解加权平均数的概念.2.能运用加权平均数公式解决实际问题. 预习反馈阅读教材P111~114,完成下列预习内容.1.一般地,如果有n 个数,如x 1,x 2,…,x n ,那么x =1n (x 1+x 2+…+x n )叫做这n 个数的平均数.“x ”读作“x 拔”.2.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+w 3+…+w n 叫做这n 个数的加权平均数.3.在求n 个数的平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里f 1+f 2+…+f k =n),那么这n 个数的平均数x =x 1f 1+x 2f 2+…+x k f kn .也叫做x 1,x 2,…,x k 这k 个数的加权平均数,其中f 1,f 2,…,f k 分别叫做x 1,x 2,…,x k 的权. 4.一组数据:7,8,10,12,13的平均数是10.5.一组数据中有a 个x 1,b 个x 2,c 个x 3,那么这组数据的平均数为ax 1+bx 2+cx 3a +b +c .6.某班10名学生为支援希望工程,将平时积攒的零花钱捐献给贫困地区的失学儿童.每人捐款金额如下(单位:元):10,12,13.5,21,40.8,19.5,20.8,25,16,30. 这10名同学平均捐款多少元?解:110(10+12+13.5+21+40.8+19.5+20.8+25+16+30)=20.86(元).名校讲坛例1 (教材P112例1)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制计,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示,请确定两人的名次.【解答】 选手A 的最后得分是85×50%+95×40%+95×10%50%+40%+10%=42.5+38+9.5=90.选手B 的最后得分是95×50%+85×40%+95×10%50%+40%+10%=47.5+34+9.5=91.由上可知选手B 获得第一名,选手A 获得第二名.【思考】例1中两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?从中你能体会到权的作用吗?【跟踪训练1】(《名校课堂》20.1.1第1课时习题)学校广播站要招聘1名记者,小亮和小丽报名参加了三项素质测试,成绩如下:将写作能力、普通话水平、计算机水平这三项的总分由原先按3∶5∶2计算,变成按5∶3∶2计算,总分变化情况是(B) A .小丽增加多 B .小亮增加多 C .两人成绩不变化 D .变化情况无法确定例2 (教材P113例2)某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人,求这个跳水队运动员的平均年龄(结果取整数).【解答】 这个跳水队运动员的平均年龄为 x =13×8+14×16+15×24+16×28+16+24+2≈14(岁).【跟踪训练2】 某校调查了20名男生某一周参加篮球运动的次数,调查结果如下表所示,那么这20名男生该周参加篮球运动次数的平均数是(C)A.3次 B .3.5次 C .4次 D .4.5次 巩固训练1.某次考试,5名学生的平均分是82,除甲外,其余4名学生的平均分是80,那么甲的得分是(D)A .84B .86C .88D .902.已知数据a 1,a 2,a 3的平均数是a ,那么数据2a 1+1,2a 2+1,2a 3+1的平均数是(C) A .a B .2a C .2a +1 D.2a 3+13.某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,甲的面试成绩为85分,笔试成绩为90分,若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是(C)A.85+902B.85×7+90×32C.85×7+90×310D.85×0.7+90×0.3104.晨光中学规定,学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末成绩占50%.小桐的三项成绩(百分制)依次是95分,90分,85分,小桐这学期的体育成绩是多少? 解:小桐这学期的体育成绩是88.5分. 5.下表是校女子排球队队员的年龄分布:求校女子排球队队员的平均年龄(可使用计算器). 解:x =13×1+14×4+15×5+16×21+4+5+2≈14.7(岁)答:校女子排球队队员的平均年龄为14.7岁.6.一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:(1)如果这家公司想招一名口语能力比较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁? 解:(1)听、说、读、写的成绩按照3∶3∶2∶2的比确定,则甲的平均成绩为85×3+83×3+78×2+75×23+3+2+2=81,乙的平均成绩为73×3+80×3+85×2+82×23+3+2+2=79.3,显然甲的成绩比乙高,所以从成绩看,应该录取甲.(2)听、说、读、写的成绩按照2∶2∶3∶3的比确定,则甲的平均成绩为85×2+83×2+78×3+75×32+2+3+3=79.5,乙的平均成绩为73×2+80×2+85×3+82×32+2+3+3=80.7,显然乙的成绩比甲高,所以从成绩看,应该录取乙. 课堂小结1.加权平均数的公式.2.运用加权平均数的公式计算样本数据的平均数. 3.体会加权平均数的意义.第2课时 用样本平均数估计总体平均数 教学目标结合加权平均数的有关知识,理解用样本估计总体的方法,解决实际生活中的问题. 预习反馈阅读教材P114~115,完成下列预习内容.1.当要考察的对象很多,或者对考察对象带有破坏性时,统计学中常常通过用样本估计总体的方法来获得对总体的认识.例如,实际生活中经常用样本的平均数来估计总体的平均数.2.一组数据7,8,8,9,8,16,8中,数据8的频数是4.3.若12≤x<30,则这组数的组中值是21.4.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2,估计这个月的最低温度的平均值大约是0℃.5.某中学环保小组对我市6个餐厅一天的快餐饭盒的使用数量作调查,结果如下:125,115,150,260,110,140.请用统计知识估计:若我市有40个餐厅,则一天共使用饭盒约6__000个.名校讲坛例1 (教材P114探究变式)为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:(1)这天5路公共汽车平均每班的载客量是多少?(2)从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?【分析】根据上面的频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组频数看作相应组中值的权.例如在1≤x <21之间的载客量近似地看作组中值11,组中值11的权是它的频数3. 【解答】(1)这天5路公共汽车平均每班的载客量是x =11×3+31×5+51×20+71×22+91×18+111×153+5+20+22+18+15≈73(人).(2)由表格可知,81≤x <101的18个班次和101≤x <121的15个班次共有33个班次超过平均载客量,占全天总班次的百分比为3383×100%=39.8%.【跟踪训练1】为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如下表各项数据:(1)上表中,a =31,b =51; (2)计算2路公共汽车平均每班的载客量. 解:11×2+31×8+51×202+8+20=43(人).答:2路公共汽车平均每班的载客量是43人.【点拨】 数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数. 例2 (教材P115例3变式)某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表所示:这批灯泡的平均使用寿命是多少?【思路点拨】 抽出的100只灯泡的使用寿命组成一个样本,可以利用样本的平均使用寿命来估计这批灯泡的平均使用寿命.【解答】 根据表格,可以得出各小组的组中值,于是x =800×10+1 200×19+1 600×25+2 000×34+2 400×12100=1 676(时),即样本平均数为1 676.由此可以估计这批灯泡的平均使用寿命大约是1 676小时. 【思考】 用全面调查的方法考察这批灯泡的平均使用寿命合适吗?【跟踪训练2】(《名校课堂》20.1.1第2课时习题)某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了40只灯泡,它们的使用寿命如表所示,则这批灯泡的平均使用寿命是1__500__h .巩固训练1.某学校在开展“节约每一滴水”的活动中,从七年级的200名同学中任选出十名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:节水量(单位:吨)0.5 1 1.5 2同学数(人) 2 3 4 1请你估计这200名同学的家庭一个月节约用水的总量大约是(C)A.180吨 B.200吨C.240吨 D.360吨2.某部队为测量一批新制造的炮弹的杀伤半径,从中抽查了50枚炮弹,它们的杀伤半径(米)如下表:杀伤半径20≤x<4040≤x<6060≤x<8080≤x<100数量8 12 25 5 这批炮弹的平均杀伤半径是多少米?解:由表可得出各组数据的组中值分别是30,50,70,90,根据加权平均数公式得x=30×8+50×12+70×25+90×58+12+25+5=60.8(米).答:这批炮弹的平均杀伤半径大约是60.8米.3.为了绿化环境,柳荫街引进一批法国梧桐,三年后这些树的树干的周长情况如图所示,计算(可以使用计算器)这批法国梧桐树干的平均周长(精确到0.1 cm).解:x =45×8+55×12+65×14+75×10+85×68+12+14+10+6=63.8(cm).答:这批梧桐树干的平均周长是63.8 cm. 课堂小结1.哪些情况下,不能使用全面调查?2.在统计中,为什么要用样本的情况去估计总体的情况? 3.如何用样本估计总体? 20.1.2 中位数和众数 第1课时 中位数和众数 教学目标1.会求一组数据的中位数、众数. 2.掌握中位数、众数的作用. 3.会用中位数、众数分析实际问题. 预习反馈阅读教材P116~118,完成下列预习内容.1.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.一组数据的中位数不一定出现在这组数据中.一组数据的中位数是唯一的.2.一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映其集中趋势.3.某组数据:2,5,4,3,2的中位数是3;数据11,8,2,7,9,2,7,3,2,0,5的众数是2.4.某班7名女生的体重(单位:kg)分别是35,37,38,40,42,42,74,这组数据的众数是42.5.在数据-1,0,4,5,8中插入一个数据x ,使得这组数据的中位数是3,则x =2. 名校讲坛 知识点1 中位数例1 (教材P117例4)在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:136 140 129 180 124 154 146 145 158 175 165 148(1)样本数据(12名选手的成绩)的中位数是多少? (2)一名选手的成绩是142 min ,他的成绩如何? 【解答】(1)先将样本数据按照由小到大的顺序排列:124 129 136 140 145 146 148 154 158 165 175 180这组数据的中位数为处于中间的两个数146,148的平均数,即12×(146+148)=147.因此样本数据的中位数是147.(2)根据(1)中得到的样本数据的中位数,可以估计,在这次马拉松比赛中,大约有一半选手的成绩快于147 min ,有一半选手的成绩慢于147 min ,这名选手的成绩是142 min ,快于中位数147 min ,可以推测他的成绩比一半以上选手的成绩好.【思考】 根据例1中的样本数据,你还有其他方法评价(2)中这名选手在这次比赛中的表现吗?【跟踪训练1】 求下列各组数据的中位数: ①5 6 2 3 2(3) ②2 3 4 4 4 4 5(4) ③5 6 2 4 3 5 (4.5) ④3 7 6 8 8 40(7.5)【点拨】 求中位数的步骤:①将这一组数据从大到小(或从小到大)排列;②若该组数据含有奇数个数,位于中间位置的数是中位数;若该组数据含有偶数个数,计算出位于中间位置的两个数的平均数,就是中位数.知识点2 众数例2 (教材P118例5)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示:你能根据表中的数据为这家鞋店提供进货建议吗?【思路点拨】一般来讲,鞋店比较关心哪种尺码的鞋销售量最大,也就是关心卖出的鞋的尺码组成的一组数据的众数.一段时间内卖出的30双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数.进而可以估计这家鞋店销售哪种尺码的鞋最多.【解答】由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5厘米的鞋销量最大.因此可以建议鞋店多进23.5厘米的鞋.【思考】分析表中的数据,你还能为鞋店进货提出哪些建议?【跟踪训练2】求下列各组数据的众数:(1)2,5,3,5,1,5,4 (5)(2)5,2,6,7,6,3,3,4,3,7,6 (6 3)(3)2,2,3,3,4 (2 3)(4)2,2,3,3,4,4 (2 3 4)(5)1,2,3,5,7 (1 2 3 5 7)【思考】当一组数据中多个数据出现的次数一样最多时,这几个数据都是这组数据的众数吗?一组数据的众数一定出现在这组数据中吗?巩固训练1.数学老师布置10道选择题,课代表将全班同学的答题情况绘制成条形统计图,根据下图,全班每位同学答对的题数的中位数和众数分别为(D)A.8,8B.8,9C.9,9D.9,82.5个正整数从小到大排列,若这组数据的中位数是3,众数是7且唯一,则这5个正整数的和是(A)A.20 B.21 C.22 D.233.数据8,8,x,6的众数与平均数相同,那么它们的中位数是8.4.为了了解“孝敬父母,从家务事做起”活动的实施情况,某校抽取八年级某班50名学生,调查他们一周做家务所用时间,得到一组数据,并绘制成下表,请根据下表完成各题:每周做家务的时间0 1 1.522.533.54合计(1)该班学生每周做家务的平均时间是2.44小时. (2)这组数据的中位数是2.5,众数是3.5.(《名校课堂》20.1.2第1课时习题)在一次测试中,抽取了10名学生的成绩(单位:分)为:86,92,84,92,85,85,86,94,94,83. (1)这个小组本次测试成绩的中位数是多少? (2)小聪同学此次的成绩是88分,他的成绩如何?解:(1)将这组数据按从小到大的顺序排列为83,84,85,85,86,86,92,92,94,94,则中位数是86+862=86.(2)根据(1)中得到的样本数据的中位数,可以估计,在这次测试中,大约有一半学生的成绩高于86分.小聪同学的成绩是88分,大于中位数86分,可以推测他的成绩比一半以上同学的成绩好. 课堂小结1.如何求中位数?中位数的作用是什么? 2.如何求众数?众数的作用是什么? 第2课时 平均数、中位数和众数的应用 教学目标1.进一步理解平均数、中位数和众数的概念.2.能辨清它们之间的关系,并能运用平均数、中位数、众数解决实际问题. 预习反馈阅读教材P119~120,完成下列预习内容.1.平均数、中位数和众数都可以反映一组数据的集中趋势,它们各有自己的特点,能够从不同的角度提供信息.在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.2.平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,因此在现实生活中较为常用.但它受极端值(一组数据中与其余数据差异很大的数据)的影响较大.3.当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不易受极端值的影响.中位数只需要很少的计算,它也不易受极端值的影响.思考:你知道在体操比赛评分时,为什么要去掉一个最高分和一个最低分吗?4.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄(单位:岁)如下:甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,4,5,5,6,6,54,57.(1)甲群游客的平均年龄是15岁,中位数是15岁,众数是15岁,其中能较好地反映甲群游客年龄特征的是平均年龄(众数或中位数).(2)乙群游客的平均年龄是16岁,中位数是5岁,众数是4,5,6岁.其中能较好地反映乙群游客年龄特征的是中位数.名校讲坛例(教材P119例6)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每个营业员在某月的销售额(单位:万元),数据如下:(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.【思路点拨】商场服装部统计的每个营业员在某月的销售额组成一个样本,通过分析样本数据的平均数、中位数、众数来估计总体的情况,从而解决问题.【解答】整理上面的数据得到表1和图2.表1销售额/万元13 14 15 16 17 18 19 22 23 24 26 28 30 32人数1 1 5 4 323 1 1 1 2 3 1 2图2(1)从表1和图2可以看出,样本数据的众数是15,中位数是18,利用计算器得到这组数据的平均数约是20,可以推测,这个服装部营业员的月销售额为15万元的人数最多,中间的月销售额是18万元,平均月销售额大约是20万元.(2)如果想确定一个较高的销售目标,这个目标可以定为每月20万元(平均数).因为从样本数据看,在平均数、中位数和众数中,平均数最大,可以估计,月销售额定为每月20万元是一个较高目标,大约会有13的营业员获得奖励.(3)如果想让一半左右的营业员能够达到销售目标,月销售额可以定为每月18万元(中位数).因为从样本情况看,月销售额在18万元以上(含18万元)的有16人,占总数的一半左右,可以估计,如果月销售额为18万元,将有一半左右的营业员获得奖励.【跟踪训练】某同学进行社会调查,随机抽查了某个地区20个家庭的收入情况,并绘制了如下的统计图:(1)求这20个家庭的年平均收入;(2)求这20个家庭收入的中位数和众数;(3)平均数、中位数、众数,哪个更能反映这个地区家庭的年平均收入水平?解:(1)这20个家庭的年平均收入是1.2万元.(2)这20个家庭收入的中位数和众数分别是1.2万元和1.3万元.(3)平均数和中位数更能反映这个地区家庭的年平均收入水平.巩固训练1.某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,经计算得出销售额的平均数是20万元/月,中位数是18万元/月,众数是15万元/月,如果你是该商场的管理人员,(1)你想让一半左右的营业员能够达标,这个目标可定为18万元/月;(2)你想确定一个较高的目标,这个目标可定为20万元/月.2.某公司33名职工的月工资(以元为单位)如下:(1)求该公司职工月工资的平均数、中位数、众数.(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到元) (3)你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平? 解:(1)2 091,1 500,1 500. (2)3 288,1 500,1 500. (3)中位数.3.质量检测部门对甲、乙、丙三家公司销售产品的使用寿命进行了跟踪调查,统计结果如下(单位:年):甲公司:4,5,5,5,5,7,9,12,13,15; 乙公司:6,6,8,8,8,9,10,12,14,15; 丙公司:4,4,4,6,7,9,13,15,16,16. 请回答下列问题: (1)填空:(2)如果你是顾客,你将选购哪家公司销售的产品,为什么?(3)如果你是丙公司的推销员,你将如何结合上述数据及统计量,对本公司的产品进行推销?(至少说两条)解:(2)乙公司.因为从平均数、众数和中位数三项指标上看,都比其他的两个公司要好,他们的产品质量更高.(3)①丙公司的平均数和中位数都比甲公司高;②从产品寿命的最高年限考虑,购买丙公司的产品的使用寿命比较长的机会比乙公司产品大一些.课堂小结在实际问题中,会分析具体问题的情况,选择适当的量(平均数、中位数或众数)反映数据的集中趋势.20.2 数据的波动程度教学目标1.了解方差的定义和计算公式,理解方差概念的产生和形成的过程.2.会用方差计算公式来比较两组数据的波动大小,并能运用方差知识,解决实际问题.预习反馈阅读教材P124~127,完成下列预习内容.1.统计中常采用考察一组数据与它们的平均数之间的差别的方法,来反映这组数据的波动情况.2.设有n个数据x1,x2,…,x n,各数据与它们的平均数x的差的平方分别是(x1-x)2,(x2-x)2,…,(x n-x)2,我们用这些值的平均数,即用s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2]来衡量这组数据波动的大小,并把它叫做这组数据的方差.3.方差越大,数据的波动越大;方差越小,数据的波动就越小.4.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的方差.5.计算一组数据:8,9,10,11,12的方差为2.名校讲坛例1 (教材P125例1)在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)如表所示.哪个芭蕾舞团女演员的身高更整齐?【解答】甲、乙两团演员的身高平均数分别是x甲=163+164×2+165×2+166×2+1678=165,x乙=163+165×2+166×2+167+168×28=166.方差分别是s2甲=(163-165)2+(164-165)2+…+(167-165)28=1.5,s2乙=(163-166)2+(165-166)2+…+(168-166)28=2.5.由s2甲<s2乙可知,甲芭蕾舞团女演员的身高更整齐.【跟踪训练1】在一次女子排球比赛中,甲、乙两队参赛选手的年龄如下:甲队26 25 28 28 24 28 26 28 27 29乙队28 27 25 28 27 26 28 27 27 26(1)两队参赛选手的平均年龄分别是多少?(2)你能说说两队参赛选手年龄波动的情况吗?解:(1)两组数据的平均数分别是:x甲=26.9,x乙=26.9,即甲、乙两队参赛选手的平均年龄相同.(2)两组数据的方差分别是:s2甲=(26-26.9)2+(25-26.9)2+…+(29-26.9)210=2.29,s2乙=(28-26.9)2+(27-26.9)2+…+(26-26.9)210=0.89,由s2甲>s2乙可知,甲队参赛选手年龄波动较大.【点拨】平均数是反映一组数据总体趋势的指标,方差是表示一组数据波动程度的指标.所以(2)用方差来判断.例2 (教材例题变式)为了从甲、乙两名学生中选择一人去参加电脑知识竞赛,在相同条件下对他们的电脑知识进行了10次测验,成绩(单位:分)如下:(1)填写下表:(2)利用以上信息,请从不同的角度对甲、乙两名同学的成绩进行评价.【解答】 从众数看,甲成绩的众数为84分,乙成绩的众数是90分,乙的成绩比甲好;从方差看,s 2甲=14.4,s 2乙=34,甲的成绩比乙相对稳定;从甲、乙的中位数、平均数看,中位数、平均数都是84分,两人成绩一样好; 从频率看,甲85分以上的次数比乙少,乙的成绩比甲好.【跟踪训练2】 某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:(1)根据表格中的数据,计算出甲的平均成绩是9环,乙的平均成绩是9环; (2)分别计算甲、乙两名运动员8次测试成绩的方差;(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适?并说明理由. 解:(2)甲的方差为18×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2+(10-9)2+(8-9)2]=0.75,乙的方差为18×[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2+(8-9)2+(10-9)2]=1.25.(3)∵0.75<1.25,∴甲的方差小.∴甲比较稳定,故选甲参加全国比赛更合适. 巩固训练1.若数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则(1)数据x 1±b ,x 2±b ,…,x n ±b 的平均数为x ±b ,方差为s 2; (2)数据ax 1,ax 2,…,ax n 的平均数为ax ,方差为a 2s 2;(3)数据ax 1±b ,ax 2±b ,…,ax n ±b 的平均数为ax ±b ,方差为a 2s 2.2.用条形图表示下列各组数据,计算并比较它们的平均数和方差,体会方差是怎样刻画数据的波动程度的. (1)6 6 6 6 6 6 6 (2)5 5 6 6 6 7 7 (3)3 3 4 6 8 9 9 (4)3 3 3 6 9 9 9解:图略.(1)x =6,s 2=0;(2)x =6,s 2=47;(3)x =6,s 2=447;(4)x =6,s 2=547.3.甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成图1、图2的统计图.图1 图2(1)在图2中,画出折线表示乙队在集训期内这五场比赛成绩的变化情况;(2)已知甲队五场比赛成绩的平均分x甲=90分,请你计算乙队五场比赛成绩的平均分x乙;(3)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数三个方面分别进行简要分析,你认为选派哪支球队参加比赛更能取得好成绩?解:(1)如图所示.(2)x乙=90分.(3)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势;从获胜场数看,甲队胜三场,乙队胜两场,甲队成绩较好;综上所述,选派甲队参赛更能取得好成绩.课堂小结1.理解方差的定义,会计算一组数据的方差.2.方差的作用:一组数据的方差越大,数据的波动越大;方差越小,数据的波动越小.3.方差的适用条件:当两组数据的平均数相等或相近时,才利用方差来判断它们的波动情况.20.3 课题学习体质健康测试中的数据分析教学目标1.理解调查活动中的六个基本步骤及其实施方法.2.理解数据的分析在调查活动中的重要作用.预习反馈阅读教材P131~133,完成下列预习内容.1.调查活动中的六个基本步骤是收集数据、整理数据、描述数据、分析数据、撰写调查报告、交流.2.甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?解:甲、乙两人射击成绩的平均成绩分别为:x甲=15(7×2+8×2+10×1)=8,x乙=15(7×1+8×3+9×1)=8,s2甲=15[2×(7-8)2+2×(8-8)2+(10-8)2]=1.2,s2乙=15[(7-8)2+3×(8-8)2+(9-8)2]=0.4.∵s2甲>s2乙,∴乙同学的射击成绩比较稳定.【点拨】在平均数相等时,方差越小,数据越稳定.名校讲坛例(教材补充例题)(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:。

新华东师大版八年级数学下册《20章 数据的整理与初步处理 20.1 平均数 平均数的意义》教案_3

新华东师大版八年级数学下册《20章 数据的整理与初步处理  20.1 平均数  平均数的意义》教案_3

2019华东师大版八年级下数学20.1平均数,中位数,众数 要点链接☆算术平均数:n 个数1234,,,,,n x x x x x 的算术平均数x = .☆加权平均数:如果一组数据1234,,,,,n x x x x x 的权123,,,,n f f f f 那么这组数据的加权平均数x = .☆当n 个数据都在a 附近时,可用x x a '=+(其中x '是每个数据与a 的差的平均数) ☆中位数:一般地,n 个数按从小到大顺序排列,处在最中间位置的一个数据或者最中间 的平均数叫中位数.☆众数:一组数据中出现次数 的那个数据叫做这组数据的众数.范例点悟(1)这个班级捐款总数是多少元?(2)求这30名同学捐款的平均数. 即学即练1.若1,3,x ,5,6这五个数的平均数为4,则x 的值为( )A.3 B.4 C.92D.5 2.数据1,2,3,4,5的平均数是( )A.1 B.2 C.3 D.43.某中学初二(1)班的一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男、女生的人数之比为( )A.1:2 B.2:1 C.3:2 D.2:34.在某次捐款活动中,某校八(5)班同学人人拿出自己的零花钱,现将同学们的捐款数整5.已知123,,,3,4,7x x x 的平均数是5,则123x x x ++= .例2.用简化计算法求下列各组数据的平均数: (1)15,23,17,18,22;(2)105,103,101,100,114,108,110,106,98,102即学即练6.某校初二年级段举行科技创新比赛活动,各班选送的人数分别为3,2,2,6,6,5,则这组数据的平均数是 .7.数据2017,2018,2014,2015,2018,2019的平均数是 ;8.如图1是某中学男田径队队员年龄结构条形统计图,根据图中信息解答下列问题:(1)田径队共有多少人?(2)该队队员的平均年龄是多少?例3.某招聘考试分笔试和面试两种,其中笔试按60%算,面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.即学即练1.数据2,1,0,3,4的平均数是()A.0 B.1 C.2 D.32.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x,81,这组成绩的平均是是77,则x的值为()A.76 B.75 C.74 D.733.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为()A.11元/千克 B.11.5元/千克 C.12元/千克 D.12.5元/千克4.5个数据的和为405,其中一个数据是65,则另外四个数的平均数是.5.一段山路长400米,一人上山时每分钟走80米,则该人的平均速度是.例4.某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)10%,40%,30%折算后记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会决定,总分为80分以上(包含80分)的学生获得一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?即学即练6.“最美女教师”张老师,为抢救两名学生,以致双腿高位截肢,社会纷纷为她捐款,我市某中学八年级六班全体同学参加了捐款活动,该班级同学捐款情况的部分统计图如图1所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班级平均每人捐款多少元?例5.小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,如图是他们投标成绩的统计图.(2)分别用平均数和中位数解释谁的成绩比较好.即学即练1.一组数据6,8,7,8,10,9的中位数和众数分别是()A.7和8B.8和7C.8和8D.8和92.数据5,7,8,8,9的众数是()A.5 B.7 C.8 D.93.某中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年)200,240,220,200,210.这组数据的中位数是()A.200 B.210 C.220 D.2404.下列数据3,2,3,4,5,2,2的中位数是.5.某校九(1)班8名学生体重(单位:kg)分别是39,40,43,43,43,45,45,46.这组数据的众数是.6.在参加“3.12”的植树活动中,某班六个绿化小组植树的棵数分别是10,9,9,10,11,9,则这组数据的众数是.例6.为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,梅灿中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生,进行实地家访,数据如表:2)你认为用(1)中哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.即学即练7.某班“环卫小组”为了宣传环保的重要性,随机调查了本班10名同学的家庭在同一天内丢弃垃圾的情况.经统计,丢弃垃圾的质量如下(单位:千克)2 3 3 4 4 3 5 3 4 5 根据上述数据,回答下列问题:(1)写出上述10个数据的中位数、众数;(2)若这个班共有50名同学,请你根据上述数据的平均数,估算这50个家庭在这一天丢弃垃圾的总质量.课后作业A卷(基础巩固)一.选择题则他们本轮比赛的平均成绩是()A.7.8环 B.7.9环 C.8.1环 D.8.2环2.某中学矩形歌咏比赛,以班为单位参赛,评委组的各位评委给八年级三班的演唱打分情况()A.92分B.93分C.94分D.95分3.已知7,4,3和m四个数的平均数是5,又知18,9,7,m和n五个数的平均数是10,则n的值为()A.8 B.10 C.12 D.144.数据1,0,4,3的平均数是()A.3 B.2.5 C.2 D.1.55.小明记录了今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是()A.1 B.2 C.0 D.-16.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值和最大值之间.B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩可能都比全年级学生的平均成绩小D.这六个平均成绩可能都比全年级学生的平均成绩大7.数据8,8,6,5,6,1,6的众数是()A.1 B.5 C.6 D.8)A.19岁,19岁B.19岁,20岁C.20岁,20岁D.20岁,22岁9.对于数据组2,4,4,5,3,9,4,5,1,8,其众数,中位数与平均数分别为()A.4,4,6 B4,6,4.5 C.4,4,4.5 D.5,6,4.510.为了筹备班级初中毕业联欢晚会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中,最值得关注的是()A平均数 B.加权平均数 C.中位数 D.众数二.填空题他们的平均年龄是.12.某生数学课堂表现为90分、平时作业为92分、期末考试为85分,若这三项成绩分别按30%、30%、40%的比例记入总成绩,则该生数学科总评成绩是分.13.某校在“爱护地球绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机调查了100名同学的植树情况,将调查数据整理如下表:则这100名同学平均每人植树棵;若该校共1000名学生,请根据以上调查结果估计该校学生的植树总数是棵.14.某住宅小区1日至6日每天用水量变化情况如图1所示,那么这6天的平均用水量是吨15.如果一组数据2,4,6,x,y的平均数为4.8,那么x,y的平均数为.16.若一组数据1,a,4,4,9的平均数是4,则a等于 .17.已知一组数据从小到大依次为-1,0,4,x,6,15,其中位数为5,则其众数为.18.一组数据4,x,5,10,11共有五个数,其平均数为7,则这组数据的众数是,中位数是;19.张老师想对同学们的打字能力进行测试,他将全班同学分成5组,经统计,这5个小组平均每分钟打字个数如下:100,80,x,90,90已知这组数据的众数与平均数相等,那么这组数据中的中位数是;三.解答题21图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成图2.根据图中的信息解答下列问题:(1)在图2中补全条形统计图;(2)计算这8天的日最高气温的平均数.23.某校部分男生3组进行引体向上训练,对训练前后的成绩统计分析,相应的统计图如下:(1)求训练后第一组平均成绩比训练前增长的百分数;(2)小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个数没有变化的人数占改组人数的50%,所以第二组的平均数不可能提高3个这么多.”你同意小明的这个观点吗?请说明理由;(3)你认为哪一组训练效果最好?请提出一个解释来支持你的观点.将这些数据按组距5(个字)分组,绘制成如图1的频数分布直方图;(2)这个班同学这次打字成绩的众数是个,平均数是个.25.某语文老师为了了解普通话考试的成绩情况,从所任教的九年级(1)、(2)两班随机抽取了10名学生的得分,如图2所示:(1)利用图中的信息补全下表:(2)若把16分以上(含16分)记为“优秀”,两班各有60名学生,请估计两班各有多少名学生成绩优秀.B 卷(能力提高)1.某居民小区为了了解本小区100户居民家庭平均月使用塑料袋的数量情况,结果如下(单位:只)65 70 85 74 86 78 74 92 82 94 根据此统计情况,估计该小区这100户居民家庭平均月使用塑料袋为 只.2.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级.将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是分 .= ,= . 4.若数据12,,n x x x 的平均数是3,则另一组数据12(21),(21),,(21)n x x x ---的平均数是 . 5.若两组数123,,,,n x x x x 和123,,,,n y y y y 的平均数分别为x 和y ,那么新的一组数1122,,n n x y x y x y +++的平均数为 .6.10个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地高速与他相邻的两个人,然后每个人将与他相邻的两个人高速他的数的平均数报出来,若报出来的数如图3所示,则报3的人心里想的数是 .7.一组数据1,2,a 的平均数为2,另一组数据-1,a ,1,2,b 的唯一众数为-1,则数据-1,a ,1,2,b 的中位数为则这11件衬衫领口尺寸的众数是 cm ,中位数是 cm. 9.在某公益活动中,小明对本班同学的捐款情况进行了统计,绘制成如下不完整的统计图3,其中捐100元的人数占全班总人数的25%,则本次捐款的中位数是元.二.解答题10.学校广播站要招聘一名播音员,考察形象、知识面、普通话三个项目.按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学成绩x应超过多少分?11.某商场欲招聘一名收银员,对三名申请者进行了三项素质测试,下面是三名候选人的素质测试成绩:商场根据实际需要,对计算机,语言,商品知识三项测试成绩分别按4:3:2的比例确定各人的测试成绩,这三人中谁会被录用?12.某初中学校欲向高一级学校推荐一名学生,根据规定的程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图4:图5是某同学根据上表绘制的一个不完整的条形图.请你根据以上信息解答下列问题:(1)补全图4和图5;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?13.某班进行个人投篮比赛,受污染的下表记录了再规定时间内投进n个球的人数分布情况,同时,已知进球3个或3个以上的平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多少人?14.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表:根据上表中的数据,回答下列问题:(1)该班学生每周做家务劳动的平均时间是多少小时?(2)这组数据的中位数、众数分别是多少?(3)请你根据(1)、(2)的结果,用一句话谈谈自己的感受.15.某学校进行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1所有评委所给分的平均数;方案2在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数;方案3所有评委所给分的中位数;方案4所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,下面是这个同学的得分统计图4(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分。

人教版数学八下20.1.2中位数和众数(中位数)教案

人教版数学八下20.1.2中位数和众数(中位数)教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《中位数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要找出一组数据中间位置的数的情况?”(例如:班级同学的体重排序中,位于中间位置的体重是多少?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索中位数的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了中位数的基本概念、求解方法及其在实际生活中的应用。同时,我们也通过实践活动和小组讨论加深了对中位数的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调中位数的定义和求解方法这两个重点。对于难点部分,我会通过实际数据和图表来帮助大家理解中位数的求解过程及其优势。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中位数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何快速准确地找到一组数据的中位数。
人教版数学八下20.1.2中位数和众数(中位数)教案
一、教学内容
人教版数学八下20.1.2中位数和众数(中位数)
本节课主要教学内容包括:
1.理解中位数的定义和性质;
2.学会求一组数据的中位数;
3.掌握中位数的应用场景,如数据集中趋势的描述;
4.通过实例分析,了解中位数在统计学中的重要性;
5.比较中位数与其他统计学指标(如平均数、众数)的区别与联系。

人教版《中位数和众数》PPT课件

人教版《中位数和众数》PPT课件
10、8、7、6、6、4、3、2、1、1,中位数是 5.
10、8、7、6、6、4、3、2、1、1,中位数是 5.
归纳新知
概念
中 位 数
特点
①从大到小排列(或从小到大排列) ②中间的数或中间两个数的平均数
可能是这组数据中的某个数,也 可能不是这组数据中的数.
课堂练习
1.(2020·广东)一组数据2,4,3,5,2的中位数是( C) A.5 B.3.5 C.3 D. 2.(2020·荆门)为了了解学生线上学习情况,老师抽查某组10名学生的 单元测试成绩如下:78,86,60,108,112,116,90,120,54,116. 这组数据的平均数和中位数分别为( B) A.95,99 B.94,99 C.94,90 D.95,108
9.(常州中考)在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.
6.(2020·河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是( )
解:将数据从小到大排列: (1)计算这个公司员工的月收入的平均数.
D.该班学生这次考试成绩的平均数是45分
10.某校九年级(1)班全体学生2020年初中毕业体育学业考试的成绩
D.该班学生这次考试成绩的平均数是45分
(2)6、4、2、7、6、1、1、8、3、10 请根据相关信息,解答下列问题:
(3)利用中位数来反映公司员工的月收入水平合适吗?
1.(2020·广东)一组数据2,4,3,5,2的中位数是( )
3.(2020·衢州)某班五个兴趣小组的人数分别为4,4,5,x,6.

人教版八年级下册第二十章《 数据的分析》教学设计

人教版八年级下册第二十章《 数据的分析》教学设计

八年级下册数学第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数(1)1.使学生理解并掌握数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.重点会求加权平均数.难点对“权”的理解.一、复习导入班级 1班 2班 3班 4班参考人数 40 42 45 32平均成绩 8081 82 79 为什么?x =14×(79+80+81+82)=80.5平均数的概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,则有x =x 1+x 2+x 3+…+x n n,其中x 叫做这n 个数的平均数,读作“x 拔”.二、讲授新课问题:一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如表所示.应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为:85+78+85+734=80.25, 乙的平均成绩为73+80+82+834=79.5. 因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为85×2+78×1+85×3+73×42+1+3+4=79.5, 乙的平均成绩为73×2+80×1+82×3+83×42+1+3+4=80.4. 因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时)解:这些灯泡的平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时) 四、巩固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.【答案】ax +by a +b五、课堂小结师:这节课你学到了什么新知识?生1:数据的权和加权平均数的概念.生2:掌握加权平均数的计算方法.……平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时 平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系?设计意图(1)主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁). 【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它使用寿命/x/h 600≤x<1000 1000≤x<1400 1400≤x<1800 1800≤x<2200 2200≤x<2600灯泡只数 5 10 12 17 6分析:使用寿命来估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672, 即样本平均数为1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h .三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班50名学生某一天做数学课外作业所用时间的情况统计表.所用时间t(分钟) 人 数0<t ≤10 410<t ≤206 20<t ≤3014 30<t ≤40 1340<t ≤50 950<t ≤60 4求:(1)(2)该班学生平均每天做数学作业所用的时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x =5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟) 四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2 中位数和众数第1课时 中位数和众数(1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课月收入/元45000 18000 10000 5500 5000 3400 3000 1000人数 1 1 1 3 6 1 11 1(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+18000+10000+5500×3+5000×6+3400+3000×11+1000=6276.1+1+1+3+6+1+11+1师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1出的鞋的尺码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.【答案】992.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是________.【答案】223.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是() A.97,96B.96,96.4C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是()A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第2课时中位数和众数(2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例1】在一次环保知识竞赛中,某班50名学生成绩如下表所示:得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1解:众数90分中位数85分平均数84.6分【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征的是________;(2)乙群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征的是________.解:(1)151515众数(2)15 5.55,6中位数【例3】教材第119页例6三、巩固练习某公司的33名职工的月工资(以元为单位)如下:职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】(1)209115001500(2)328815001500(3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如下表所示.甲7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41乙7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49上面两组数据的平均数分别是x甲≈7.54,x乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s 2,那么我们用s 2=1n [(x 1-x)2+(x 2-x)2+…+(x n -x)2]来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s 甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01, s 乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002. 显然s 甲2>s 乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算.解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3)=10+18×0=10x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1)=10+18×0=10s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2]=18(0.01+0.09+…+0.09)=18×0.44=0.055s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2]=18(0.04+0+…+0.01)=18×0.84=0.105从s 甲2<s 乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下: 甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s 甲2________s 乙2,所以确定________去参加比赛.【答案】> 乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。

人教版数学八年级下册20.1.2中位数和众数(教案)

人教版数学八年级下册20.1.2中位数和众数(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“中位数和众数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解中位数和众数的基本概念。中位数是一组数据从小到大(或从大到小)排列后,位于中间位置的数,它能够较好地反映一组数据的中心趋势。众数是一组数据中出现次数最多的数,它反映了数据中的典型值。它们在统计学中有着重要的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析某商品销售量的数据,我们可以发现众数能帮助我们了解哪种商品最受欢迎,而中位数则能告诉我们销售量的中心趋势。
举例:在数据集中,学生需要能够区分一组数据的中位数和众数,例如对于数据集{3, 5, 5, 7, 9},中位数为5,众数也为5。
2.教学难点
-对中位数求法的理解,特别是当数据量为偶数时,中位数的计算方法。
-对众数概念的理解,特别是当数据集中没有或存在多个众数时的情况。
-在实际问题中,如何选择合适的统计量(中位数、众数)对数据进行描述和分析。
五、教学反思
在今天的教学过程中,我发现学生们对中位数和众数的概念掌握得还算不错。在导入新课的时候,通过提问的方式引发了他们对日常生活中的数据统计的思考,这有助于提高他们对这节课的兴趣。在理论讲解环节,我尽量用简明扼要的语言解释中位数和众数的定义,并通过案例分析让学生明白它们在实际中的应用。
在实践活动环节,我鼓励学生们积极参与讨论和实验操作,这样他们能够更深刻地理解中位数和众数的求法。我发现,将学生们分成小组进行讨论和实验操作,有助于培养他们的团队协作能力。同时,我也注意到有些学生在讨论过程中遇到了难点,比如在处理数据集的众数时,有些数据集中存在多个众数,或者没有众数的情况。针对这些情况,我进行了个别指导,帮助他们理解和解决问题。

《中位数和众数》教学设计.pdf

《中位数和众数》教学设计.pdf

在教学中指导学生对自己进行学习评价 ,并填好自我评价表 ,更好地落实数学
知识和学习能力。
从这几个方面实现数学课堂教学的有效性。
6/6
月工 资元
【学生交流讨论】 .经理说平均工资有元,是否欺骗了小范? .平均月工资元能客观地反映员工的实际收入吗 ? .你认为用哪个数据反映该公司员工的收入更合适 ? (二)探索新知,形成概念 这一节主要是学生小组讨论,合作交流,并回答问题。 在讨论提问时, 我对学生的各种回答给予肯定, 各人从不同的角度理解会得 到不同的结论, 目的是让学生从表格中获取信息,培养学生敏锐的观察力和科 学的判断力。 【多媒体再次出示:工资报表】
一位职员说: “我们好几人工资都是元。 ”思考:在这组数据中有什么特征?
我们把叫做这组数据的众数。
【小组讨论】:说说什么是众数?
经小组讨论得出结论:
众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。
4/6
【典范例题】
例、汶川地震牵动着每一个爱国者的心,民族中学初三(九)班同学也积极
参加了捐款,以下数据是第一小组的捐款金额:(单位:元)
八、学法分析 《初中数学课程标准》 指出:有意义的数学学习不能单纯地依赖模仿和记忆, 动手实践、 自主探究与合作交流也是重要的数学学习方式。 在看、 读记忆为主学 习方式基础上,应该让学生动口说、动脑想、自主探究、合作交流,初步形成用 数据进行推断的思考方式, 养成尊重事实、 用数据说话的态度、 能明智地应付变 化和不确定性, 自信而理智地面对充满信息和变化的世界。 总之, 初中阶段的学 生应对统计数据有较为全面、 客观的认识, 而这仅仅靠记忆计算公式和制作统计 图表是不够的, 还要求学生能正确理解所学知识和方法的意义, 除了能读懂并有 意识地从各种渠道获取数据外, 我们还必须理智地对待新闻媒介、 广告等公布的 数据,了解数据可能带来的误导,并能对日常生活中的数据发表自己的看法。 基于以上分析,在学法上,我准备引导学生采用在看、读、记忆为主的学习 方式基础上,让学生动口说、动脑想、自主探究、讨论,合作交流的学习方法。 九、设计思路 《数学课程标准》指出: “数学教学应从学生的生活经验和已有的知识背景 出发,向他们提供充分的从事数学活动和交流的机会, 创设有助于学生自主学习 的问题情境, 合理地设置空白点, 让学生在自主探索的过程中, 将已有的数学知 识形成网络, 数学思想方法得到巩固提高, 在数学活动中发展合情推理和演绎推
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1.2 中位数和众数
第1课时 中位数和众数
教学目标
1.理解中位数、众数的意义.
2.会利用样本的中位数去估计总体的中位数.
3.体会中位数和众数在统计中的作用.

重点:认识中位数、众数的意义,并会找一组数据的中位数和众数.

难点:利用中位数、众数分析数据信息做出决策.
下表是某公司员工月收入的资料.

(1)计算这个公司员工收入的平均数 ;
(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为
合适吗?怎样准确的反映公司全体员工月收入水平?

思考
1.什么叫中位数?怎样确定一组数据的中位数?

月收入/元 45000 18000 10000 5500 5000 3400 3000 1000
人数 1 1 1 3 6 1 11 1
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的
个数是奇数,则处于中间位置的数据就是这组数据的中位数;如果这
组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位
数.

注意:
(1)中位数不一定出现在这组数据中
(2)一组数据的中位数是唯一的
2.中位数反映的是一组数据的什么特征量?
反映了一组数据的集中趋势
随堂练
1.求下列数据的中位数.
(1)-2,0,-5,4,3,1;
(2)54,28,13,47.
归纳

例1 在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单
位:min)如下:
136 140 129 180 124 154
146 145 158 175 165 148
(1)样本数据(12名选手的成绩)的中位数是多少?
(2)一名选手的成绩是142min,他的成绩如何?
解:(1)先将样本数据按照由小到大的顺序排列:
124 129 136 140 145 146
148 154 158 165 175 180
这组数据的中位数为处于中间的两个数146,148,即

1472148146 因此样本数据的中位数是147.
(2)由(1)知样本数据的中位数为147,它的意义是:这次马拉松
比赛中,大约有一半选手的成绩快于147min,有一半选手的成绩慢
于147min. 这名选手的成绩是142min,快于中位数147min,因此可
以推测他的成绩比一半以上选手的成绩好.

3.众数:一组数据中出现次数最多的数据.
众数反映了一组数据的集中趋势,当众数出现的次数越多,它就
越能代表这组数据的整体状况.但当各数据重复出现的次数大致相等
时,众数往往就没有什么特别意义了.
注意:众数一定出现在这组数据中
例2 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的
销售量如表所示.你能根据表中的数据为这家鞋店提供进货建议吗?

解:由上表看出,在鞋的尺码组成的数据中,23.5是这组数据
的众数,它的意义是:23.5cm的鞋销量最大.因此可以建议鞋店多进
23.5cm的鞋.

1. 左面的扇形图描述了某种运动服的S号,M号,L
号,XL号,XXL号在一家商场的销售情况.请你为这家
商场提出进货建议.

解:由扇形图可以看出,在某种运动服大小型号组成的一组数据当中,
M号最多为30%.因此可以建议这家商场多进M号的运动服.

归纳
1.一组数据的众数一定在这组数据中.
2.一组数据的众数可能不止一个.
3.众数是一组数据中出现次数最多的数据,而不是数据出现的次数.
4.一组数据也可能没有众数,因为没有哪个数据出现的频数比哪个

尺码/cm 22 22.5 23 23.5 24 24.5 25
销售量/双 1 2 5 11 7 3 1
多.
随堂演练
1.学校团委组织八年级的共青团员参加植树活动,七个团支部植树棵
数分别为16、13、15、16、14、17、17,则这组数据的中位数是 .

2.在一次女子体操比赛中,八名运动员的年龄(单位:岁)分别为:12、
14、12、15、14、14、16、15,这组数据的众数是( )

A.12 B.14 C.15
D.16

小结
中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数
据的个数是奇数,则处于中间位置的数据就是这组数据的中位数;如
果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的
中位数.

众数:一组数据中出现次数最多的数据.

相关文档
最新文档