高考数学分项版解析专题11概率和统计、算法

合集下载

高考数学中的概率与统计题详解

高考数学中的概率与统计题详解

高考数学中的概率与统计题详解概率与统计是高考数学中的重要内容之一,涉及概率、统计两个部分。

概率是研究随机事件发生的可能性,统计则是根据观察到的现象,对总体进行推断。

在高考中,概率与统计题往往需要运用一定的公式和推理能力来解答。

下面将详细介绍高考中常见的概率与统计题,并提供相关的解题技巧。

一、概率题概率题常见于高考数学中,考察学生对随机事件和概率的理解与计算能力。

下面将从基本定义、计算公式和常见类型等方面对概率题进行详解。

1.基本定义概率是事件发生的可能性大小的度量,用一个介于0和1之间的数表示。

当事件不可能发生时,概率为0;当事件一定发生时,概率为1。

2.计算公式(1)事件A的概率:P(A) = 事件A的可能结果数 / 样本空间的可能结果数。

(2)互斥事件的概率:P(A或B) = P(A) + P(B)。

(3)独立事件的概率:P(A和B) = P(A) × P(B)。

3.常见类型(1)选择题:将概率题与其他数学知识相结合,如求百分比、比例等。

解题时应根据题目给出的条件,利用计算公式进行计算。

(2)排列组合问题:对于不同颜色、大小、形状的球,求取满足某个条件的组合数。

解题时应根据题目所给条件,使用排列组合公式进行计算。

(3)事件的复合:求两个或多个事件复合后的概率。

解题时应根据题目所给条件,利用计算公式进行计算。

二、统计题统计题常见于高考数学中,考察学生对收集、整理和分析数据的能力,以及对统计方法的应用。

下面将从数据收集与整理、统计指标和抽样调查等方面对统计题进行详解。

1.数据收集与整理统计题要求学生根据给定的数据进行分析和计算。

在实际情境中,常见的数据收集方法有观察、问卷调查、实验等。

解题时应根据题目所给的数据,进行整理和清晰的分类。

2.统计指标统计指标是对统计数据进行度量和描述的指标。

常见的统计指标有均值、中位数、众数、标准差等。

解题时应根据题目所要求的统计指标,运用相应的公式进行计算。

高考数学中的概率与统计

高考数学中的概率与统计

高考数学中的概率与统计在高考数学中,概率与统计是两个非常重要的概念。

概率是指某件事情发生的可能性,而统计则是通过数据分析找出事情的规律。

本文将介绍高考中的概率和统计内容,以及对于考生应该如何应对这些考点。

一、概率概率是高考数学中的重点之一,它涉及到很多基本概念和计算方法。

我们先来看看常见的概率问题:1. 定义概率:概率是指某事件发生的可能性,通常用一个介于0 到 1 之间的数字表示。

比如说,掷一枚骰子,出现 1 的概率是1/6,出现偶数的概率是 3/6=1/2。

2. 事件的互斥:如果两个事件不能同时发生,就称它们互斥。

比如说,掷一枚骰子,出现 1 和出现 2 是互斥的事件。

此时它们的概率可以简单地相加。

3. 事件的独立:如果两个事件的发生不会互相影响,就称它们独立。

比如说,掷两枚骰子,第一枚出现 1 的概率是 1/6,第二枚出现 2 的概率也是 1/6。

此时出现 1 和 2 的概率就是它们的乘积。

4. 条件概率:条件概率是指在已知一个事件发生的情况下,另一个事件发生的可能性。

比如说,从一副扑克牌中取出一张牌,它是红桃的概率是 1/4,如果告诉你它是一张面值为 A 的牌,那么这张牌是红桃的概率就变成了 1/2。

考生在备考概率时,需要将这些基本概念掌握清楚,并能够结合具体问题来进行计算。

此外,还需要注意一些细节问题,比如说事件是否独立、概率的范围等等。

二、统计统计是高考数学中的另一个重要考点,它用来描述数据的分布规律和相关性。

常见的统计问题有:1. 统计指标:统计学有很多指标,比如说平均数、中位数、众数、标准差等等。

这些指标用来描述数据的各种特征,可以通过计算得出。

2. 直方图:直方图是一种常用的数据可视化工具。

它将一段数据区间划分为若干个子区间,并计算每个子区间的数据量,然后将它们用矩形图形表示出来。

通过直方图可以看出数据的分布规律,比如说是否呈正态分布等等。

3. 散点图:散点图可以用来表示两个变量之间的关系。

高考数学分项版解析 专题11 概率和统计、算法 文

高考数学分项版解析 专题11 概率和统计、算法 文

第十一章 概率和统计一.基础题组1. 【2016高考天津文数】甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为(A )65 (B )52 (C )61 (D )31【答案】A 【解析】试题分析:甲不输概率为115.236+=选A. 【考点】概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法公式.对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件. 2.【2007天津,文11】从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下: 分组 [)90100, [)100110, [)110120, [)120130, [)130140, [)140150, 频数123101则这堆苹果中,质量不小于...120克的苹果数约占苹果总数的 %. 【答案】703.【2008天津,文11】一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________________人. 【答案】10【解析】依题意知抽取超过45岁的职工为258010 200⨯=.4.【2009天津,文6】阅读下面的程序框图,则输出的S等于( )A.14B.20C.30D.55【答案】C【解析】由题意知:S=12+22+…+i2,当i=4时循环程序终止,故S=12+22+32+42=30.5.【2010天津,文3】阅读下边的程序框图,运行相应的程序,则输出s的值为 ( )A.-1 B.0 C.1 D.3【答案】B6.【2010天津,文18】有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47 其中直径在区间1.48,1.52]内的零件为一等品.(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(2)从一等品零件中,随机抽取2个.①用零件的编号列出所有可能的抽取结果;②求这2个零件直径相等的概率.【答案】(1) 35,(2) ①共有15种.②257.【2011天津,文3】阅读右边的程序框图,运行相应的程序,若输入x的值为-4,则输出y 的值为A.0.5B.1C.2D.48.【2011天津,文15】编号分别为1216,,,A A A L 的16名篮球运动员在某次训练比赛中的得分记录如下: 运动员编号 A 1A 2A 3A 4A 5A 6A 7A 8得分 15 35 21 28 25 36 18 34 运动员编号 A 9A 10A 11A 12A 13A 14A 15A 16得分1726253322123138(Ⅰ)将得分在对应区间内的人数填入相应的空格: 区间 [10,20)[20,30)[30,40)人数(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人, (i) 用运动员编号列出所有可能的抽取结果; (ii)求这2人得分之和大于50的概率.【答案】(1)4,6,6(2)15,1.39.【2012天津,文3】阅读下边的程序框图,运行相应的程序,则输出S的值为( )A.8 B.18 C.26 D.80【答案】C【解析】n=1,S=0+31-30=2,n=2;n=2<4,S=2+32-31=8,n=3;n=3<4,S=8+33-32=26,n=4;4≥4,输出S=26.10.【2012天津,文15】某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.【答案】(Ⅰ)3,2,1;(Ⅱ)①共15种;②1 511.【2013天津,文3】3.(2013天津,文3)阅读下边的程序框图,运行相应的程序,则输出n的值为( ).A.7 B.6C.5 D.4【答案】D【解析】由程序框图可知,n=1时,S=-1;n=2时,S=1;n=3时,S=-2;n=4时,S=2≥2,输出n的值为4,故选D.12.【2013天津,文15】某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z 评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号A1A2A3A4A5质量指标(x, y,z)(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1)产品编号A6A7A8A9A10质量指标(x,y,z)(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)(2)在该样本的一等品中,随机抽取2件产品,①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.【答案】(Ⅰ)0.6;(Ⅱ)①可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种;②(Ⅲ)2 5(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B 发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以P(B)=62 105.13.【2014天津,文9】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.【答案】60【解析】试题分析:分层抽样实质为按比例抽样,所以应从一年级本科生中抽取4300604556⨯=+++名学生.考点:分层抽样14.【2014天津,文11】阅读右边的框图,运行相应的程序,输出S 的值为________.【答案】 4.-考点:循环结构流程图15.【2014天津,文15】某校夏令营有3名男同学C B A ,,和3名女同学Z Y X ,,,其年级情况如下表:一年级 二年级 三年级 男同学 A B C 女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同) (1)用表中字母列举出所有可能的结果(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.【答案】(1)15,(2) 2.5【解析】试题分析:(1)列举事件,关键是按一定顺序,做到不重不漏. 从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种. (2) M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,其事件包含{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种. 因此,事件M 发生的概率62().155P M == 试题解析:解(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M 发生的概率62().155P M == 考点:古典概型概率16. 【2015高考天津,文15】(本小题满分13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛. (I )求应从这三个协会中分别抽取的运动员人数;(II )将抽取的6名运动员进行编号,编号分别为123456,,,,,A A A A A A ,从这6名运动员中随机抽取2名参加双打比赛.(i )用所给编号列出所有可能的结果;(ii )设A 为事件“编号为56,A A 的两名运动员至少有一人被抽到”,求事件A 发生的概率. 【答案】(I )3,1,2;(II )(i )见试题解析;(ii )35【解析】(ii )编号为56,A A 的两名运动员至少有一人被抽到的结果为{}15,A A ,{}16,A A ,{}25,A A ,{}26,A A , {}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共9种,所以事件A 发生的概率()93.155P A == 【考点定位】本题主要考查分层抽样与古典概型及运用概率统计知识解决实际问题的能力. 17. 【2015高考天津,文3】阅读下边的程序框图,运行相应的程序,则输出i 的值为( ) (A) 2 (B) 3 (C) 4 (D)5【答案】C 【解析】由程序框图可知:2,8;3,S 5;4, 1.i S i i S ====== 故选C.【考点定位】本题主要考查程序框图及学生分析问题解决问题的能力.18.【2016高考天津文数】阅读下边的程序框图,运行相应的程序,则输出S 的值为_______.【答案】4【考点】循环结构流程图【名师点睛】算法与程序框图的考查,侧重于对程序框图中循环结构的考查.先明晰算法及程序框图的相关概念,其次重视循环次数、终止条件,更要通过循环规律,明确程序框图研究的数学问题是求和还是求项.19.【2009天津,文18】为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C 三个区中抽取7个工厂进行调查.已知A,B,C 区中分别有18,27,18个工厂.(1)求从A,B,C 区中应分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率.【答案】(Ⅰ)2,3,2;(Ⅱ)1121【解析】(1)解:工厂总数为18+27+18=63,样本容量与总体中的个体数的比为91637 ,所以从A,B,C 三个区中应分别抽取的工厂个数为2,3,2. (2)解:设A1,A2为在A 区中抽得的2个工厂,B1,B2,B3为在B 区中抽得的3个工厂,C1,C2为在C 区中抽得的2个工厂.在这7个工厂中随机地抽取2个,全部可能的结果。

高中数学公式大全概率计算与统计分析的公式推导

高中数学公式大全概率计算与统计分析的公式推导

高中数学公式大全概率计算与统计分析的公式推导高中数学公式大全——概率计算与统计分析的公式推导概率计算是数学中一个重要的分支,而统计分析则是应用数学在实际问题中进行数据处理和推断的过程。

本文将介绍一些在高中数学中常用的概率计算与统计分析的公式,并给出其推导过程。

一、概率计算公式1.1 事件的概率计算公式在概率论中,我们用P(A)表示事件A发生的概率,事件A的概率可以通过以下公式计算:P(A) = 事件A的发生数 / 样本空间的元素数1.2 条件概率公式条件概率是指在已知事件B发生的条件下,事件A发生的概率。

条件概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

1.3 独立事件的乘法公式当两个事件A和B相互独立时,事件A与事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

数学上可以表示为:P(A∩B) = P(A) * P(B)二、统计分析公式2.1 样本均值的计算公式在统计学中,样本均值是用来度量一组数据的集中程度的重要指标。

对于n个样本数据X₁, X₂, ... , Xn,样本均值可以通过以下公式计算:x = (X₁ + X₂ + ... + Xn) / n其中,x表示样本均值。

2.2 样本方差的计算公式样本方差是用来度量一组数据的离散程度的指标。

对于n个样本数据X₁, X₂, ... , Xn,样本方差可以通过以下公式计算:S² = [(X₁ - x)² + (X₂ - x)² + ... + (Xn - x)²] / (n-1)其中,S²表示样本方差,x表示样本均值。

2.3 假设检验中的t检验公式t检验是一种常用的假设检验方法,用于判断两组或多组数据之间差异的显著性。

对于两个独立样本的t检验,可以使用以下公式计算t 值:t = (x₁ - x₂) / sqrt(S₁²/n₁ + S₂²/n₂)其中,x₁和x₂分别表示两个样本的均值,S₁²和S₂²分别表示两个样本的方差,n₁和n₂分别表示两个样本的样本容量。

高三数学概率与统计知识点

高三数学概率与统计知识点

高三数学概率与统计知识点概率与统计是高中数学的重要内容之一,既是实际生活中数学应用的重要工具,也是学习高等数学的基础。

本文将从概率与统计的基本概念、概率计算、概率分布以及统计推断等方面进行介绍。

一、概率与统计的基本概念概率是指事件发生的可能性大小,通常用一个介于0和1之间的数表示。

而统计则是通过对具体数据的收集、整理和分析,得出关于总体的特征和规律性的推断。

二、概率计算1. 事件发生的概率计算:事件的概率等于该事件发生的次数除以总次数。

例如,掷一枚硬币正面朝上的概率为1/2。

2. 互斥事件的概率计算:互斥事件是指两个事件不能同时发生的情况。

对于互斥事件A和B,它们同时都不发生的概率等于各自不发生的概率相乘。

3. 独立事件的概率计算:独立事件是指两个事件的发生互不影响的情况。

对于独立事件A和B,它们同时发生的概率等于各自发生的概率相乘。

三、概率分布1. 离散型随机变量的概率分布:离散型随机变量是指取某些特定值的概率可以被确定的随机变量。

它的概率分布可以用概率质量函数来表示。

2. 连续型随机变量的概率分布:连续型随机变量是指在某个区间内取值的概率可以被确定的随机变量。

它的概率分布可以用概率密度函数来表示。

3. 常见的概率分布:常见的概率分布有均匀分布、正态分布、指数分布等。

这些概率分布在实际问题中具有广泛的应用。

四、统计推断统计推断是通过对样本数据的观察和分析,对总体参数进行推测和判断的方法。

常见的统计推断有点估计和区间估计。

1. 点估计:点估计是通过样本数据得到总体参数的估计值。

常见的点估计方法有最大似然估计和矩估计等。

2. 区间估计:区间估计是通过样本数据得到总体参数的估计区间。

常见的区间估计方法有置信区间和预测区间等。

总结:高三数学概率与统计是一个涵盖广泛的内容,包括概率与统计的基本概念、概率计算、概率分布以及统计推断等。

掌握这些知识点,不仅对于高考数学的考试有帮助,更为重要的是能够在实际生活中应用数学的思维方式解决问题。

重难点数学概率与统计解题方法详解

重难点数学概率与统计解题方法详解

重难点数学概率与统计解题方法详解概率与统计是数学中的一门重要学科,它涉及到了许多常见的数学问题,尤其是在解题过程中,往往会遇到一些重难点。

本文将详细解释概率与统计的解题方法,帮助读者更好地理解和掌握这一领域的知识。

一、概率与统计的基本概念在介绍解题方法之前,首先需要了解概率与统计的基本概念。

概率是用来描述某种事件发生可能性的数值,在数学上通常用小数或百分数表示。

而统计是指通过收集、整理和分析大量数据来得出结论的一种方法。

在解题过程中,我们需要根据给定的条件和已知信息,利用概率与统计的方法来推导和计算相应的结果。

二、概率与统计的解题方法1. 确定问题类型在解概率与统计的题目时,首先需要确定问题的类型。

问题类型可以分为排列组合、事件概率计算、随机变量分布、抽样调查等多个方面。

根据不同类型的问题,采用不同的解题方法。

2. 分析给定条件和已知信息在解题过程中,需要仔细分析给定条件和已知信息。

将问题中的条件和信息进行归纳和整理,以便更好地理解问题并为后续的解题过程提供依据。

3. 运用数学工具和公式概率与统计的解题离不开一些数学工具和公式的运用。

例如,当遇到排列组合问题时,可以使用阶乘、组合数等数学概念和公式来计算可能的情况数;当遇到事件概率计算时,可以使用加法原理、乘法原理、条件概率等公式来推导和计算事件的概率。

4. 注意问题中的关键词在解概率与统计的题目时,通常会遇到一些关键词,这些关键词往往与解题方法和公式相关联。

例如,遇到“至少”、“最多”、“只有”等关键词时,需要根据这些关键词确定条件和计算方法。

5. 善于利用图表和图形在解题过程中,可以根据问题的要求和条件,绘制相关的图表和图形,以便更好地理解和解决问题。

例如,在统计调查与分析问题中,可以用柱状图、线性图、饼状图等来展示和比较数据。

6. 反复检查和验证答案在解答概率与统计的题目时,需要反复检查和验证所得答案的合理性和准确性。

可以通过多种方法和思路进行验证,确保答案的正确性。

高考数学掌握概率与统计的基本方法

高考数学掌握概率与统计的基本方法

高考数学掌握概率与统计的基本方法高考数学中,概率与统计是一个重要的知识点,也是考察学生分析问题和解决问题能力的重要方面之一。

本文将介绍概率与统计的基本方法,帮助考生更好地掌握这一知识点。

一、概率的基本概念与计算方法概率是描述随机事件发生可能性的数值。

在数学中,我们用P(A)表示事件A发生的概率,其中0≤P(A)≤1。

具体计算概率的方法有以下几种:1. 频率法:根据大量实验结果的观察和统计,得出概率的估计值。

例如,投掷骰子,通过多次实验统计得出某种结果出现的频率。

2. 古典概率法:适用于事件的样本空间总数有限且每个结果发生的可能性相同的情况。

概率P(A) = 事件A的基本结果数 / 样本空间的总数。

例如,从一副扑克牌中抽出一张牌,计算得到红心牌的概率。

3. 几何概率法:适用于事件对应的样本空间可以用几何图形表示的情况。

概率P(A) = 事件A所对应的几何图形的面积/ 样本空间的面积。

例如,抛硬币,计算得到正面朝上的概率。

二、概率的基本性质与定理概率有以下基本性质与定理:1. 互斥事件的概率计算:当事件A与事件B互斥(即A与B不可能同时发生)时,P(A∪B) = P(A) + P(B)。

2. 对立事件的概率计算:当事件A的对立事件为A'时,P(A) + P(A') = 1。

3. 加法法则:对于任意两个事件A和B,P(A∪B) = P(A) + P(B) -P(A∩B)。

4. 乘法法则:对于两个相互独立的事件A和B,P(A∩B) = P(A) *P(B)。

三、统计的基本概念与应用统计是描述和分析大量数据的科学方法。

在数学中,我们主要研究统计中的样本调查与总体参数估计、样本调查与总体推断以及相关性分析等内容。

1. 样本调查与总体参数估计:通过对样本的调查和统计分析,推断出总体的某种参数。

例如,通过对某地区随机抽取的100个学生进行身高调查,从中推断出该地区所有学生的平均身高。

2. 样本调查与总体推断:通过对样本数据的分析,对总体的某些特征进行推断。

高中数学概率与统计计算方法

高中数学概率与统计计算方法

高中数学概率与统计计算方法概率与统计是高中数学中的重要内容,它们在现实生活中有着广泛的应用。

掌握概率与统计的计算方法,不仅可以帮助我们解决实际问题,还能提高我们的数学思维能力。

本文将以具体题目为例,介绍高中数学中概率与统计的计算方法,并给出一些解题技巧。

一、概率计算方法1. 样本空间与事件在概率计算中,首先需要确定样本空间和事件。

样本空间是指所有可能结果的集合,而事件是样本空间的子集。

例如,掷一枚骰子的样本空间为{1, 2, 3, 4, 5, 6},事件可以是“出现偶数点数”。

2. 概率的计算概率的计算公式为:P(A) = 事件A的可能结果数 / 样本空间的可能结果数。

例如,对于掷一枚骰子出现偶数点数的事件A,可能结果数为3(2、4、6),样本空间的可能结果数为6,所以P(A) = 3/6 = 1/2。

3. 概率的性质概率具有以下性质:- 非负性:概率不会小于0,即P(A) ≥ 0。

- 规范性:对于样本空间S,概率为1,即P(S) = 1。

- 加法性:对于互不相容的事件A和B,有P(A∪B) = P(A) + P(B)。

二、统计计算方法1. 数据收集与整理在统计学中,首先需要收集数据并进行整理。

例如,某班级的学生考试成绩可以整理为以下数据集:{80, 85, 90, 75, 95}。

2. 数据的描述性统计描述性统计是对数据进行总结和分析的方法。

常用的描述性统计指标有:- 平均数:数据的平均值,计算方法为将所有数据求和后除以数据个数。

例如,上述数据集的平均数为(80+85+90+75+95)/ 5 = 85。

- 中位数:数据的中间值,将数据按大小顺序排列后,若数据个数为奇数,则中位数为中间值;若数据个数为偶数,则中位数为中间两个数的平均值。

例如,上述数据集的中位数为85。

- 众数:数据中出现次数最多的数值。

例如,上述数据集的众数为无。

3. 数据的概率统计概率统计是对数据进行概率分布和分析的方法。

常用的概率统计方法有:- 频率分布表:将数据按照一定的区间进行分组,并统计每个区间内数据的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题11 概率和统计、算法一.基础题组1. 【2005江苏,理7】在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A)9.4, 0.484 (B)9.4, 0.016 (C)9.5, 0.04 (D)9.5, 0.016【答案】D2. 【2006江苏,理3】某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为(A)1 (B)2 (C)3 (D)4【答案】D【解析】由题意可得:x+y=20,(x-10)2+(y-10)2=8,解这个方程组需要用一些技巧,因为不要直接求出x、y,只要求出yx-,设x=10+t, y=10-t,24x y t-==,选D.3. 【2008江苏,理2】若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是▲.【答案】1 12【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故316612 P==⨯.4. 【2008江苏,理6】在平面直角坐标系xoy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随机投一点,则所投点在E中的概率是▲【答案】16π 【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.214416P ππ⨯==⨯.5. 【2008江苏,理7】某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:在上述统计数据的分析中一部分计算见算法流程图,则输出的S 的值为 ▲序号i 分组 (睡眠时间)组中值(i G )频数 (人数) 频率(i F )1 [4,5) 4.56 0.12 2 [5,6) 5.5 10 0.203 [6,7) 6.5 20 0.404 [7,8)7.5 10 0.205[8,9]8.540.08=⨯+⨯+⨯+⨯+⨯4.50.125.50.206.50.407.50.28.50.08=.6.426. 【2009江苏,理5】现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为▲ .【答案】0.2【解析】考查等可能事件的概率知识.从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2.7. 【2009江苏,理6】某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个为s= ▲ .8. 【2009江苏,理7】右图是一个算法的流程图,最后输出的W=▲ .【答案】22【解析】考查读懂算法的流程图的能力.9. 【2010江苏,理3】盒子中共有大小相同的3只白球,1只黑球,若从中随机摸出两只球,则它们颜色不同的概率是__________.【答案】1 2【解析】基本事件总数为C24=6种情况,其中颜色不同共有C13×1=3种情况,所以所求概率为36=12.10. 【2010江苏,理4】某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有__________根棉花纤维的长度小于20 mm.11. 【2010江苏,理7】下图是一个算法流程图,则输出S 的值是__________.【答案】63【解析】由流程图得S =1+21+22+23+24+25=1+2+4+8+16+32=63≥33.即S =63. 12. 【2011江苏,理4】根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m的值为.13. 【2011江苏,理5】从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数3的两倍的概率是 . 【答案】31【解析】本题考查了概率的概念和古典概型的概率计算,是B 级要求,容易题.由题意得取Read a,b If a>b ThenElse End If Print出的两个数为:1和2,1和3,1和4,2和3,2和4,3和4共六种基本情况,则其中一个数是另一个数的两倍的为1和2及2和4两种,所以所求的概率为3162=.要熟知概率的概念和古典概型及几何概型的特征及计算方法.14. 【2011江苏,理6】某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差=2s . 【答案】2.3【解析】本题考查了统计中方差的概念和计算,是B 级要求,容易题.由题意得该组数据的平均数为7)658610(51=++++=x ,所以方差为2.3)12113(51222222=++++=s .要熟练掌握统计的相关计算和有关特征数的意义和作用.15. 【2012江苏,理2】某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取__________名学生. 【答案】15【解析】根据分层抽样的特点,可得高二年级学生人数占学生总人数的310,因此在样本中,高二年级的学生所占比例也应该为310,故应从高二年级抽取50×310=15(名)学生..16. 【2012江苏,理4】下图是一个算法流程图,则输出的k 的值是__________.17. 【2012江苏,理6】现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是__________. 【答案】35【解析】由题意可知,这10个数分别为1,-3,9,-27,81,-35,36,-37,38,-39,在这10个数中,比8小的有5个负数和1个正数,故由古典概型的概率公式得所求概率63105P ==.18. 【2013江苏,理5】下图是一个算法的流程图,则输出的n 的值是__________.【答案】3【解析】第一次循环后:a←8,n←2; 第二次循环后:a←26,n←3; 由于26>20,跳出循环, 输出n =3.19. 【2013江苏,理6】抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为__________.20. 【2013江苏,理7】现有某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为__________.【答案】2063【解析】由题意知m的可能取值为1,2,3,…,7;n的可能取值为1,2,3,…,9.由于是任取m,n:若m=1时,n可取1,2,3,…,9,共9种情况;同理m取2,3,…,7时,n也各有9种情况,故m,n的取值情况共有7×9=63种.若m,n都取奇数,则m的取值为1,3,5,7,n的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063.21. 【2014江苏,理3】右图是一个算法流程图,则输出的n的值是 .【答案】5开始输出结束YN【解析】本题实质上就是求不等式220n >的最小整数解.220n>整数解为5n ≥,因此输出的5n =22. 【2014江苏,理4】从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .23. 【2014江苏,理6】某种树木的底部周长的取值范围是[]90,130,它的频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100 cm..【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.24. 【2015江苏高考,4】根据如图所示的伪代码,可知输出的结果S 为________.S ←1 I ←1While I 8 S ←S +2 I ←I +3 End While Print S(第4题图)【答案】7【解析】第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S =【考点定位】循环结构流程图25. 【2015江苏高考,2】已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】6 【解析】46587666x +++++==【考点定位】平均数26. 【2015江苏高考,5】袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.【2016年高考江苏卷】已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 ▲ . 【答案】0.1【解析】试题分析:这组数据的平均数为1(4.7 4.8 5.1 5.4 5.5) 5.15⨯++++=,2222221(4.7 5.1)(4.8 5.1)(5.1 5.1)(5.4 5.1)(5.5 5.1)0.15s ⎡⎤∴=⨯-+-+-+-+-=⎣⎦.故答案应填:0.1 【考点】方差【名师点睛】本题考查的是总体特征数的估计,重点考查了方差的计算,本题有一定的计算量,属于简单题.认真梳理统计学的基础理论,特别是系统抽样和分层抽样、频率分布直方图、方差等,针对训练近几年的江苏高考类似考题,直观了解本考点的考查方式,强化相关计算能力.【2016年高考江苏卷】右图是一个算法的流程图,则输出的a的值是▲ .【答案】5 6【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.二.能力题组1. 【2005江苏,理20】甲、乙两人各射击一次,击中目标的概率分别是23和3.4假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响. (Ⅰ)求甲射击4次,至少1次未击中目标的概率;(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (Ⅲ)假设某人连续2次未击中...目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?事件Di (I=1,2,3,4,5),则A3=12345D D D D D ⋅⋅⋅ ,且41)(=i D P 由于各事件相互独立,故)()()()()(123453D D P D P D P D P A P ⋅⋅⋅=.102445)41411(434141=⨯-⨯⨯⨯ 答:乙恰好射击5次后被中止射击的概率为.1024452. 【2007江苏,理17】某气象站天气预报的准确率为80%,计算(结果保留到小数点后第2位):(1)5次预报中恰有2次准确的概率;(4分) (2)5次预报中至少有2次准确的概率;(4分)(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.(4分) 【答案】(1)0.05(2)0.99;(3)0.02.0.8×C 14×0.8×(1-0.8)4-1=4×0.82×0.23≈0.02.三.拔高题组1. 【2006江苏,理10】右图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是 (A )454 (B )361 (C )154 (D )158【答案】D【解析】将六个接线点随机地平均分成三组,共有2226423315C C C A =g g 种结果,五个接收器能同时接收到信号必须全部在同一个串联线路中,有1114218C C C =g g 种结果,这五个接收器能同时接收到信号的概率是158,选D .2. 【2015江苏高考,23】(本小题满分10分)已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Y n ∈=Λ,{,),(a b b a b a S n 整除或整除= }n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.【答案】(1)13(2)()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩试题解析:(1)()613f =.(2)当6n ≥时,()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩(t *∈N ).5)若164k t +=+,则63k t =+,此时有()()1122223k kf k f k k -+=+=++++。

相关文档
最新文档