数据中异常值的处理方法_总
异常值处理的四种方法

异常值处理的四种方法异常值是数据分析中常见的问题,它们可能是由于测量误差、数据输入错误或其他原因导致的。
异常值对数据分析的结果有很大的影响。
因此,处理异常值是数据分析的一个重要环节。
本文将介绍四种常见的异常值处理方法。
一、删除异常值删除异常值是最常见的异常值处理方法之一。
该方法是将数据集中的异常值删除,然后重新计算统计指标。
这种方法的优点是简单易行,但也有一些缺点。
首先,删除异常值可能会导致数据集的大小减小,从而影响统计分析的准确性。
其次,删除异常值可能会导致数据集的偏差,从而影响数据分析的结果。
二、替换异常值替换异常值是另一种常见的异常值处理方法。
该方法是将异常值替换为数据集中的其他值,例如平均值、中位数或众数。
这种方法的优点是可以保留数据集的大小和形状,从而减少数据集的偏差。
但是,替换异常值可能会导致数据集的平均值、中位数或众数等统计指标发生变化,从而影响数据分析的结果。
三、离群值检测离群值检测是一种用于识别异常值的方法。
该方法是通过统计学方法或机器学习方法来识别数据集中的异常值。
常用的离群值检测方法包括箱线图、Z分数、Tukey方法和LOF方法等。
这种方法的优点是可以准确地识别异常值,从而提高数据分析的准确性。
但是,离群值检测可能会导致一些正常值被错误地标记为异常值,从而影响数据分析的结果。
四、分组处理分组处理是一种将数据集分组并分别处理的方法。
该方法是将数据集中的异常值分组,并对每个组进行单独的处理。
例如,可以将数据集按照年龄、性别、职业等因素分组,并对每个组进行单独的处理。
这种方法的优点是可以保留数据集的大小和形状,从而减少数据集的偏差。
但是,分组处理可能会导致数据集中的某些组大小太小,从而影响数据分析的结果。
综上所述,异常值处理是数据分析的一个重要环节。
不同的异常值处理方法有不同的优缺点,需要根据具体情况选择合适的方法。
在实际应用中,可以根据经验和领域知识来选择合适的方法,并结合多种方法进行处理,以提高数据分析的准确性和可靠性。
常用的异常值处理方法

常用的异常值处理方法异常值是指在数据集中与其他观测值明显不同的观测值。
这些异常值可能是由于测量错误、数据录入错误、设备故障或者真实的极端情况所导致。
在数据分析中,处理异常值是非常重要的,因为它们可能会对分析结果产生严重影响。
下面介绍一些常用的异常值处理方法。
1. 删除异常值。
最简单的处理方法是直接删除异常值。
这种方法适用于异常值数量较少且对整体数据影响较小的情况。
但是需要注意,删除异常值可能会导致数据样本的减少,从而影响分析结果的可靠性。
2. 替换异常值。
另一种处理方法是将异常值替换为数据集的其他值。
替换的方法可以是用均值、中位数或者其他统计量来代替异常值。
这种方法可以保持数据集的完整性,但需要谨慎选择替换的数值,以避免对分析结果产生不良影响。
3. 分箱处理。
将数据进行分箱处理,将异常值分到边界箱中。
这种方法可以避免直接删除异常值或者替换异常值所带来的问题,同时也可以保留异常值的信息。
4. 使用鲁棒统计量。
鲁棒统计量是对异常值较为稳健的统计量,例如中位数和四分位数。
在计算统计量时使用鲁棒统计量可以减少异常值对结果的影响。
5. 使用模型处理。
在建模分析中,可以使用一些鲁棒的模型来处理异常值,例如岭回归、支持向量机等。
这些模型对异常值相对较为稳健,可以减少异常值对模型的影响。
总之,处理异常值是数据分析中的重要环节。
选择合适的异常值处理方法需要综合考虑数据的特点、异常值的数量以及对分析结果的影响。
在处理异常值时,需要谨慎选择方法,并在分析过程中充分考虑异常值可能带来的影响。
数据分析中的异常值检测与处理

数据分析中的异常值检测与处理数据分析在各行各业都起到了重要的作用,但在数据分析过程中,异常值的存在可能会影响结果的准确性和可靠性。
因此,异常值的检测与处理成为了数据分析中一个至关重要的环节。
本文将介绍数据分析中异常值的概念、检测方法以及处理策略。
一、异常值的概念异常值(Outlier)是指在样本中与其他观测值有明显差异的观测值。
这些差异可能由于测量误差、实验错误或者真实偏离所带来。
异常值的存在对数据分析结果有着重要的影响,可能导致统计模型偏离真实情况,因此需要进行异常值的检测与处理。
二、异常值的检测方法在数据分析中,常用的异常值检测方法包括以下几种:1. 基于统计学方法的异常值检测统计学方法主要依靠数据的基本统计特征来判断是否存在异常值。
常见的统计学方法包括3σ原则、箱线图、Z-score等。
2. 基于机器学习方法的异常值检测机器学习方法通过建立合适的模型来检测异常值。
常见的机器学习方法包括聚类、离群点分析(Outlier Detection)、孤立森林(Isolation Forest)等。
3. 基于距离度量的异常值检测距离度量方法通过计算样本之间的距离来判断是否存在异常值。
常见的距离度量方法包括KNN(K-Nearest Neighbors)算法、LOF (Local Outlier Factor)算法等。
三、异常值的处理策略在检测到异常值后,需要根据具体情况进行相应的处理。
以下是几种常用的异常值处理策略:1. 删除异常值删除异常值是最常见的异常值处理策略之一。
当异常值对数据分析结果产生较大的影响且无法修正时,可以选择将其删除。
2. 替换异常值替换异常值是异常值处理中的常用策略之一。
可以通过使用均值、中位数或者插值等方法来替换异常值,使得异常值对结果的影响减小。
3. 分组处理将数据进行分组处理,对每个组的异常值采取相应的处理策略。
这样可以在不丢失数据的前提下,减少异常值对整体结果的影响。
4. 使用鲁棒统计方法鲁棒统计方法能够在存在异常值时仍然保持较好的性能。
异常值处理的四种方法

异常值处理的四种方法异常值,也称为离群值,是指在一组数据中与其他数据显著不同的数值。
异常值的出现可能是由于测量误差、数据输入错误、系统故障或者真实存在的特殊情况等原因造成的。
在数据分析中,异常值会对结果产生影响,因此需要进行异常值处理。
本文将介绍四种常见的异常值处理方法。
一、删除异常值删除异常值是最简单的处理方法之一,直接将异常值从数据中删除。
这种方法适用于异常值数量很少的情况,删除后对数据分析结果的影响很小。
但是,如果异常值数量较多,删除后可能会导致数据量减少,从而影响分析结果的准确性。
二、替换异常值替换异常值是指用其他数值替换异常值。
替换的方法有多种,如用该变量的平均值、中位数或者众数替换异常值。
这种方法适用于异常值数量较多的情况,可以保持数据量不变,但如果替换的数值过于接近其他数据,可能会对结果产生误差。
三、分组处理异常值分组处理异常值是将数据按照一定的规则分组,然后对每个组的异常值进行处理。
这种方法可以避免异常值对整体数据的影响,同时可以更好地反映数据的真实情况。
例如,在统计某个城市的房价时,可以将房价按照不同区域分组,然后对每个区域的异常值进行处理。
四、使用统计方法处理异常值使用统计方法处理异常值是一种更为科学的方法,包括基于分布的方法和基于模型的方法。
基于分布的方法是指根据数据分布的特征来判断异常值,常用的方法有箱线图、Z分数法和3σ原则等。
基于模型的方法是指使用模型来判断异常值,例如线性回归模型、聚类模型等。
这种方法可以更好地反映数据的真实情况,但需要一定的统计知识和技能。
综上所述,异常值处理是数据分析中不可避免的一部分。
不同的处理方法适用于不同的情况,需要根据实际情况选择合适的方法。
同时,需要注意处理异常值的原则,不能简单地删除或替换异常值,应该根据数据的特点和分析目的来进行处理,保证数据分析结果的准确性和可靠性。
异常数据处理常用方法

异常数据处理常用方法1. 异常数据的定义和类型异常数据指的是与正常数据相比,具有异常特征或不符合预期的数据。
在数据分析和机器学习任务中,异常数据可能会对结果产生负面影响,因此需要采取相应的处理方法。
根据异常数据的特征和来源,可以将其分为以下几种类型:•随机异常:由于随机因素导致的异常数据,如测量误差、设备故障等。
•系统性异常:由于系统错误或人为因素导致的异常数据,如人工录入错误、传感器偏差等。
•上下文相关异常:在特定上下文环境中出现的异常数据,如金融市场突发事件、自然灾害等。
2. 异常检测方法为了有效识别和处理异常数据,我们需要使用合适的异常检测方法。
以下是一些常用的异常检测方法:2.1 基于统计学方法基于统计学方法是最常见且简单的一种异常检测方法。
其中包括以下几种技术:•均值-方差法:基于样本均值和方差来判断是否存在异常值。
如果某个观测值与均值之间的距离超过一定的阈值,则认为该观测值是异常的。
•箱线图法:通过计算数据的四分位数和箱线图来检测异常值。
如果某个观测值小于下四分位数减去1.5倍的四分位距或大于上四分位数加上1.5倍的四分位距,则认为该观测值是异常的。
•Z-score法:将数据转化为标准正态分布,计算每个观测值与均值之间的标准差,如果超过一定阈值,则认为该观测值是异常的。
2.2 基于机器学习方法基于机器学习方法可以通过训练模型来自动识别异常数据。
以下是一些常用的机器学习方法:•离群点检测(Outlier Detection):通过构建模型来识别与其他数据点显著不同的数据点。
常用的离群点检测算法包括LOF(Local Outlier Factor)、Isolation Forest等。
•半监督学习(Semi-supervised Learning):使用少量有标签的正常样本和大量无标签样本进行训练,从而识别出异常样本。
常用的半监督学习算法包括One-class SVM、Generative Adversarial Networks等。
出现数据异常时的对策

出现数据异常时的对策数据异常是指数据出现了不符合预期的情况,比如错误、缺失、重复、异常值等。
当数据异常发生时,需要采取适当的对策来处理和纠正,保证数据的准确性和完整性。
下面是一些应对数据异常的对策。
1.数据监控与检查:-实时监测数据的进出和变化情况,及时发现异常现象。
-建立完善的数据校验规则和检查机制,对数据进行验证,确保数据的准确性和一致性。
-对数据进行周期性的统计和分析,发现潜在的异常现象。
-面向外部数据输入的接口,设置输入限制条件和异常处理机制,过滤无效或错误数据。
2.数据清洗与处理:-将数据进行清洗、去重和规范化处理,去除重复、错误和缺失数据。
-对异常值进行检测和修正,可以通过统计学方法、图表分析等手段来确定异常值的合理范围,然后进行数据修正或剔除。
-使用合适的插补方法填充缺失数据,如均值、中位数、回归等。
-对数据进行归一化、标准化等处理,以消除不同数据间的度量单位差异,提高数据质量。
3.异常数据处理与修复:-对于无法修复的异常数据,可以通过删除、替换、补充或重新收集数据的方式进行修复。
-通过与数据提供者或采集过程相关人员的沟通,了解并修复数据异常的原因,以避免未来同类问题的发生。
-对查询结果或分析结果异常的数据,进行审查和核实,找出异常源并采取相应措施解决。
4.数据备份与恢复:-建立数据备份机制,定期备份数据,以防数据异常导致数据丢失。
-当数据异常导致严重问题时,及时回滚到合适的备份版本,恢复数据正常运行。
-建立灾难恢复计划和备份存档战略,确保在数据异常和丢失的情况下能够及时恢复业务。
5.数据安全与权限管理:-建立数据访问权限管理机制,限制不同用户对数据的操作权限,避免误操作或非法使用数据。
-加密敏感数据,保护数据的安全性,防止数据泄露或被篡改。
-采用防火墙、访问控制、入侵检测等技术手段,防止未经授权的访问和攻击行为。
6.数据分析与预测模型:-利用数据分析技术,对异常数据进行深入分析,探索异常产生的原因,并提出解决方案。
大数据分析师如何应对数据缺失和异常值处理

大数据分析师如何应对数据缺失和异常值处理数据缺失和异常值是大数据分析过程中常见的问题,对于分析师而言,如何应对和处理这些问题至关重要。
本文将介绍大数据分析师应对数据缺失和异常值的方法和策略。
一、数据缺失处理数据缺失是指在数据采集和整理过程中出现的数据项缺失的情况。
数据缺失可能是由于各种原因引起的,例如设备故障、人为操作失误等。
以下是几种处理数据缺失的常见方法:1. 删除缺失数据:如果缺失数据的比例较小且对分析结果影响不大,可以直接删除缺失数据所对应的样本或变量。
但需要谨慎考虑删除缺失数据可能引起的样本偏倚。
2. 插补缺失数据:对于缺失数据较多的情况,可以通过插补的方式填补缺失值。
插补方法可分为单变量插补和多变量插补。
单变量插补方法包括均值插补、中位数插补、回归插补等;多变量插补方法则需要利用其他相关变量来进行缺失值的估计。
3. 重采样数据:在一些特殊的情况下,可以使用重采样的方式增加数据量来应对缺失数据。
重采样可以使用复制样本、插值方法等。
需要注意的是,在处理数据缺失时需要根据具体情况选择合适的方法,并进行合理的验证和评估。
二、异常值处理异常值是指在数据集中与其他观测值明显不同的数值。
异常值可能是由于测量误差、数据记录错误或者真实存在的稀有事件等原因引起的。
以下是几种处理异常值的常见方法:1. 删除异常值:当异常值的存在对整体数据分析产生严重影响时,可以考虑删除异常值。
删除异常值可能会导致样本偏倚,因此需要谨慎使用。
2. 替代异常值:如果异常值的存在是合理的或者代表了特定情况下的真实情况,可以选择将异常值替换为合适的数值。
替代异常值的方法包括使用均值、中位数、回归估计等。
3. 使用鲁棒方法:鲁棒方法是一种在数据分析中对异常值比较不敏感的方法。
例如,使用中位数代替均值可以减少异常值的影响。
需要注意的是,在处理异常值时需要充分理解异常值的产生原因,并根据数据特点和分析目的选择合适的方法。
三、数据质量管理除了对数据缺失和异常值进行处理外,大数据分析师还需要进行数据质量管理,以保证分析结果的准确性和可靠性。
数据中异常值的处理方法_总

数据中异常值的处理方法_总异常值是指在数据集中与其他观测值显著不同的观测。
异常值的存在可能严重影响数据分析的准确性和结果的可靠性,因此需要进行处理。
异常值的处理方法可以分为以下几种:1.删除异常值:最简单的方法是直接删除含有异常值的观测值。
该方法适用于异常值对结果影响较小的情况,或者数据集较大的情况。
但是,直接删除异常值可能会导致数据集的缺失,从而减少样本量,需要谨慎使用。
2.替代异常值:将异常值替代为其他数值,使其与其他观测值更加接近。
替代异常值的方法有很多,常见的有平均值、中位数、众数等。
选择替代值时需要考虑数据的分布情况,以及替代值对结果的影响。
3.使用增加异常值的方法:一些情况下,异常值可能是真实存在,且具有统计意义的。
在这种情况下,可以考虑使用增加异常值的方法来强调或突出异常值的影响。
比如,在做金融市场分析时,异常值可能代表了市场中的重要事件,可以选择突出显示以引起注意。
4.分箱处理:将数据进行分箱处理,将异常值分到边界值范围之外的箱中。
这样可以减少异常值对整体数据的影响。
分箱处理的方法有很多,常见的有等宽分箱,等深分箱等。
5.使用统计模型:可以使用一些统计模型来检测和处理异常值。
比如,基于概率分布的方法,可以使用Z-score, 异常值通常指标准分大于3的点;基于距离的方法,可以使用K-means、DBSCAN等聚类算法来检测异常值。
总之,处理异常值的方法取决于异常值的特点以及对结果的影响程度。
需要根据具体情况进行选择,以保证数据分析的准确性和结果的可靠性。
同时,在处理异常值时也需要谨慎,对异常值的处理需要经过科学合理的论证和验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据中异常值的检测与处理方法一、数据中的异常值各种类型的异常值:数据输入错误:数据收集,记录或输入过程中出现的人为错误可能导致数据异常。
例如:一个客户的年收入是$ 100,000。
数据输入运算符偶然会在图中增加一个零。
现在收入是100万美元,是现在的10倍。
显然,与其他人口相比,这将是异常值。
测量误差:这是最常见的异常值来源。
这是在使用的测量仪器出现故障时引起的。
例如:有10台称重机。
其中9个是正确的,1个是错误的。
有问题的机器上的人测量的重量将比组中其他人的更高/更低。
在错误的机器上测量的重量可能导致异常值。
实验错误:异常值的另一个原因是实验错误。
举例来说:在七名跑步者的100米短跑中,一名跑步者错过了专注于“出发”的信号,导致他迟到。
因此,这导致跑步者的跑步时间比其他跑步者多。
他的总运行时间可能是一个离群值。
故意的异常值:这在涉及敏感数据的自我报告的度量中通常被发现。
例如:青少年通常会假报他们消耗的酒精量。
只有一小部分会报告实际价值。
这里的实际值可能看起来像异常值,因为其余的青少年正在假报消费量。
数据处理错误:当我们进行数据挖掘时,我们从多个来源提取数据。
某些操作或提取错误可能会导致数据集中的异常值。
抽样错误:例如,我们必须测量运动员的身高。
错误地,我们在样本中包括一些篮球运动员。
这个包含可能会导致数据集中的异常值。
自然异常值:当异常值不是人为的(由于错误),这是一个自然的异常值。
例如:保险公司的前50名理财顾问的表现远远高于其他人。
令人惊讶的是,这不是由于任何错误。
因此,进行任何数据挖掘时,我们会分别处理这个细分的数据。
在以上的异常值类型中,对于房地产数据,可能出现的异常值类型主要有:(1)数据输入错误,例如房产经纪人在发布房源信息时由于输入错误,而导致房价、面积等相关信息的异常;在数据的提取过程中也可能会出现异常值,比如在提取出售二手房单价时,遇到“1室7800元/m 2”,提取其中的数字结果为“17800”,这样就造成了该条案例的单价远远异常于同一小区的其他房源价格,如果没有去掉这个异常值,将会导致整个小区的房屋单价均值偏高,与实际不符。
(2)故意的异常值,可能会存在一些人,为了吸引别人来电询问房源,故意把价格压低,比如房屋单价为1元等等;(3)自然异常值。
房价中也会有一些实际就是比普通住宅价格高很多的真实价格,这个就需要根据实际请况进行判断,或在有需求时单独分析。
二、数据中异常值的检测各种类型的异常值检测:1、四分位数展布法方法[1]:大于下四分位数加倍四分位距或小于上四分位数减倍。
把数据按照从小到大排序,其中25%为下四分位用FL 表示,75%处为上四分位用FU 表示。
计算展布为:L U F F F d -=,展布(间距)为上四分位数减去下四分位数。
最小估计值(下截断点):F L d F 5.1-最大估计值(上截断点):F U d F 5.1+数据集中任意数用X 表示,F U F L d F X d F 5.15.1+<<-,上面的参数不是绝对的,而是根据经验,但是效果很好。
计算的是中度异常,参数等于3时,计算的是极度异常。
我们把异常值定义为小于下截断点,或者大于上截断点的数据称为异常值。
优点:与方差和极差相比,更加不容易受极端值的影响,且处理大规模数据效果很好。
缺点:小规模处理略显粗糙。
而且只适合单个属相的检测。
2、识别不遵守分布或回归方程的值方法:双变量和多变量离群值通常使用影响力或杠杆指数或距离来衡量,像Mahalanobis 的距离和Cook‘s D 这样的流行指数经常被用来检测异常值。
在SAS 中,我们可以使用PROC Univariate, PROC SGPLOT ,为了识别异常值和有影响力的观测,我们还研究了STUDENT 、COOKD 、RSTUDENT 等统计指标。
马氏距离法[1]:假设两个变量Xi 和Xj 具有较高的正相关关系,某样本Xk 在这两个变量上的取值为(Xki ,Xkj ),若Xki 远远大于Xi 的平均值,而Xkj 却远小于Xj 的平均值,则这个样品就很可能是异常的。
检验这种异常品可以采用马氏平方距离法。
主要思想是:把n 个P 维样品看作p 维空间中的n 个点,则第i 个样品所对应的坐标为(Xi1,Xi2,…,Xip )。
样品在空间中的相对位置可通过各样品与总体重心(以各变量均值(X1,X2,…,Xp )为坐标的点)之间的距离来求得。
设X(1),X(2),…,X(p)(其中(Xi1,Xi2,…,Xip )为来自Np 中的n 个样品,其中1212(,,...,),(,,...,)p k k k nk X X X X X mean x x x ==则样品X(i)到重心12(,,...,)p X X X 的马氏平方距离定义为1211221122(,,...,)'(,,...,)i i i ip p i i ip p D x x x x x x x x x x x x -=------∑其中∑可由样本协方差阵来估计'()()11(,()())1n i i i S S x x x x n ===---∑∑ 容易证明,当n 较大时,2i D 近似服从2px 其临界值true D 可由2x 分布表来查出、当2i true D D >=时,将第i 个样品判为异常。
稳健马氏距离:由于异常值的存在会显著影响中心值和协方差矩阵的估计,使一般马氏距离不能正确反映各个观测的偏离程度。
对于这类数据,需要通过稳健统计的方法,构建稳定的均值和协方差矩阵统计量。
具体算法:设数据集为一个n 行p 列的矩阵X n×p ,从中随机抽取h 个样本数据,并计算这个样本数据的样本均值T 1和协方差矩阵S 1。
然后通过)()()(d 111'11T x S T x i i i --=-计算这 n 个样本数据到中心T 1的马氏距离,选出这n个距离中最小的h 个,再通过这个h 个样本计算样本均值T 2和协方差矩阵S 2。
根据Rousseeuw,Van Driessen(1999)可以证明 det(S 2)≤ det(S 1),仅当T 1=T 2时候等号成立。
这样子不断迭代下去,当 det(S m )≤ det(S m-1)停止迭代。
这时再通过S m 进行加权计算就能求出稳健的协方差矩阵估计量。
(1)确定h 的值。
h 值在和n 之间,一般来说h 越小,它的抵抗异常值能力越强,但是最小不能少于50%,因为少于50%已经不能分辨哪些是正常值哪些是异常值,所以作为一种折中,h 默认是取h=*n ,而当样本数量比较少时,h 一般取。
(2)如果h=n ,这时计算的是整个样本数据的均值向量和协方差矩阵,返回计算结果并停止。
(3)从n 个样本中随机抽取p+1个样本构造协方差矩阵,并计算其行列式,如果行列式为0,再随机加入一个样本直到行列式不为0,这时这个协方差矩阵为初始协方差矩阵S 0,并利用随机选择出来的样本计算初始样本均值 T 0。
(4)当n 值较小(小于600)时,直接从T 0、S 0计算得到T 1、S 1并开始迭代,迭代两次得到S 3。
重复 500 次这个过程,得到500个 S 3,从中选取最小的10个继续迭代直到收敛,返回最小行列式值的T 和S ,记为 T mcd 和S mcd 。
.(5)当n 值较大时,由于每次迭代都要把n 个样本的距离计算一次,非常耗时。
所以把n 个样本分成几个部分,例如当n 等于900 时,可以把n 分成3个子样本,每个子样本包含300个 样本。
每个子样本也是从各自 T 0、S 0计算得到 T 1、S 1并开始迭代,迭代两次得到S 3,每个子样本重复500/3=167次,各自得到167个S 3。
每个子样本从中选取最小的 10个S 3。
然后把子样本合并重新合成一个整体样本,并也把子样本中的10个S 3合并,得到30个S 3。
从这30个S 3迭代两次,保留最小的10个结果并继续迭代下去直到收敛,返回最小行列式值的T 和S ,记为 T mcd 和S mcd 。
(6)根据 T mcd 和S mcd 计算每个样本的稳定马氏距离d (i)。
因为计算出来的距离值近似服从一个自由度为p 的卡方分布,假设置信度为%时,当2975.0,)(P i d γ>时,记 W i =0否则W i =1.然后根据 W i 再 重 新 计 算。
这时< 就是最后所求的稳定协方差矩阵。
在此稳健协方差矩阵和稳健样本均值基础上,便能得出稳健的马氏距离。
3、Cook‘s DCook‘s D:在你的数据资料中,如果某一条数据记录被排除在外,那么由此造成的回归系数变化有多大.显然,如果这个值过大,那么就表明这条数据对回归系数的计算产生了明显的影响,这条数据就是异常数据.4、覆盖法方法:将所有不在5%到95%范围的值当作异常值。
5、标准偏差方法:偏离平均值三个或以上标准差的数据点。
6、因子方法:单变量或多变量异常值通常是用影响因子、水平因子、距离因子其中的一个指标来判断是否是异常值。
回归系数的影响力。
陈强,《高级计量经济学及Stata应用》,高等教育出版社。
7、简单规则库|-从正常的行为中学习规则,测试数据若是没有被任何规则包括则认为是异常利用规则学习算法学习规则,例如重复增量修枝(RIPPER )、决策树(Decision Trees )8、聚类一种利用聚类检测离群点的方法是丢弃原理其他簇的小簇。
这种方法可以与任何聚类技术一起使用,但是需要最小簇大小和小簇与其他簇之间距离的阈值,通常,该过程可以简化为丢弃小于某个最小尺寸的所有簇。
一种更系统的方法是,首先聚类所有对象,然后评估对象属于簇的程度。
对于基于原型的簇类,可以用对象到它的簇中心的距离来度量对象属于簇的程度。
更一般地,对于基于目标函数的聚类技术,可以使用该目标函数来评估对象属于任意簇的程度。
特殊情况下,如果删除一个对象导致该目标的显著改进,则我们可以将该对象分类为离群点。
优点与缺点:有些聚类技术(如K均值)的时间和空间复杂度是线性或接近线性的,因而基于这种算法的离群点检测技术可能是高度有效的。
此外,簇的定义通常是离群点的补,因此可能同时发现簇和离群点。
缺点方面,产生的离群点集和它们的得分可能非常依赖所用的簇的个数和数据总离群点的存在性。
例如,基于原型的算法产生的簇可能因数据中存在离群点而扭曲。
聚类算法产生的簇的质量对该算法产生的离群点的质量影响非常大。
每种聚类算法只适合特定的数据类型;因此,应当小心地选择聚类算法。
9、贝叶斯依据已有的数据,然后建立模型,得到正常的模型的特征库,然后对新来的数据点进行判断。
从而认定其是否与整体偏离,如果偏离,那么这个就是异常值。