2019-2020年七年级数学上册第4章《代数式》单元测试题.docx

合集下载

2019—2020年冀教版七年级数学第一学期《代数式》专题训练及答案解析.docx

2019—2020年冀教版七年级数学第一学期《代数式》专题训练及答案解析.docx

专训列代数式名师点金:列代数式就是先将文字叙述的语言表达成数量或数量关系,再用数学式子表示出来,要正确列出代数式需要注意以下几点:(1)仔细辨别词义;(2)弄清数量关系;(3)注意运算顺序;(4)规范书写格式.列代数式表示数量关系1.用代数式表示:(1)a,b两数的平方和减去它们乘积的2倍;(2)a,b两数的和的平方减去它们的平方和;(3)一个两位数,个位上的数字为a,十位上的数字为b,请表示这个两位数;(4)若a表示三位数,现把2放在它的右边,得到一个四位数,请表示这个四位数.列代数式解决几何问题2.有若干张边长都是2的等边三角形纸片,从中取出一些纸片按如图所示的方式拼接起来,可以拼成一个大的平行四边形或一个大的梯形,如果取的纸片数为n,试用含n的代数式表示拼成的平行四边形或梯形的周长.(第2题)列代数式解决规律探究问题3.观察图中小黑点的摆放规律,并按照这样的规律继续摆放,若第n个图形中小黑点的个数为y.解答下列问题:(第3题)(1)填表:n 1 2 3 4 5 …y 1 3 7 13 …(2)当n=8时,y=________;(3)用含n的代数式表示y.【导学号:53482046】列代数式解决实际生活中的问题4.随着“十一”黄金周的来临,父亲、儿子、女儿三人准备外出旅游.甲旅行社规定:大人买一张全票,两个孩子的票价可按全票价的一半优惠;乙旅行社规定:三人可购买团体票,团体票价是全票价的60%.已知两个旅行社的全票价相同,选择哪个旅行社较省钱?答案1.解:(1)a2+b2-2ab.(2)(a+b)2-(a2+b2).(3)10b+a.(4)10a+2.点拨:(1)先表示平方和与积的2倍,最后表示差;(2)先表示两数的和的平方,再表示两数的平方和,最后表示差;(3)两位数,十位上的数字表示几个十,个位上的数字表示几个一;(4)此题的实质就是将这个三位数扩大到原来的10倍,再加上2.2.解:拼成的图形无论是平行四边形还是梯形,相邻的纸片都重叠了一条边,求周长时应有2(n-1)条边不能计算,因此周长为3×n-2(n-1)=n+2(n≥2,且n为正整数).3.解:(1)21 (2)57(3)y=n2-n+1.点拨:第1个图形中有一个点,第2个图形是由第1个图形的一个点向两个方向各加一个点得到的,共有1+2×1=3(个)点;第3个图形是由第1个图形的一个点向三个方向各加2个点得到的,共有1+3×2=7(个)点;第4个图形是由第1个图形的一个点向四个方向各加3个点得到的,共有1+4×3=13(个)点,…,则第n个图形小黑点的个数为y=1+n(n-1)=n2-n+1.4.解:设两个旅行社的全票价均为x元(x>0),则甲旅行社的收费为x+2×0.5x=2x(元);乙旅行社的收费为3×60%x=1.8x(元).因为2x>1.8x,所以选择乙旅行社较省钱.。

2019年度浙教版七年级上册数学单元试卷 第四章 代数式02459

2019年度浙教版七年级上册数学单元试卷 第四章 代数式02459

2018-2019年度浙教版七年级上册数学单元测试试卷第四章 代数式满分:100分;考试时间:120分钟学校:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题 1.长方形的一边长等于32a b +,另一边比它小a b -,那么这个长方形周长是( )A .106a b +B . 73a b +C . 1010a b +D .128a b + 答案:C2.下列说法中正确的有( )①单项式212x y π-的系数是12- ②多项式3a b ab ++是一次多项式③多项式23342a b ab -+ 的第二项是4ab④2123x x+-是多项式 A .0 个 B .1 个 C .2 个 D . 3 个 答案:A3.已知946a b -和4m 45a b 是同类项,则代数式1210m -的值是( )A . 17B .37C .-17D . 98 答案:A4.下列说法中,正确的是( )A .a -是负数B .a 一定是非负数C .不论a 是什么数,都有11a a ⋅=D .7a 一定是分数 答案:B5.把2222x xy yz x y -+-+的二次项放在前面有“+”的括号里,把一次项放在前面有“-”的括号里,按上述要求操作,结果正确的是( )A .222222()(222)x xy yz x y x y xy x y -+-+=+-+-B .22222(2)(22)x xy yz x y x xy y x y -+-+=-+--C .222222()(222)x xy yz x y x y xy x y -+-+=+---+D .22222(2)(22)x xy yz x y x xy y x y -+-+=-+--+ 答案:B二、填空题6.有五个连续奇数,中间的一个为21n +,则这五个数的和是 .7. 探索规律:(1)1+3=41+3+5=91+3+5+7=161+3+5+7+9=251+3+5+…+(2n-1)= .(2)8.当 x= 5,y= -2 时,232x y -+= .9. 填表:。

2020年浙教新版七年级上册数学《第4章代数式》单元测试卷(解析版)

2020年浙教新版七年级上册数学《第4章代数式》单元测试卷(解析版)

2020年浙教新版七年级上册数学《第4章代数式》单元测试卷一.选择题(共10小题)1.下列说法正确的有()A.x+2=5是代数式B.是单项式C.多项式4x2﹣3x﹣2是4x2,﹣3x,﹣2的和D.2不是单项式2.如图,用字母表示图中的阴影部分的面积()A.mn B.pq C.pq﹣mn D.mn﹣pq3.若关于x的多项式(a﹣4)x3﹣x b+x﹣ab为二次三项式,则当x=﹣1时,这个二次三项式的值是()A.﹣8B.﹣10C.﹣12D.﹣144.下列说法不正确的是()A.3ab和﹣2ba是同类项B.单项式2x2y的次数是2C.单项式xy2的系数是D.2020是整式5.下列计算:①a2+a2=a4;②3xy2﹣2xy2=xy2;③(﹣2)3﹣(﹣3)2=﹣17;④|2×(﹣3)|=﹣6,其中正确的有()A.1个B.2个C.3个D.4个6.下列各式中,不属于整式的是()A.4a2﹣b B.x C.D.﹣57.下列说法错误的是()A.数字0是单项式B.的系数是,次数是3C.ab是二次单项式D.的系数是,次数是28.写出一个多项式,使其满是如下三个条件:其中,正确的是()(1)只含有一个字母;(2)常数项是﹣5;(3)为二次三项式.A.2xy﹣3y﹣5B.2y3﹣3y﹣5C.2x2﹣3x+5D.2x﹣3x2﹣59.下列添括号正确的是()A.7x3﹣2x2﹣8x+6=7x3﹣(2x2﹣8x+6)B.a﹣b+c﹣d=(a﹣d)﹣(b+c)C.a﹣2b+7c=a﹣(2b﹣7c)D.5a2﹣6ab﹣2a﹣3b=﹣(5a2+6ab﹣2a)﹣3b10.化简(a3﹣3a2+5b)+(5a2﹣6ab)﹣(a2﹣5ab+7b),当a=﹣1,b=﹣2时,求值得()A.4B.48C.0D.2二.填空题(共8小题)11.若一支圆珠笔的笔芯的价格为0.9元,买一些笔芯需付款0.9x元,则x表示的实际意义是.12.自来水每立方米m元,电每千瓦时n元,小丽家本月用水8立方米、用电100千瓦时,应交水电费元.13.当a=﹣1,b=3时,代数式2a﹣b的值等于.14.已知4x m+3y2与x2y n是同类项,则m n的值是.15.下列各式中,整式有(只需填入相应的序号).①;②;③;④a16.单项式﹣πxy2的次数是.17.多项式3x3y﹣4xy2+2y次数是.18.在长方形ABCD中,BC=17cm,现将5个相同的小长方形(阴影部分)按照如图方式放置其中,则小长方形的宽AE的长为cm.三.解答题(共8小题)19.已知如图,在数轴上点A,B所对应的数是﹣4,4.对于关于x的代数式N,我们规定:当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,代数式N取得所有值的最大值小于等于4,最小值大于等于﹣4,则称代数式N,是线段AB的封闭代数式.例如,对于关于x的代数式|x|,当x=±4时,代数式|x|取得最大值是4;当x=0时,代数式|x|取得最小值是0,所以代数式|x|是线段AB的封闭代数式.问题:(1)关于x代数式|x﹣1|,当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,取得的最大值和最小值分别是.所以代数式|x﹣1|(填是或不是)线段AB的封闭代数式.(2)以下关于x的代数式:①;②x2+1;③x2+|x|﹣8;④|x+2|﹣|x﹣1|﹣1.是线段AB的封闭代数式是,并证明(只需要证明是线段AB的封闭代数式的式子,不是的不需证明).(3)关于x的代数式+3是线段AB的封闭代数式,则有理数a的最大值是,最小值是.20.某商贩在批发市场以每包m元的价格购进甲种茶叶40包,以每包n(m>n)元的价格购进乙种茶叶60包.(1)该商贩购进甲、乙两种茶叶共需资金元(用含m,n的式子表示);(2)若该商贩将两种茶叶都提价30%全部售出,共可获利多少元(用含m,n的式子表示)?(3)若该商贩将两种茶叶都以每包元的价格全部出售,在这次买卖中该商贩是盈利还是亏损,请说明理由.21.如图,是一所住宅的建筑平面图(图中长度单位:m).(1)用式子表示这所住宅的建筑面积;(2)若a=4,b=6,求出这所住宅的建筑面积.22.如果﹣4x a y a+1与mx5y b﹣1的和是3x5y n,求(m﹣n)(2a﹣b)的值.23.已知x2y|a|+(b+2)是关于x、y的五次单项式,求a2﹣3ab的值.24.把下列代数式的序号填入相应的横线上①a2b+ab﹣b2,②,③,④,⑤0,⑥,⑦(1)单项式;(2)多项式;(3)整式.25.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+2.(1)化简4A﹣(3A﹣2B);(2)若(1)中式子的值与a的取值无关,求b的值.26.计算与化简:(1)计算:﹣2×(﹣)﹣(﹣15)÷3;(2)计算:﹣52+|3+(﹣5)|﹣(﹣2)5;(3)先化简,再求值:5a2﹣[a2+3(a2﹣2a)﹣2(a﹣3a2)],其中a=﹣1.2020年浙教新版七年级上册数学《第4章代数式》单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列说法正确的有()A.x+2=5是代数式B.是单项式C.多项式4x2﹣3x﹣2是4x2,﹣3x,﹣2的和D.2不是单项式【分析】利用代数式,整式,多项式,单项式的性质判断即可.【解答】解:A、x+2=5不是代数式,是等式,原说法错误,故不符合题意;B、不是单项式,是分式,原说法错误,故不符合题意;C、多项式4x2﹣3x﹣2是4x2,﹣3x,﹣2的和,原说法正确,故符合题意;D、2是单项式,原说法错误,故不符合题意,故选:C.【点评】此题考查了代数式,单项式,以及多项式,弄清各自的性质是解本题的关键.2.如图,用字母表示图中的阴影部分的面积()A.mn B.pq C.pq﹣mn D.mn﹣pq【分析】根据图形可以得到阴影部分的面积=大长方形的面积﹣小长方形的面积,从而可以解答本题.【解答】解:由图可得,阴影部分的面积是:pq﹣mn.故选:C.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.3.若关于x的多项式(a﹣4)x3﹣x b+x﹣ab为二次三项式,则当x=﹣1时,这个二次三项式的值是()A.﹣8B.﹣10C.﹣12D.﹣14【分析】根据二次三项式的定义得出a﹣4=0,b=2,求出a=4,b=2,代入二次三项式,最后把x=﹣1代入求出即可.【解答】解:∵关于x的多项式(a﹣4)x3﹣x b+x﹣ab为二次三项式,∴a﹣4=0,b=2,∴a=4,b=2,即多项式为﹣x2+x﹣8,当x=﹣1时二次三项式,﹣x2+x﹣8=﹣(﹣1)2﹣1﹣8=﹣10.故选:B.【点评】本题考查了代数式求值的应用,关键是求出二次三项式.4.下列说法不正确的是()A.3ab和﹣2ba是同类项B.单项式2x2y的次数是2C.单项式xy2的系数是D.2020是整式【分析】分别根据同类项的定义,单项式的定义以及整式的定义判断即可.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:A.3ab和﹣2ba是同类项,故本选项不合题意;B.单项式2x2y的次数是3,故本选项符合题意;C.单项式xy2的系数是,故本选项不合题意;D.2020是整式,故本选项不合题意.故选:B.【点评】本题主要考查的是同类项的定义、单项式的定义以及整式的定义,熟练掌握相关概念是解题的关键.5.下列计算:①a2+a2=a4;②3xy2﹣2xy2=xy2;③(﹣2)3﹣(﹣3)2=﹣17;④|2×(﹣3)|=﹣6,其中正确的有()A.1个B.2个C.3个D.4个【分析】①②根据合并同类项法则判断,③④根据有理数的混合运算顺序计算.【解答】解:①a2+a2=2a2,故①错误;②3xy2﹣2xy2=xy2,正确;③(﹣2)3﹣(﹣3)2=﹣8﹣9=﹣17,正确;④|2×(﹣3)|=|﹣6|=6,故④错误.∴正确的有②③共2个.故选:B.【点评】本题主要考查了合并同类项以及有理数的混合运算,熟练掌握相关运算法则是解答本题的关键.6.下列各式中,不属于整式的是()A.4a2﹣b B.x C.D.﹣5【分析】根据整式的概念判断即可.【解答】解:4a2﹣b、x、﹣5是整式,不是整式,故选:C.【点评】本题考查的是整式的概念,掌握单项式和多项式统称为整式是解题的关键.7.下列说法错误的是()A.数字0是单项式B.的系数是,次数是3C.ab是二次单项式D.的系数是,次数是2【分析】根据单项式、单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:A、数字0是单项式是正确的,不符合题意;B、的系数是,次数是3,原来的说法是错误的,符合题意;C、ab是二次单项式是正确的,不符合题意;D 、的系数是,次数是2是正确的,不符合题意.故选:B .【点评】考查了单项式的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.8.写出一个多项式,使其满是如下三个条件:其中,正确的是( )(1)只含有一个字母;(2)常数项是﹣5;(3)为二次三项式.A .2xy ﹣3y ﹣5B .2y 3﹣3y ﹣5C .2x 2﹣3x +5D .2x ﹣3x 2﹣5【分析】根据多项式的概念判断.【解答】解:2x ﹣3x 2﹣5只含有一个字母、常数项是﹣5、为二次三项式,故选:D .【点评】本题考查的是多项式的概念,多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a 个单项式,次数是b ,那么这个多项式就叫b 次a 项式.9.下列添括号正确的是( )A .7x 3﹣2x 2﹣8x +6=7x 3﹣(2x 2﹣8x +6)B .a ﹣b +c ﹣d =(a ﹣d )﹣(b +c )C .a ﹣2b +7c =a ﹣(2b ﹣7c )D .5a 2﹣6ab ﹣2a ﹣3b =﹣(5a 2+6ab ﹣2a )﹣3b【分析】根据添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号可得答案.【解答】解:A 、7x 3﹣2x 2﹣8x +6=7x 3﹣(2x 2+8x ﹣6),故此选项错误;B 、a ﹣b +c ﹣d =(a ﹣d )﹣(b ﹣c ),故此选项错误;C 、a ﹣2b +7c =a ﹣(2b ﹣7c ),故此选项正确;D 、5a 2﹣6ab ﹣2a ﹣3b =﹣(5a 2+6ab +2a )﹣3b ,故此选项错误.故选:C .【点评】此题主要考查了整式的加减,添括号,关键是掌握添括号法则,注意符号的变化.10.化简(a3﹣3a2+5b)+(5a2﹣6ab)﹣(a2﹣5ab+7b),当a=﹣1,b=﹣2时,求值得()A.4B.48C.0D.2【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a3﹣3a2+5b+5a2﹣6ab﹣a2+5ab﹣7b=a3+a2﹣2b﹣ab,当a=﹣1,b=﹣2时,原式=﹣1+1+4﹣2=2.故选:D.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.二.填空题(共8小题)11.若一支圆珠笔的笔芯的价格为0.9元,买一些笔芯需付款0.9x元,则x表示的实际意义是圆珠笔的笔芯的支数.【分析】直接根据题意,得出所列代数式中字母表示的实际意义.【解答】解:一支圆珠笔的笔芯的价格为0.9元,买一些笔芯需付款0.9x元,则x表示的实际意义是圆珠笔的笔芯的支数.故答案为:圆珠笔的笔芯的支数.【点评】本题考查了代数式.解题的关键是明确代数式的实际意义,明确代数式中字母的实际意义.12.自来水每立方米m元,电每千瓦时n元,小丽家本月用水8立方米、用电100千瓦时,应交水电费(8m+100n)元.【分析】根据水电费=自来水单价×用水量+电单价×用电量,即可列式求解.【解答】解:依题意有:应交水电费(8m+100n)元.故答案为:(8m+100n).【点评】考查了列代数式,关键是熟悉单价、总价和数量之间的关系.13.当a=﹣1,b=3时,代数式2a﹣b的值等于﹣5.【分析】把a、b的值代入代数式,即可求出答案即可.【解答】解:当a=﹣1,b=3时,2a﹣b=2×(﹣1)﹣3=﹣5,故答案为:﹣5.【点评】本题考查了求代数式的值的应用,能正确进行有理数的混合运算是解此题的关键.14.已知4x m+3y2与x2y n是同类项,则m n的值是1.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入即可得出答案.【解答】解:∵单项式4x m+3y2与x2y n是同类项,∴m+3=2,n=2解得:m=﹣1,n=2,m n=(﹣1)2=1.故答案为:1.【点评】本题考查了同类项的知识.掌握同类项中的两个相同是解答本题的关键.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.15.下列各式中,整式有①③④(只需填入相应的序号).①;②;③;④a【分析】根据整式的概念进行求解.【解答】解:①是整式;②中分母含有未知数,则不是整式;③是整式;④是整式.故答案为:①③④.【点评】本题重点考查整式的性质:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母.单项式和多项式统称为整式.16.单项式﹣πxy2的次数是3.【分析】单项式的次数是指所有字母的指数和,即1+2=3.【解答】解:根据单项式的次数和系数的定义,单项式﹣πxy2的次数是3.故答案为:3.【点评】本题考查了单项式的有关概念.解题的关键是理解单项式的次数的概念,对答题是很重要的.17.多项式3x3y﹣4xy2+2y次数是4.【分析】根据多项式中次数最高的项的次数叫做多项式的次数解答.【解答】解:多项式3x3y﹣4xy2+2y次数是4,故答案为:4.【点评】本题考查的是多项式,掌握多项式中次数最高的项的次数叫做多项式的次数是解题的关键.18.在长方形ABCD中,BC=17cm,现将5个相同的小长方形(阴影部分)按照如图方式放置其中,则小长方形的宽AE的长为3cm.【分析】设AE为xcm,则小长方形的长为3xcm,根据图示可以列出一元一次方程,解方程即可.【解答】解:设AE为xcm,则小长方形的长为3xcm,根据题意,得3x+2x+2=17,解得:x=3.故答案为:3.【点评】此题主要考查了由实际问题抽象出一元一次方程,要求学生会根据图示找出数量关系,然后利用数量关系列出方程组解决问题.三.解答题(共8小题)19.已知如图,在数轴上点A,B所对应的数是﹣4,4.对于关于x的代数式N,我们规定:当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,代数式N取得所有值的最大值小于等于4,最小值大于等于﹣4,则称代数式N,是线段AB的封闭代数式.例如,对于关于x的代数式|x|,当x=±4时,代数式|x|取得最大值是4;当x=0时,代数式|x|取得最小值是0,所以代数式|x|是线段AB的封闭代数式.问题:(1)关于x代数式|x﹣1|,当有理数x在数轴上所对应的点为AB之间(包括点A,B)的任意一点时,取得的最大值和最小值分别是5,0.所以代数式|x﹣1|不是(填是或不是)线段AB的封闭代数式.(2)以下关于x的代数式:①;②x2+1;③x2+|x|﹣8;④|x+2|﹣|x﹣1|﹣1.是线段AB的封闭代数式是④,并证明(只需要证明是线段AB的封闭代数式的式子,不是的不需证明).(3)关于x的代数式+3是线段AB的封闭代数式,则有理数a的最大值是2,最小值是﹣14.【分析】(1)根据绝对值的性质可求最值,再根据封闭代数式的定义即可求解;(2)根据封闭代数式的定义即可求解;(3)分两种情况讨论:+3≤4,+3≥﹣4,依此即可求解.【解答】(1)解:当x=﹣4时,|x﹣1|取得最大值为5,当x=1时,|x﹣1|取得最小值为0,∵|x﹣1|的最大值>4,∴|x﹣1|不是线段AB的封闭代数式.(2)证明:①∵﹣4≤x≤4,∵,∴,∵的最小值为,不满足最小值大于等于﹣4,∴不是线段AB的封闭代数式.②当x=±4时,代数式x2+1取得最大值17,不满足最大值小于等于4,∴x2+1不是线段AB的封闭代数式.③当x=±4时,代数式x2+|x|﹣8取得最大值12,不满足最大值小于等于4,∴x2+|x|﹣8不是线段AB的封闭代数式.④当﹣4≤x<﹣2时,原式=|x+2|﹣|x﹣1|﹣1=﹣(x+2)+(x﹣1)﹣1=﹣4,当﹣2≤x≤1时,原式=|x+2|﹣|x﹣1|﹣1=(x+2)﹣(x﹣1)﹣1=2x,∴﹣4≤2x≤2,当1≤x≤4时,原式=|x+2|﹣|x﹣1|﹣1=(x+2)﹣(x﹣1)﹣1=2,综上所述:﹣4≤|x+2|﹣|x﹣1|﹣1≤2满足最大值小于等于4,最小值大于等于﹣4,∴|x+2|﹣|x﹣1|﹣1是线段AB的封闭代数式.(3)+3≤4,a≤|x+1|+2,|x+1|+2在﹣4和4之间的最小值是2,a要不大于这个最小值才能使所有在﹣4和4之间的x都成立,所以a的最大值是2,+3≥﹣4,a≥﹣7(|x+1|+2),﹣7(|x+1|+2)在﹣4和4之间的最大值是﹣14,a要不小于这个最大值才能使所有在﹣4和4之间的x都成立,所以a的最小值是﹣14.故答案为:(1)5,1,不是(2)④(3)2;﹣14.【点评】本题考查了代数式,读懂题意,模仿给定例题解决问题是解题的关键.20.某商贩在批发市场以每包m元的价格购进甲种茶叶40包,以每包n(m>n)元的价格购进乙种茶叶60包.(1)该商贩购进甲、乙两种茶叶共需资金(40m+60n)元(用含m,n的式子表示);(2)若该商贩将两种茶叶都提价30%全部售出,共可获利多少元(用含m,n的式子表示)?(3)若该商贩将两种茶叶都以每包元的价格全部出售,在这次买卖中该商贩是盈利还是亏损,请说明理由.【分析】(1)根据总价=单价×数量,分别求出商贩购进甲、乙两种茶叶需要的资金,再相加即可求解;(2)用商贩购进甲、乙两种茶叶共需资金乘30%可求共可获利多少元;(3)先求出实际销售额,进一步得到实际利润,从而求解.【解答】解:(1)该商贩购进甲、乙两种茶叶共需资金(40m+60n)元;(2)(40m+60n)×30%=(12m+18n)元.故共可获利(12m+18n)元;(3)实际销售额:(40+60)×=(50m+50n)元,销售利润:(50m+50n)﹣(40m+60n)=10(m﹣n)元,∵m>n,即10(m﹣n)>0,∴该商贩在这次买卖中盈利10(m﹣n)元.【点评】考查了列代数式,把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.21.如图,是一所住宅的建筑平面图(图中长度单位:m).(1)用式子表示这所住宅的建筑面积;(2)若a=4,b=6,求出这所住宅的建筑面积.【分析】(1)根据长方形的面积=长×宽,用式子表示这所住宅的建筑面积即可.(2)把a=4,b=6代入(1)的算式,求出这所住宅的建筑面积是多少即可.【解答】解:(1)这所宅子的建筑面积是:S=2a•(3+b)+5×4+5a=11a+2ab+20(2)当a=4,b=6时,S=11×4+2×4×6+20=112(m2)∴这所宅子的建筑面积为112m2.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.22.如果﹣4x a y a+1与mx5y b﹣1的和是3x5y n,求(m﹣n)(2a﹣b)的值.【分析】根据同类项的概念和合并同类项的法则列式计算求出a=5,b=7,n=6,m=7,代入代数式计算即可.【解答】解:∵﹣4x a y a+1与mx5y b﹣1的和是3x5y n,∴a=5,a+1=b﹣1=n,﹣4+m=3,解得a=5,b=7,n=6,m=7,则(m﹣n)(2a﹣b)=3.【点评】本题考查的是同类项的概念,掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项是解题的关键.23.已知x2y|a|+(b+2)是关于x、y的五次单项式,求a2﹣3ab的值.【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【解答】解:∵x2y|a|+(b+2)是关于x,y的五次单项式,∴,解得:,则当a=﹣3,b=﹣2时,a2﹣3ab=9﹣18=﹣9;当a=3,b=﹣2时,a2﹣3ab=9+18=27.【点评】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键.24.把下列代数式的序号填入相应的横线上①a2b+ab﹣b2,②,③,④,⑤0,⑥,⑦(1)单项式③⑤⑦;(2)多项式①②;(3)整式①②③⑤⑦.【分析】根据单项式,多项式,整式的定义即可求解.【解答】解:(1)单项式③⑤⑦;(2)多项式①②;(3)整式①②③⑤⑦.故答案为:③⑤⑦;①②;①②③⑤⑦.【点评】考查了整式,关键是熟练掌握单项式,多项式,整式的定义.25.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+2.(1)化简4A﹣(3A﹣2B);(2)若(1)中式子的值与a的取值无关,求b的值.【分析】(1)先化简4A﹣(3A﹣2B),再将a与b的值代入计算即可求出值;(2)把(1)结果变形,根据结果与a的值无关求出b的值即可.【解答】解:(1)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+12ab+2,∴原式=4A﹣3A+2B=A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+12ab+2)=2a2+3ab﹣2a﹣1﹣2a2+24ab+4=27ab﹣2a+3;=5ab﹣2a+1,当a=﹣1,b=2时,原式=﹣7;(2)原式=(27b﹣2)a+3,由结果与a的取值无关,得到27b﹣2=0,解得b=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.26.计算与化简:(1)计算:﹣2×(﹣)﹣(﹣15)÷3;(2)计算:﹣52+|3+(﹣5)|﹣(﹣2)5;(3)先化简,再求值:5a2﹣[a2+3(a2﹣2a)﹣2(a﹣3a2)],其中a=﹣1.【分析】(1)根据有理数的加减乘除进行计算即可;(2)根据有理数的混合运算进行计算即可;(3)根据整式的加减进行化简,再将a的值代入化简后的整式中.【解答】解:(1)原式=1+5=6;(2)原式=﹣25+2+32=9;(3)原式=5a2﹣(a2+3a2﹣6a﹣2a+6a2),=5a2﹣a2﹣3a2+6a+2a﹣6a2,=﹣5a2+8a当a=﹣1时,原式=﹣5﹣8=﹣13.【点评】本题考查了整式的加减﹣化简求值、有理数的混合运算,解决本题的关键是熟练并准确计算.。

2020-2021学年浙教 版七年级上册数学《第4章 代数式》单元测试卷(有答案)

2020-2021学年浙教 版七年级上册数学《第4章 代数式》单元测试卷(有答案)

2020-2021学年浙教新版七年级上册数学《第4章代数式》单元测试卷一.选择题1.在代数式﹣1,m,x3y2,,a=4,x﹣3y中,整式有()A.2个B.3个C.4个D.5个2.单项式﹣5a2b2c的系数和次数分别是()A.﹣5,5B.﹣5,4C.5,5D.5,43.如果单项式3x2m y n+1与x2y m+3是同类项,则m、n的值为()A.m=﹣1,n=3B.m=1,n=3C.m=﹣1,n=﹣3D.m=1,n=﹣3 4.若单项式xy m+3与x n﹣1y2的和仍然是一个单项式,则m、n的值是()A.m=﹣1,n=1B.m=﹣1,n=2C.m=﹣2,n=2D.m=﹣2,n=1 5.某商店对店内的一种商品进行双重优惠促销﹣﹣将原价先降低m元,然后在此基础上再打五折.按该方案促销后,若此商品的售价为n元,则它的原价是()A.(2n+m)元B.(2n﹣m)元C.(0.5n+m)元D.(0.5n﹣m)元6.按下面的程序计算,若开始输入的值x为正整数,输出结果86,那么满足条件的x的值有()A.4个B.3个C.2个D.1个7.下列说法正确的个数有()①单项式﹣的系数是﹣,次数是3;②xy2的系数是0;③﹣a表示负数;④﹣x2y+2xy2是三次二项式;⑤是单项式.A.1个B.2个C.3个D.4个8.已知x=﹣,那么4(x2﹣x+1)﹣3(2x2﹣x+1)的值为()A.﹣2B.2C.4D.﹣49.下列各式符合代数式书写规范的是()A.m×6B.C.x﹣7元D.2xy210.下列各式中,去括号正确的是()A.﹣(7a+1)=﹣7a+1B.﹣(﹣7a﹣1)=7a+1C.﹣(7a﹣1)=﹣7a﹣1D.﹣(﹣7a﹣1)=﹣7a+1二.填空题11.若多项式5x2﹣(m+2)xy+7y2﹣2xy﹣5(m为常数)不含xy项,则m=.12.若单项式x2y m与单项式2x n+1y2是同类项,则m+n=.13.﹣2的相反数是;﹣2的倒数是;﹣的系数是.14.如图是一数值转换机,若输入的x为﹣4,y为6,则输出的结果为.15.若a+b=2,则﹣2a2b﹣ab2﹣2(﹣a2b﹣a)+2b+ab2=.16.多项式﹣8ab2+3a2b与多项式3a2b﹣2ab2的差为.17.已知多项式(M﹣1)x4﹣x N+2x﹣5是三次三项式,则(M+1)N=.18.某个体户将标价为每件m元的服装按8折售出,则每件服装实际售价为元.19.去括号:x﹣(y﹣z)=.20.下列各式中,整式有(只需填入相应的序号).①;②;③;④a三.解答题21.如图是数值转换机示意图.(1)写出输出结果(用含x的代数式表示);(2)填写下表;x的…﹣3﹣2﹣10123…值……输出值(3)输出结果的值有什么特征?写出一个你的发现.22.合并同类项:5m+2n﹣m﹣3n.23.已知多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,求m,n的值.24.计算:(1)﹣2+(﹣8)﹣(﹣24);(2)﹣22+[(﹣4)2﹣(1﹣3)×3];(3)2xy+1﹣(3xy+2);(4)3(a2﹣ab)﹣2(﹣2a2+2ab).25.如图,在数轴上A点表示数a,B点示数b,C点表示数c,b=1,且a、b满足|a+2|+|c ﹣7|=0.(1)a=,c=;(2)①若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.②点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,AC=(用含t的代数式表示).(3)在(2)②的条件下,请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.27.在七年级我们学习了许多概念,如A:有理数;B:无理数;C:负无理数;D:实数;E:整式;F:整数;G:分数;H:多项式.请根据下面的关系图将以上各概念前的字母填在相应的横线上.参考答案与试题解析一.选择题1.解:在代数式﹣1,m,x3y2,,a=4,x﹣3y中,整式有:﹣1,m,x3y2,x﹣3y共4个.故选:C.2.解:单项式﹣5a2b2c的系数是﹣5,次数是2+2+1=5,故选:A.3.解:∵3x2m y n+1与x2y m+3是同类项,∴2m=2,n+1=m+3,∴m=1,n=3,故选:B.4.解:由题意,得n﹣1=1,m+3=2解得m=﹣1,n=2,故选:B.5.解:∵售价为n元,∴打折前价格为n÷0.5=2n(元),∴原价为(2n+m)元,故选:A.6.解:设输入x,则直接输出4x﹣2,且4x﹣2>0,那么就有(1)4x﹣2=86,解得:x=22.若不是直接输出4x﹣2>0,那么就有:①4x﹣2=22,解得:x=6;(2)4x﹣2=6,解得:x=2;(3)4x﹣2=2,解得:x=1,(4)4x﹣2=1,解得:x=,∵x为正整数,∴符合条件的一共有4个数,分别是22,6,2,1,故选:A.7.解:单项式﹣的系数是﹣,次数是4,所以①错误;xy2的系数是1,所以②错误;﹣a可以表示正数,也可以负数,还可能为0,所以③错误;﹣x2y+2xy2是三次二项式,所以④正确;是单项式,所以⑤正确.故选:B.8.解:4(x2﹣x+1)﹣3(2x2﹣x+1)=4x2﹣4x+4﹣6x2+3x﹣3=﹣2x2﹣x+1,当x=﹣时,原式=﹣2×(﹣)2﹣(﹣)+1=﹣2,故选:A.9.解:A、不符合书写要求,应为6m,故此选项不符合题意;B、符合书写要求,故此选项符合题意;C、不符合书写要求,应为(x﹣7)元,故此选项不符合题意;D、不符合书写要求,应为xy2,故此选项不符合题意.故选:B.10.解:A、﹣(7a+1)=﹣7a﹣1,故本选项错误;B、﹣(﹣7a﹣1)=7a+1,故本选项正确;C、﹣(7a﹣1)=﹣7a+1,故本选项错误;D、﹣(﹣7a﹣1)=7a+1,故本选项错误;故选:B.二.填空题11.解:5x2﹣(m+2)xy+7y2﹣2xy﹣5=5x2﹣(m+2+2)xy+7y2﹣5=5x2﹣(m+4)xy+7y2﹣5,∵多项式5x2﹣(m+2)xy+7y2﹣2xy﹣5(m为常数)不含xy项,∴m+4=0,解得,m=﹣4,故答案为:﹣4.12.解:∵x2y m与单项式2x n+1y2是同类项,∴m=2,n+1=2,∴n=1,∴m+n=3,故答案为:3.13.解:﹣2的相反数是2;﹣2的倒数是﹣;﹣的系数是﹣,故答案为:2;﹣;﹣.14.解:根据题意可得,x=﹣4,y=6,可得﹣4×2+6÷3=﹣8+2=﹣6.故答案为:﹣6.15.解:﹣2a2b﹣ab2﹣2(﹣a2b﹣a)+2b+ab2=﹣2a2b﹣ab2+2a2b+2a+2b+ab2=2(a+b),∵a+b=2,∴原式=4.故答案为:4.16.解:由题意可知:﹣8ab2+3a2b﹣(3a2b﹣2ab2)=﹣8ab2+3a2b﹣3a2b+2ab2=﹣6ab2,故答案为:﹣6ab2.17.解:由题意可知:N=3,M﹣1=0,∴M=1,N=3,∴原式=23=8,故答案为:818.解:∵8折=0.8,∴每件服装实际售价为:0.8×m=0.8m(元).故答案为:0.8m.19.解:x﹣(y﹣z)=x﹣y+z.故答案为:x﹣y+z.20.解:①是整式;②中分母含有未知数,则不是整式;③是整式;④是整式.故答案为:①③④.三.解答题21.解:(1)由题意可知,输出结果为:3x2+2;(2)当x=﹣3时,3x2+2=3×(﹣3)2+2=29,当x=﹣2时,3x2+2=3×(﹣2)2+2=14,当x=﹣1时,3x2+2=3×(﹣1)2+2=5,当x=0时,3x2+2=2,当x=1时,3x2+2=3×12+2=5,当x=2时,3x2+2=3×22+2=14,当x=3时,3x2+2=3×32+2=29,故答案为:29;14;5;2;5;14;29;(3)由(2)可知,互为相反数的x的输出结果相等.22.解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.23.解:∵多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,∴2+2m+1=5,n+4m﹣3=5,解得m=1,n=4.24.解:(1)原式=﹣10+24=14;(2)原式=﹣4+(16+6)=﹣4+22=18;(3)原式=2xy+1﹣3xy﹣2=﹣xy﹣1;(4)原式=3a2﹣3ab+4a2﹣4ab=7a2﹣7ab.25.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7.故答案为:﹣2,7;(2)①(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4;②AC=t+4t+9=5t+9;故答案为:5t+9;(3)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.26.解:(1)若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0;(2)因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x﹣1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.27.解:如图所示,。

最新2019-2020年度浙教版七年级数学上册《代数式》能力提升卷及答案解析-精品试题

最新2019-2020年度浙教版七年级数学上册《代数式》能力提升卷及答案解析-精品试题

第四章:代数式 能力提升测试卷一.选择题:1.若2y m+5x n+3与﹣3x 2y 3是同类项,则n m =( )A .21B .21-C .1D .﹣22.下列计算正确的是( )A .3a ﹣2a=1B .x 2y ﹣2xy 2=﹣xy 2C .3a 2+5a 2=8a 4D .3ax ﹣2xa=ax3.若单项式2x n y m ﹣n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( )A .m=3,n=9B .m=9,n=9C .m=9,n=3D .m=3,n=34.若x ﹣y=2,x ﹣z=3,则(y ﹣z )2﹣3(z ﹣y )+9的值为( )A .13B .11C .5D .75.某商店举办促销活动,促销的方法是将原价x 元的衣服以)1054(-x 元出售,则下列说法中,能正确表达该商店促销方法的是( )A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元6.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A . 4,2,1B . 2,1,4C . 1,4,2D . 2,4,17.已知122=+a a ,则代数式aa 1-的值为( )A. 1B. 1-C. 2D. 2-8..二次三项式3x 2﹣4x+6的值为9,则6342+-x x 的值为( ) A .18 B .12 C .9 D .79.a 个人b 天做c 个零件,那么b 个人用相同的速度,( )天做a 个零件.A .2a cB .2b cC .2c aD .ca 2 10.在排成每行七天的日历表中取下一个33⨯方块(如图所示).若所有日期数之和为189,则n 的值为( )A.21B.11C.15D.9二.填空题:11.若单项式2x 2y m 与331y x n -的和仍为单项式,则m+n 的值是 12.多项式 与m 2+m ﹣2的和是m 2﹣2m .13.观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3…,则第2016个单项式是14.若a 为一位数,b 为两位数,把a 置于b 的左边,则所得的三位数可表示为15.一个三位数,十位上的数字是a ,百位上的数字比十位上的数字大2,个位上的数字比十位上的数字小1,则这个三位数可以表示为_________16.多项式2+(x ﹣1)2有最小值,则多项式1﹣x 2﹣x 3的值为__________17.当422=+-ba b a 时,代数式()()()b a b a b a b a 2232423-+++-的值是18..当1=x 时,代数式13++qx px 的值为2016,则当1-=x 时,代数式13++qx px 的值为__________19.已知甲、乙两种糖果的单价分别是x 元/千克和12元/千克.为了使甲、乙两种糖果分别销售与把它们混合成什锦糖后再销售的收入保持不变,则由20千克甲种糖果和y 千克乙种糖果混合而成的什锦糖的单价应是元/千克.20.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为_______________________三.解答题:21.化简关于x 的代数式()()[]132222+---+x x kx x x .当k 为何值时,代数式的值是常数?22.已知:A=2x 2+3xy ﹣2x ﹣1,B=﹣x 2+xy ﹣1.若3A+6B 的值与x 的值无关,求y 的值.23. 如图,在猫捉老鼠的过程中,老鼠沿着长方形的两边A→B→D 的路线逃窜,猫同时沿着楼梯A→C→D 去追捕,结果猫在D 点捉住了老鼠,线段CD 长0.6米.⑴设楼梯A→C 的总长为x 米,猫捉老鼠所用的时间为t 秒.请完成右边的表格; ⑵已知老鼠的速度是猫速度的1411.利用“速度”这一条件将(1)中有关的代数式连结起来.24.用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2 016颗黑色棋子?请说明理由.25.任意写出一个数位不含零的三位数,任取其三个数字中的两个,组合成所有可能的两位数(有6个).求出所有这些两位数的和,然后将它除以原三位数的各个数位上的数之和.例如,对三位数223,取其两个数字组成所有可能的两位数:22,23,22,23,32,32.它们÷=.再换几个数试一试,你发现了什么?的和是154.三位数223各位数的和是7,154722请写出你按上面方法的探索过程和所发现的结果,并运用代数式的知识说明所发现的结果正确.26.计算某个整式减去多项式ab﹣2bc+3a+bc+8ac时,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab+bc+8ac.请你求出原题的正确答案.27.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x之间的关系.第四章:代数式能力提升卷答案一.选择题:1.答案:B解析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m+5=3,n+3=2,求出n,m的值,再代入代数式计算即可【解答】:解:∵2y m+5x n+3与﹣3x2y3是同类项,∴m+5=3,n+3=2,∴m=﹣2,n=﹣1,∴m n =(﹣2)﹣1=﹣21.故选B . 【分析】:本题考查同类项的定义、方程思想,是一道基础题,比较容易解答,但有的学生可能会把x 与y 的指数混淆2.答案:D解析:根据合并同类项的法则,把同类项的系数加减,字母与字母的指数不变,进行计算作出正确判断。

2019年秋浙教版七年级数学上册:第4章代数式检测卷

2019年秋浙教版七年级数学上册:第4章代数式检测卷

第4章代数式检测卷时间:100分钟班级:姓名:得分:一、选择题(每小题3分,共30分)1.下列式子中,符合代数式书写格式的是( B )A.813a2b3B.-yx C.xy·5 D.ab2·c2.代数式a2-1b的正确解释是( C )A.a与b的倒数的差的平方B.a的平方与b的差的倒数C.a的平方与b的倒数的差D.a与b的差的平方的倒数3.下列语句中错误的是( B )A.数字0也是单项式B.单项式-a的系数与次数都是1C.12xy是二次单项式D.-2ab3的系数是-234.如果2x a+1y3与x5y b-1是同类项,那么ab的值是( C )A.12B.32C.1 D.35.下列说法正确的是( D )A .-2xy5的系数是-2 B .x 2+x -1的常数项为1 C .22ab 3的次数是6次 D .2x -5x 2+7是二次三项式 6.下列各式变形错误的有( D )①a -(b -c)=a -b -c ①(x 2+y)-2(x -y 2)=x 2+y -2x +y 2 ①-(a +b)-(-x +y)=-a +b +x -y ①-3(x -y)+(a -b)=-3x -3y +a -b.A .1个B .2个C .3个D .4个7.如果x -y =5,y -z =5,那么z -x 的值是( D ) A .5 B .10 C .-5 D .-108.给出下列结论:①单项式-3x 2y 2的系数为-32;①x 与y 的差的平方可表示为x 2-y 2;①化简(x +14)-2(x -14)的结果是-x +34;①若单项式57ax 2y n +1与-75ax m y 4的差是同类项,则m +n =5.其中正确的结论有( C )A .1个B .2个C .3个D .4个9.长、宽、高分别为x ,y ,z 的长方体箱子按如图方式打包(粗黑线),则打包带的长至少为( B )A.x+2y+3zB.2x+4y+6zC.4x+4y+8zD.6x+8y+6z10.按如图所示的程序计算:若开始输入的x值为-8,则最后输出的结果是( B )A.352B.160C.112D.198二、填空题(每小题4分,共24分)11.0.4xy3的系数是0.4,次数为4.12.如果单项式-x2y m+1与3x n y3是同类项,那么m-n=0.13.当a=100时,代数式1.5(1-20%)a+(1+40%)a=260.14.m是一个两位数,n是一个一位数,将m写到n的左边成为一个三位数,用代数式表示这个三位数为10m+n.15.如图长方形的长为a,宽为b.则用字母表示图中阴影部分的面积为ab-32.(结果保留π)8πb16.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如-2x2-2x+1=-x2+5x-3:则所捂住的多项式是x2+7x-4.三、解答题(共66分)17.(12分)化简:(1)x2-7x-2-2x2+4x-1;(2)(8xy-3y2)-2(3xy-2x2);(3)-7a2+12(6a2-4ab)-(3b2+ab-a2).解:(1)原式=-x2-3x-3;(2)原式=8xy-3y2-6xy+4x2=2xy-3y2+4x2;(3)原式=-7a2+3a2-2ab-3b2-ab+a2=-3a2-3ab-3b2.18.(6分)先化简,再求值:4x 2y -[6xy -3(4xy -2)-x 2y -1],其中x =2,y =-12.解:原式=4x 2y -(6xy -12xy +6-x 2y -1)=4x 2y -(-6xy -x 2y +5)=4x 2y +6xy +x 2y -5=5x 2y +6xy -5,当x =2,y =-12时,原式=5×4×(-12)+6×2×(-12)-5=-10-6-5=-21.19.(6分)已知三角形的第一条边的长是a +2b ,第二条边长是第一条边长的2倍少3,第三条边比第二条边短5.(1)用含a ,b 的式子表示这个三角形的周长; (2)当a =2,b =3时,求这个三角形的周长.解:(1)原式=(a +2b)+[2(a +2b)-3]+[2(a +2b)-3-5]=a +2b +2a +4b -3+2a +4b -8=5a +10b -11;(2)当a =2,b =3时,原式=10+30-11=29.20.(6分)计算:一个整式A 与多项式x 2-x -1的和是多项式-2x 2-3x +4. (1)请你求出整式A ; (2)当x =2时求整式A 的值.解:(1)①A +(x 2-x -1)=-2x 2-3x +4,①A =(-2x 2-3x +4)-(x 2-x -1)=-3x 2-2x +5;(2)把x =2代入上式,得:A =-3×22-2×2+5=-12-4+5=-11.21.(6分)某校七年级四个班在植树节这天义务植树.一班植树x 棵,二班植树的棵数比一班的2倍少40棵,三班植树的棵数比二班的一半多30棵,四班植树的棵数比三班的三分之一多50棵.(1)求这四个班共植树多少棵(用含x 的代数式表示); (2)当x =50时,四个班哪个班植树最多?解:(1)根据题意得:x +2x -40+x -20+30+13(x +10)+50=133x +703,则这四个班共植树(133x +703)棵;(2)当x =50时,一班植树50棵;二班植树60棵;三班植树60棵;四班70棵,则四个班植树最多是四班.22.(8分)【阅读理解】小海喜欢研究数学问题,在计算整式加减(-4x 2-7+5x)+(2x +3x 2)的时候,想到了小学的列竖式加减法,令A =-4x 2-7+5x ,B =2x +3x 2,然后将两个整式关于x 进行降幂排列,A =-4x 2+5x -7,B =3x 2+2x ,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(-4x2-7+5x)+(2x+3x2)=-x2+7x-7.【模仿解题】若A=-4x2y2+2x3y-5xy3+2x4,B=3x3y+2x2y2-y4-4xy3,请你按照小海的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A-B,并写出A-B的值.解:将两个整式关于x进行降幂排列,A=2x4+2x3y-4x2y2-5xy3,B=3x3y +2x2y2-4xy3-y4,各项系数进行竖式计算:①A-B=2x4-x3y-6x2y2-xy3+y4.23.(10分)如图1,2,3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,…(1)根据图中花盆摆放的规律,图4中,应该有盆花,图5中,应该有盆花;(2)请你根据图中花盆摆放的规律,写出第n个图形中花盆的盆数.解:(1)37;61(2)3n(n-1)+124.(12分)小方家住房户型呈长方形,平面图如下(单位:米).现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)求a的值;(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:活动方案,木地板价格,地砖价格,总安装费A,8折,8.5折,2000元B,9折,8.5折,免收已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低?解:(1)根据题意,可得a+5=4+4,解得a=3;(2)铺设地面需要木地板:4×2x+a[10+6-(2x-1)-x-2x]+6×4=8x+3(17-5x)+24=75-7x;铺设地面需要地砖:16×8-(75-7x)=128-75+7x=7x+53;(3)①卧室2的面积为21平方米,①3[10+6-(2x-1)-x-2x]=21,①3(17-5x)=21,①x=2,①铺设地面需要木地板:75-7x=75-7×2=61,铺设地面需要地砖:7x+53=7×2+53=67.A种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元),22335>22165,所以小方家应选择B种活动方案,使铺设地面总费用(含材料费及安装费)更低.。

2019-2020学年人教版初一数学代数式单元测试卷

2019-2020学年人教版初一数学代数式单元测试卷

2019-2020学年人教版初一数学复习专用单元复习提升卷考试范围:代数式 考试时间:100分钟学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.化简1(1)(1)n n a a +-+-(n 为正整数)的结果为( )A .0B . -2C . 2D .2 或-2 答案:A解析:A2.2008年苹果的价格比2007年上涨了10%,若2008年每千克苹果的价格是a 元,则2007年每千克苹果的价格是为( )A .(110%)a +元B .(110%)a - 元C .110%a +元D .110%a -元 答案:C解析:C3.甲数为2x -1,乙数为2-3x ,则乙数的2倍比甲数大( )A .5-8xB .8x -5C .5-4xD .3-8x答案:A解析:A4.小红设计了一个计算程序,并按此程序进行了两次计算.在计算中输入了不同的x 值,但一次没有结果,另一次输出的结果是42,则这两次输入的x 值不可能是( )A . 0,2B . -1,-2C . 0,1D .6,-3解析:D5.已知946a b -和4m 45a b 是同类项,则代数式1210m -的值是( )A . 17B .37C .-17D . 98 答案:A解析:A6.下列合并同类项正确的是( )A .22523x x -=B .6713x y xy +=C .2222a b a b a b -+=D .523x x -= 答案:C解析:C7.代数式32377a a a -++与23323a a a -+-的和是( )A .奇数B .偶数C .5 的倍数D .以上都不能确定答案:C解析:C8.下列说法:①代数式21a +的值永远是正的;②代数式2a b +中的字母可以是任何数;③代数式2a b+只代表一个值;④代数式2x x-中字母x 可以是 0 以外的任何数. 其中正确的有( )A .1 个B .2 个C .3 个D .4 个答案:B解析:B9.如图,数轴上的点 A 所表示的是实数 a ,则点A 到原点的距离是( )A .aB .a ±C .a -D .||a - 答案:B解析:B10.七年级 (1)班有 y 个学生,其中女生占55%,那么女生人数为( )A .55%yB .(1-55%)yC .155%y -D .55%y解析:A二、填空题11.请写出25ab 的两个同类项,且这两个同类项与25ab 合并后结果为0. 你给出的两个同类项是 ..解析:答案不唯一,如22ab 和27ab -12. 如果正方体的边长是a ,那么正方体的体积是 ,表面积是 .解析:3a ,26a13.一盒铅笔12支,n 盒铅笔共有 支. 解析:12n14.一年期存款的年利率为 p ,利息个人所得税的税率为 20%. 某人存入的本金为 a 元,则到期支出时实得本利和为 元.解析:125ap a + 15.若n-m=-3,则 m-n= ,-1+m-n= ,4-2m+2n= .解析:3,2,-216. 请你写出一个次数是 3 次的多项式 .解析:如. 3221x x ++17. 填表:解析:1,-1,12,14-18.如图,已知圆的半径为 R ,正方形的边长为 a .(1)表示出阴影部分的面积S= ;(2)当R=20 cm ,a=8 cm ,阴影部分面积S= cm 2.解析:(1)22nR a - (2)40064π-19.按图示程序计算,若输入的 x 值为32则输出的结果为 .解析:12三、解答题20.在一个直径为 d(m)的地球仪赤道上用铁丝打一个箍,需要多长的铁丝?如果要把这个铁丝箍向外扩张 1 m(即将直径增加2 m),需增加多长的铁丝? 解析:d π m ;(2)2d d πππ+-= m21.举一个可以用 5x 表示结果的实际问题.解析:若糖果每千克x 元,买 5kg 糖果,则需 5x 元钱(答案不唯一)22.甲、乙两品牌服装的单价分别为 a 元和b 元,现实行打折销售,甲种服装按 8 折(即原价的 80%)销售,乙种服装按7 折销售,若购买两种品牌服装各一件,共需多少元?解析:80%a+70b%23.新华书店推出向外邮书的销售举措,售书数曼与售价之间的关系如下(表内售价栏 内的 0.2 是指每册书的邮费为书价的 0.2倍):(2)选择适当的字母推导出向外邮书的图书售价公式,并利用售价公式计算当邮购 320 册图书时的售价.解析:(1)3 元 (2)(3n+0.6n)元,1152元24.已知甲数比乙数的 80%多 0.20,设乙数为x ,用关于x 的代数式表示甲数. 解析:80%x+0.2025.用代数式表示图中阴影部分的面积,并计算 x=10,y=14时的面积.解析:19()2y y x --;1226.小明阅读一本世界名著,第一天看了全书的13,第二天看了剩下部分的23,若全书共x 页,现在小明还有多少页未看? 29x 解析:29x27. 如图,用字母表示图中阴影部分的面积.2214a a π- 解析:2214a a π-28.图中 3×3 方格是从月历表中取下的,正中方格的日期是n ,请用适当的代数式填 入各个空格,表示所填入空格的日期,然后比较两条对角线的五个日期数之和,你发现了什么规律?解析:两条对角线上的三个日期数之和都等于3n29.当2x =-时,多项式31ax bx ++的值是 6. 求当2x =时,代数式31ax bx ++的值. 解析:把2x =-代入多项式,得318216ax bx a b ++=--+=,由此可得825a b +=-,把2x =代入多项式,得31821514ax bx a b ++=++=-+=-30.自然数中有许多奇妙而有趣的现象,很多秘密等待我们探索. 比如:写出一个你喜欢 欢的数,把这个数乘以 2,再加上 2,把结果乘以 5,再减去 10,再除以 10,结果你会重新得到原来的数.假设一开始写出的数为n ,根据这个例子的每一步,列出最后的表达式. 解析:例如写出一个数为 3,则(232)510310⨯+⨯-=. 若写出的数为n ,则5(22)101010101010n n n +-+-== 31.求代数式的值.(1)2222113(21)()422xy x y xy x y +--+,其中x =-1,y =2.(2) 3x 2y -[2x 2y -(2xyz-x 2z)-4x 2z]-xyz ,其中 x=-2,y=-3,z=1.解析:(1)22111142xy x y -+-= (2)2236x y xyz x z ++=32.某同学在计算一个多项式减去221a a -+时,因误看作加上221a a -+,得到答案2324a a -+,能帮助这个同学做出正确答案吗?解析:这个多项式为222324(21)23a a a a a -+--+=+,∴22223(21)22a a a a a +--+=++33.某超市出售的一种饼干的单价是7.89元/袋,一种蛋卷的单价是8.99元 /罐,小明购买蛋卷的罐数比购买饼干的袋数的一半少1.(1)设购买饼干的袋数为n ,请用代数式表示购买饼干和蛋卷的总价;(2)若6n =,总价为多少?解析:(1)8.99(1)7.89(12.3858.99)2n n n -+=-(元) ; (2)12.385×6-8.99=65.32(元)34.合并同类项:(1) 1-(2a-1)-(3a+3 ) (2) -(5m+n)-7(m-3n) 解析:(1)51a --;(2)1220m n -+35.2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a -1)米,三峡坝区的传递路程为(881a +2309)米.设圣火在宜昌的传递总路程为s 米.(1)用含a 的代数式表示s ;(2)已知a=11,求s 的值.解析:解:(1)s =700(a -1)+(881a +2309)=1581a +1609.(2)a =11时,s =1581a +1609=1 581×11 +1 609=19000.36.求k 为何值时,代数式643643154105x kx y x x y --++中,不含是43x y 的项. 125 解析:125。

2019年度浙教版七年级上册数学单元试卷 第四章 代数式02434

2019年度浙教版七年级上册数学单元试卷 第四章 代数式02434

2018-2019年度浙教版七年级上册数学单元测试试卷第四章代数式满分:100分;考试时间:120分钟学校:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.长方形的一边长等于32a b+,另一边比它小a b-,那么这个长方形周长是()A.106a b+B.73a b+C.1010a b+D.128a b+答案:C2.如果一个多项式的次数是5,那么这个多项式的各项次数()A.都小于 5 B.都大于 5 C.都不小于 5 D.都不大于5答案:D3.当a=8,b=4时,代数式22baba-的值是()A.62 B.63 C.126 D.1022答案:C4.甲数为2x-1,乙数为2-3x,则乙数的2倍比甲数大()A.5-8x B.8x-5 C.5-4x D.3-8x答案:A二、填空题5.为了解决老百姓看病难的问题,卫生部门决定大幅度降低药品价格,某种常用药品降价40%后的价格为a元,则降价前此药品价格为元.3a5解答题6.某音像社对外出租光盘的收费方法是:每张光盘在租出后的前两天每天收0.8元,以后每天收0.5元.若一张光盘租出n 天(n 是大于2的自然数),应收租金 元.7.a 的 2倍的立方与b 的5倍的平方的差可表示为 .8.若n-m=-3,则 m-n= ,-1+m-n= ,4-2m+2n= .9.在多项式2343253x x y x π-+-中,最高次项的系数是 ,最低次项是 .10.如图,已知圆的半径为 R ,正方形的边长为 a .(1)表示出阴影部分的面积S= ;(2)当R=20 cm ,a=8 cm ,阴影部分面积S= cm 2.三、解答题11.试说明不论 x 、y 取何值时,代数式322333222332(3561)(222)(4731)x x y xy y x y xy x y x y y x xy +-++------+---的值是一个常数.12.一辆出租车从A 地出发,在一条东西走向的街道上往返行驶,每次行驶的路程(记向东为正)记录如下(9<x<26,单位:km):(1)说出这辆出租车每次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置;(3)这辆出租车一共行驶了多少路程?13. 图中的大正方形是由两个小正方形和两个长方形拼成的,这个大正方形的面积是多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 年七年级数学上册第 4 章《代数式》单元
测试题
一、选择题 (每小题 3分,共30 分)
1.下列代数式书写规范的是()
A.a ×2
B.11a
C.(5 ÷3)a
D.2a2
2
2.长方形的长为a,宽为 b,则长方形的面积为()
A.a+b
B.1
C.ab
D.2(a+b)
ab
2
3.一个两位数,十位数字是a,个位数字是b,则这个两位数是()
A.ab
B.a+b
C.10a+b
D.10b+a
4.下列说法正确的是()
A.0 和 x 不是单项式
B.-ab
的系数是
1 22
C.x2y 的系数是 0
D.- 22X 2的次数是 2
5.当 a=1 时, | a- 3 |的值为()
A.4
B. -4
C.2
D.-2
6.已知 25x6y和 5x2m y 是同类项, m 的值为()
A.2
B.3
C.4
D.2或3
7.合并同类项-
22
() 2x y+5x y 的结果是
A.3
B. - 7x2y
C.3x 2y
D.7x 2y
8.下列去括号,正确的是()
A. -(a+b)= - a- b
B.- (3x -2)= - 3x- 2
C.a2- (2a- 1)=a2- 2a- 1
D.x -2(y- z)=x - 2y+z
9.设 M=2a - 3b, N= - 2a- 3b,则 M - N=()
A.4a- 6b
B.4a
C.- 6b
D.4a+6b
10.两列火车都从 A 地驶向 B 地,已知甲车的速度为x 千米/时,乙车的速度为y 千米/时,
经过 3 时,乙车距离 B 地 5 千米,此时甲车距离 B 地 ()千米()
A.3( - x+y) - 5
B.3(x+y) -5
C.3( -x+y)+5
D.3(x+y)+5
二、填空题 (每小题 4分,共24 分)
11.小今年n ,去年小, 6 年后小.
12.式4xy 的系数是
,次数是. 3
13.5 个正整数,中一个数n, 5 个数的和
14.- 2a+1 的相反数是.
15.9, 11, 13,,⋯⋯,第10 个数是,第n 个数是.
16.已知一个两位数的十位数字与个位数字之和13,个位数字a,十位数字与个
位数字得到一个新的两位数表示.
三、解答 (共 66 分 )
17.(6 分 )化下列各式:
(1)x - y+5x - 4y(2)- 2x- (3x-1)
(3)(m - 2n)-2( -2n+3m)(4) - 2(xy - 3y2)- [2y 2- (5xy+x 2)+2xy]
18.(6 分 )如右是一个数机,根据上面的运算方式行运算,把求得的填入下表中.
填表:
入 x- 2- 1012

19.(6 分 )已知 A=x 2- 5x,B=x 2- 10x+5.
(1) 求 A - 2B ;(2)求当 x= -1
时, 2A -B 的值 . 2
20.(8
于分)已知某三角形的一条边长为
2n-m,求这个三角形的周长.
m+n,另一条边长比这条边长大m- 3,第三条边长等
22
,求代数式
2222
的值 .
21.(8 分 )已知 x - xy=60, xy- y =40x - y和 x - 2xy+y
22.(10 分 )移动公司开设了两种通讯业务:
① “全球通”用户先交 10 元月租费,然后每通话一分钟,付话费
② “快捷通”用户不交月租费,每通话一分钟付话费0.4 元.
(1)按一个月通话 2 分钟计算,请你写出两种收费方式中客户应付费用
0.2元.
?
(2)某用户一个月内通话300 分钟,你认为选择哪种移动通讯较合适.
23.(10 分 )用含字母的代数式表示图中阴影部分的面积.
24.(12 分 )有这样一道题:“当 a=0.35,b=0.28时,求多
3323323
项式 7a - 3(2a b- a b- a )+(6a b- 3a b)- (10a - 3)的值 . ”小敏做题时把 a=0.35,b= -0.28 错抄成 a=- 0.35,6=0.28,但她做出的结果却与标准答案一致,你知道这是怎么回事吗 ?请说明理由 .
参考答案:
4 1.D 2.C 3.C 4.D 5.C 6.B 7.C8.A 9.B 10.C11.(n- 1) (n+6) 12.
3 2 13.5n 14.2a- 1 15.15 27 2n+716.(13- a)+10a
2
17.(1)6x - 5y (2) - 5x+1 (3)- 5m+2n (4)4y +xy+x2
18.- 15,- 9,- 3, 3, 9
19.解: (1)A -2B=x 2- 5x- 2(x2 - 10x+5)= - x2+15x- 10.
(2)2A - B=2(x 2- 5x) -(x 2-10x+5)=x 2- 5.
当 2=-1
时, 2A-B=(-
1
)2-5=- 4
3
. 224
20.解: (m+n)+(m+n+m-3)+(2n - m)=2m+4n - 3.
21.解: x2- y2=(x 2- xy)+(xy- y2)=100.x2- 2xy+y2=(x2-xy)-(xy-y2)=20.
22.解: (1)“球通全”客户应付的费用表达式0.2x+10元;“快捷通”客户应付的费用表达式
0.4x元 .
(2) 当 x=300 时,“全球通”客户应付的费用为70 元;“快捷通”客户应付的费用为120 元,
所以选择“全球通”移动通讯业务 .
23.阴影部分的面积为 a+b+c 24. 原式化简后的结果是 3.与 a, b 的值无关。

相关文档
最新文档