轴对称单元复习

合集下载

轴对称 专题复习(带详解)

轴对称 专题复习(带详解)

轴对称典例详解例1. 如图,四边形OABC 是面积为4的正方形,函数)0x (xky >=的图象经过点B .(1) 求k 的值;(2)将正方形OABC 分别沿直线AB ,BC 翻折,得到正方形MABC ′和NA′BC .设线段MC ′,NA′分别与函数)0x (xky >=的图象交于点F ,E . 求线段EF 所在直线的解析式. 解:解:(1) ∵ B (2,2),∴ k = 4 ………………………………………1分 (2) 由翻折可知,M (4,0)N (0,4)可求得F (4,1),E (1,4)………………….3分 设直线EF 的解析式为b kx y +=, 可求得5b ,1k =-= (4)分所以,线段EF 所在直线的解析式为5x y +-=……………………………………5分 例2.(1)观察发现如题26(a)图,若点A ,B 在直线同侧,在直线上找一点P ,使AP+BP 的值最小. 做法如下:作点B 关于直线的对称点B ',连接AB ',与直线的交点就是所求的点P 再如题26(b)图,在等边三角形ABC 中,AB=2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP+PE 的值最小.做法如下:作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这 点就是所求的点P ,故BP+PE 的最小值为 .题26(a)图 题26(b)图(2)实践运用如题26(c)图,已知⊙O 的直径CD 为4,AD 的度数为60°,点B 是AD 的中点,在直径CD 上找一点P ,使BP+AP 的值最小,并求BP+AP 的最小值.题26(c)图题26(d)图(3)拓展延伸如题26(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.【答案】解:(1(2)如图:作点B关于CD的对称点E,则点E正好在圆周上,连接OA、OB、OE,连接AE交CD与一点P,AP+BP最短,因为AD的度数为60°,点B是AD的中点,所以∠AEB=15°,因为B关于CD的对称点E,所以∠BOE=60°,所以△OBE为等边三角形,所以∠OEB=60°,所以∠OEA=45°,又因为OA=OE,所以△OAE为等腰直角三角形,所以AE=(3)找B关于AC对称点E,连DE延长交AC于P即可,例3.将边长OA=8,OC=10的矩形OABC 放在平面直角坐标系中,顶点O 为原点,顶点C 、A 分别在x 轴和y 轴上.在OA 、OC 边上选取适当的点E 、F ,连接EF ,将△EOF 沿EF 折叠,使点O 落在AB 边上的点D 处.图1 图2 图2-1(1)如图1,当点F 与点C 重合时,求OE 的长度.(2)如图2,当点F 与点C 不重合时,过点D 作DG ∥y 轴交EF 于点T ,交OC 于点G ,求证:EO=DT.解(1)如图1,设OE 为x ,则AE 为8-x. ∵△EDF 是由△EFO 折叠得到的, ∴OE=DE=x ,OC=DC=10.∵在直角△BCD 中由勾股定理知BD=6,则AD=4, ∴在直角△ADE 中,(8-x)2+16=x 2,则x=5. ∴OE 的长为5. 证明:(2)如图2-1,∵△EDF 是由△EFO 折叠得到的, ∴DE=EO ,∠1=∠2. 又∵DG∥y 轴, ∴∠1=∠3.∴∠2=∠3. ∴DE=DT . ∴EO=DT .例4.已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (1)若折叠后使点B 与点A 重合,求点C 的坐标;(2)若折叠后点B 落在边OA 上的点为B ',设O B x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(3)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.答案:(1)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,.(2)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤.(3)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥.Rt Rt COB BOA ''∴△∽△. 有OB OC OA OB''=,得2OC OB ''=. 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(2)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C的坐标为()016.课后作业A 组了解图形的轴对称1.京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是( )A .1个B .2个C .3个D .4个图①图②图③【答案】:C2.把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( )A .(cm B .(cm C .22cm D .18cm 【答案】A 3. 将图(六)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另 一条对角线对折,如图(七)所示。

第十三章轴对称复习

第十三章轴对称复习

P1
AP1=BP1;AP2=BP2; A
B
AP3=BP3;AP4=BP4. 结论:
P4
线段垂直平分线上的点与这条线段两个端点的距离相
等.
l
反过来,如果AP=BP,那么P点是否在线段AB的 垂直平分线上呢?
若AP=BP ,则P在线段AB的垂直平 分线上。
结论:
与一条线段两个端点距离相等的点,在这 条线段的垂直平分线上。
10、如图,在等边三角形ABC中,DE∥BC, 请问
△ADE是等边三角形吗?试说明理由.
A
解: ADE是等边三角形 ∵ABC是等边三角形
D
E
∴∠A=∠B=∠C
B
C
∵ DE∥BC ∴∠ADE=∠B,∠AED=∠C ∴∠ADE==∠AED=∠A
∴ADE是等边三角形
11、如图,等边三角形ABC中,BD是AC边 上的中线,BD=BE,求∠EDA的度数.
线段的垂直平分线可以看成是与线段两端点 距离相等的所有点的集合.
等腰三角形的性质
性质1 等腰三角形的两个底角相等(等边对等角);
性质2
几何符号语言: ∵ AB=AC
∴∠B=∠C
等腰三角形的顶角平分线、底边上的 中线、底边上的高相互重合 (三线合一)。
等腰三角形“三线合一”性质用几何符号语言表示为
答:是
证明:∵AB=AC
∴点A在线段BC的垂直平分线上 ∵BM=MC ∴点M在线段BC的垂直平分线上 又∵ 两点确定一条直线(过两点
有且只有一条直线) ∴直线AM为线段BC的垂直平分
线
7、如图,在△ABC 中,BC =8,AB 的中垂线 交BC于D,AC 的中垂线交BC 与E,则△ADE 的周长等 于___8___.

轴对称图形(章复习)

轴对称图形(章复习)
B
∵MN垂直平分AB,且点C在MN上
∴AC=BC (2)到线段两端距离相等的点在 线段的垂直平分线上 ∵ AC=BC
C A D B
∴点C在AB的垂直平分线上
∵ AC=BC,AD=BD ∴点C、D在AB的垂直平分线上 ∴CD是AB的垂直平分线
(1)角平分线上的点到角 的两边的距离相等.
∵OC平分∠AOB, PD⊥OA,PE⊥OB ∴PD=PE (2)角的内部到角两边距离相 等的点在角的平分线上. ∵ PD⊥OA,PE⊥OB PD=PE ∴OC平分∠AOB
C
∴ AB=AC
三边相等的三角形叫做等边三角形或正三角形 等边三角形的各角都等于60° 三个角都相等的三角形是等边三角形
B
C
有一个角是60°的等腰三角形是等边三角形
A
D
B
C
直角三角形斜边ห้องสมุดไป่ตู้的中线等于斜边的一半
在Rt△ABC中,∠ACB=90° ∵点D是AB的中点 ∴
1 CD AB 2
A
等腰三角形两底角相等 (简称“等边对等角”) ∵AB=AC
B A
C
∴∠B=∠C
等腰三角形底边上的高线、中线及 顶角平分线重合 (“等腰三角形的三线合一”) ∵AB=AC,AD⊥BC
B
D
C
∴∠BAD=∠CAD,BD=CD 等
A
有两个角相等的三角形是等腰 三角形(简称“等角对等边”)
∵∠B=∠C
B A
轴对称 把一个图形沿着某一条直线翻折, 如果它能够与另一个图形重合, 那么称这个两个图形关于这条直 线对称,也称这两个图形成轴对 称,这条直线叫做对称轴 轴对称图形 把一个图形沿着某一条直线 折叠,如果直线两旁的部分能 够互相重合,那么称这个图形 是轴对称图形,这条直线叫做 对称轴

轴对称单元复习

轴对称单元复习

轴对称单元复习知识技能目标1.能够正确理解轴对称图形,以及掌握等腰三角形的基本特征;2.通过例题与练习,使学生能根据所学的本章知识和技能解决相关问题.过程性目标通过这一节的学习,使学生对有关轴对称的知识有个深层次的认识,从而进一步培养学生的几何解题能力.教学过程一、创设情境本章节内容回顾:问题1 轴对称图形的定义是什么?问题2 怎么去画出一个图形的对称轴?问题3 轴对称图形对称点的连线与对称轴有什么关系?问题4 线段的垂直平分线与角平分线的性质是什么?问题5 等腰三角形的特征是什么?问题6 如何识别一个三角形是等腰三角形和等边三角形?本章知识结构:二、探究归纳例1 如图,若AD平分∠BAC,CE∥DA,找出图中的等腰三角形,并说明理由?解在上图中,△ACE是等腰在三角形.因为CE∥DA所以∠BAD=∠E,∠DAC=∠ACE因为AD平分∠BAC所以∠BAD=∠DAC所以∠E=∠ACE所以AC=AE 即△ACE是等腰在三角形.延伸拓展:变形1 如图,若AD平分∠BAC,DE∥BA,找出图中的等腰三角形,并说明理由?变形2如图,若AD平分∠BAC,CE∥BA,找出图中的等腰三角形,并说明理由?变形3 如图,若AD平分∠BAC,AD∥EG,找出图中的等腰三角形,并说明理由?小结:在题目中若出现平行与角平分线的条件,往往可跟等腰三角形联系起来.三、实践应用例2 画出如图中,△ABC与半圆O关于直线MN的轴对称图形.解例3 如图,在△ABC中,∠BAC=106O,EF、MN分别是AB、AC的中垂线,E、M在BC 上,求∠EAM的度数.解由三角形三内角关系得:∠B +∠C=180°-106°=74°因为EF、MN分别是AB、AC的中垂线EB=EA,MC=MA所以∠1+∠2=∠B +∠C=74°所以∠EAM=106°-74°=32°例4 已知在△ABC中,AB=AC,BD是∠ABC的角平分线,且BD=BE,∠A=100°,试求∠DEC的度数.解 因为 AB =AC ,BD 是∠ABC 的角平分线∠DBE =21 [21(180°-∠A )]= 20°因为BD =BE所以∠DEB =21(180°-∠DBE )= 80°所以∠DEC =180°- 80°=100°四、交流反思通过这一课的学习,重点是要求学生掌握轴对称和等腰三角形的有关知识的应用,并能熟练地应用这些技能去解决相关数学问题.五、检测反馈1.已知等腰三角形有一个内角为70°,求其它两个内角的度数.2.已知等腰三角形有一个内角为100°,求其它两个内角的度数.3.已知AE 平分∠DAC ,AE ∥BC ,△ABC 是等腰三角形吗?为什么?4.如图,CE 垂直平分AB ,∠DCA =70°,则∠A = °.5.如图,在铁路l的同侧有A、B两个工厂,要在路边建一个货场C,使A、B两个工厂到货场C的距离之和最小,请你在图上作出点C,并说出你这样作的数学道理.。

第13章《轴对称》单元复习 课件(共26张PPT)

第13章《轴对称》单元复习 课件(共26张PPT)
解析:本题是一道较为基础的题,考查的是学生对 于等腰三角形判定应用的熟练程度,对于本题而言,根 据题意列出式子即可解答.
证明:∵CD=CE,∴∠E=∠EDC. 又∵∠ACB=60°,∴∠E=30°. 又∵∠DBC=30°,∴∠E=∠DBC, ∴DB=DE,∴△BDE 是等腰三角形. 点拨:根据本题的题干及题意可知,这是一道考查 等腰三角形判定的题,对于初中数学来说,牢牢掌握基 础定义是关键手段,这样可以提高解题的速度和准确 率.
3.下列平面图形中,不是轴对称图形的是( )
解析:根据轴对称的概念,可知只有 A 沿任意一条 直线折叠,直线两旁的部分都不能重合,故选 A.
点拨:轴对称的关键是寻找对称轴,两边图象折叠 后可重合.
4.如图,若△ACD 的周长为 7 cm,DE 为 AB 边 的垂直平分线,则 AC+BC=________cm.

2.有一本书折了其中一页的一角,如图,测得 AD =30 cm,BE=20 cm,∠BEG=60°,求折痕 EF 的长.
20 cm
3.如图,在△ABC 中,AB=AD=DC.5°
4.如图,在△ABC 中,已知 AB=AC=2,∠ABC =15°,CD 是腰 AB 上的高,求 CD 的长.
第13章 轴对称
1.理解对称图形,两个图形关于某直线对称的概 念.
2.了解轴对称图形的对称轴,两个图形关于某直 线对称的对称轴、对称点.
3.了解对称图形与两个图形关于某直线对称的区 别和联系.
4.线段垂直平分线的性质定理及其逆定理. 5.等腰三角形的性质和判定定理. 6.等边三角形的性质及判定定理.
6.如图,已知△ABC 为等边三角形,∠ABC 的平 分线 BD 交 AC 于点 D,E 是射线 BD 上的动点,以 AE 为边在直线 AE 的右侧作等边△AEF,连接 EF.如图, 当点 F 在 BD 上时,求证:FB=FE;

轴对称章节复习

轴对称章节复习

轴对称全章复习要点一、轴对称1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系区别: 轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点二、作轴对称图形1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).要点三、等腰三角形1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为 60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 【典型例题】类型一、轴对称的性质与应用1、如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点.在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.2个C.3个D.4个举一反三:【变式】如图,△ABC的内部有一点P,且D,E,F是P分别以AB,BC,AC为对称轴的对称点.若△ABC的内角∠A=70°,∠B=60°,∠C=50°,则∠ADB+∠BEC+∠CFA=()A.180°B.270°C.360°D.480°2、已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数.举一反三:【变式】(2015•乐陵市模拟)(1)如图1,直线同侧有两点A、B,在直线上求一点C,使它到A、B之和最小.(保留作图痕迹不写作法)(2)知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使△PEF 周长最短(保留作图痕迹不写作法)(3)解决问题:①如图3,在五边形ABCDE中,在BC,DE上分别找一点M,N,使得△AMN周长最小(保留作图痕迹不写作法)②若∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,∠AMN+∠ANM的度数为.3、(2016春•浦东新区期末)在直角坐标平面内,已知在y轴与直线x=3之间有一点M(a,3),如果该点关于直线x=3的对称点M的坐标为(5,3),那么a的值为()A.4 B.3 C.2 D.1举一反三:''【变式1】如图,若直线m经过第二、四象限,且平分坐标轴的夹角,Rt△AOB与Rt△A OB 关于直线m对称,已知A(1,2),则点'A的坐标为()A.(-1,2)B.(1,-2)C.(-1,-2)D.(-2,-1)【变式2】如图,ΔABC中,点A的坐标为(0,1),点C的坐标为(4,3),点B的坐标为(3,1),如果要使ΔABD与ΔABC全等,求点D的坐标.类型二、等腰三角形的综合应用4、如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP .∵PE⊥AB,PF⊥AC,CH⊥AB,∴ABP S △=12AB•PE,ACP S △=12AC•PF,ABC S △=12AB•CH. 又∵ABP ACP ABC S S S +=△△△,∴12AB•PE+12AC•PF=12AB•CH.∵AB=AC,∴PE+PF=CH. (1)如图②,P 为BC 延长线上的点时,其它条件不变,PE 、PF 、CH 又有怎样的数量关系?请写出你的猜想,并加以证明:(2)填空:若∠A=30°,△ABC 的面积为49,点P 在直线BC 上,且P 到直线AC 的距离为PF ,当PF=3时,则AB 边上的高CH=______.点P 到AB 边的距离PE=________.5、已知,如图,∠1=12°,∠2=36°,∠3=48°,∠4=24°. 求ADB ∠的度数.举一反三:【变式】在△ABC中,AB=AC,∠BAC=80°,D为形内一点,且∠DAB=∠DBA=10°,求∠ACD的度数.类型三、等边三角形的综合应用6、(2014秋•辛集市期末)已知,在等边三角形ABC中,点E在AB上,点D在CB 的延长线上,且ED=EC.(1)【特殊情况,探索结论】如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC中,点E在直线AB上,点D在直线CB的延长线上,且ED=EC,若△ABC 的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).17.如图所示,△ABC中,D,E在BC上,且DE=EC,过D作DF∥BA,交AE于点F,•DF=AC,求证AE平分∠BAC.18. 如图所示,等边三角形ABC中,AB=2,点P是AB边上的任意一点(点P可以与点A重合,但不与点B重合),过点P作PE⊥BC,垂足为E,过E作EF⊥AC,垂足为F,•过F•作FQ⊥AQ,垂足为Q,设BP=x,AQ=y.(1)写出y与x之间的关系式;(2)当BP的长等于多少时,点P与点Q重合?19.(2014•清河区三模)阅读理解:如图1,在△ABC的边AB上取一点P,连接CP,可以把△ABC分成两个三角形,如果这两个三角形都是等腰三角形,我们就称点P是△ABC的边AB上的和谐点.解决问题:(1)如图2,△ABC中,∠ACB=90°,试找出边AB上的和谐点P,并说明理由.(2)已知∠A=40°,△ABC的顶点B在射线l上(图3),点P是边AB上的和谐点,请在图3中画出所有符合条件的B点,并写出相应的∠B的度数.20.已知,∠BAC=90º,AB=AC,D为AC边上的中点,AN⊥BD于M,交BC于N.求证:∠ADB=∠CDNM N DCBA。

轴对称复习提纲

轴对称复习提纲

一、基础知识梳理:1.什么是轴对称图形?性质:如果两个图形关于某条直线对称,那么对称轴是____________.或者说轴对称图形的对称轴,是______________.2.线段的垂直平分线有几条对称轴,性质是什么?3.角的平分线有几条对称轴,性质是什么?4.等腰三角形:有两条边相等的三角形,叫做等腰三角形.等腰三角形具有哪些性质?怎样判断一个三角形是等边三角形?5.三角形的三条角平分线交于一点,这点到距离相等。

6.三角形三边的垂直平分线交于一点,这点到距离相等,这点叫心,它与三角形的位置关系怎样?。

7.成轴对称的图形具有哪些性质?8.尺规作图:已知线段的垂直平分线、已知角的角平分线、等腰三角形的做法。

二、典型例题:轴对称:1.判断下列命题的正误:( )1.能够完全重合的两图形必关于某一直线对称.( )2.关于某一条直线对称的两个图形叫轴对称图形.( )3.等腰三角形底边中线是等腰三角形的对称轴.( )4.若两个三角形三个顶点分别关于同一直线对称,则这两个三角形关于该直线成轴对称.( )5.轴对称图形的对称轴有且只有一条.( )6.正方形的对称轴有四条.2.给出下列说法正确的有():(1)角的两边关于角平分线对称;(2)两点关于它们连接成的线段的中垂线对称;(3)成轴对称的两个三角形的对应点或对应线段或对应角也分别成轴对称;(4)到直线m距离相等的点关于m对称。

A、1个B、2个C、3个D、4个3.两个图形关于某直线对称,对称点一定在()A.直线的两旁B.直线的同旁C.直线上D.直线的两旁或直线上4.如图所示,将一张矩形纸片ABCD的角C沿着GF折叠 (F在BC边上,不与B,C 重合)使得C点落在矩形ABCD内部的E处,FH平分∠BFE,则∠GFH的度数α满足()A、90°<α<180° B、α=90°C、0°<α<90°D、α随着折痕位置的变化而变化镜面对称:1.2.一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为垂直平分线与角平分线:1.当△ABC为锐角三角形时,点P在△ABC的__________;当△ABC为直角三角形时,点P在△ABC的__________;当△ABC为钝角三角形时,点P在△ABC的__________;2.如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A、1处B、2处C、3处D、4处3.三角形内到三顶点的距离相等的点是()A、三角形的三条角平分线的交点B、三角形的三条高的交点C、三角形的三条中线的交点D、三角形的三边的垂直平分线的交点三线合一:1.如图,AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE等于_________.第6题图.2.如图,已知△ABC中,∠1=∠2,AB=AC=BC,ED=EB,(1)试说明:CE=CD.(2)小红认为:将“∠1=∠2”的条件改改,也可以的带同样的结论。

轴对称及轴对称图形(复习课)

轴对称及轴对称图形(复习课)
A 10 D 8 -x 10 6 F 8 -x 4 E x C
8 B
⒊如图,在梯形ABCD中,AD∥BC, 如图,在梯形ABCD中 AD∥BC, ABCD DC的中点 EF⊥AB于点 的中点, 于点F E是DC的中点,EF⊥AB于点F. 求证:S梯形ABCD=AB×EF. 求证: =AB×EF.
A F E D
B
C
G
平移底,梯形转化成:三角形. 平移底,梯形转化成:三角形.
5.在梯形ABCD中,AB∥DC,AD= 在梯形ABCD中 AB∥DC,AD= ABCD BC,AB=1,DC=5,AC⊥BD,BE⊥CD, BC,AB=1,DC=5,AC⊥BD,BE⊥CD, 则梯形的面积= 则梯形的面积= .
A B
D
E
C
F
6.如图,梯形ABCD中,AD∥BC,E、F 如图,梯形ABCD中 AD∥BC, ABCD 分别是AD BC的中点,∠B+∠C=90° AD、 的中点,∠B+∠C=90 分别是AD、BC的中点,∠B+∠C=90°, 请说明EF= (BC-AD). 请说明EF= 1 BC-AD).
D C B
E
5、如图,△ABC中,AB的垂直平分线 如图, ABC中 分别交AB BC于点 AB、 于点D AC的垂直 分别交AB、BC于点D、E,AC的垂直 平分线分别交AC BC于点 AC、 于点F 平分线分别交AC、BC于点F、G,若 BC=20, AEG的周长为多少 的周长为多少? BC=20,则△AEG的周长为多少?
A
F
N E
B M
C
10、已知△ABC是等腰三角形,过 10、已知 ABC是等腰三角形,过
△ABC的一个顶点的一条直线,把 ABC的一个顶点的一条直线,把 △ABC分成两个小三角形,如果这 ABC分成两个小三角形,如果这 两个小三角形也是等腰三角形,问 △ABC顶角的度数是多少? ABC顶角的度数是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称单元复习
知识技能目标
1.能够正确理解轴对称图形,以及掌握等腰三角形的基本特征;
2.通过例题与练习,使学生能根据所学的本章知识和技能解决相关问题.
过程性目标
通过这一节的学习,使学生对有关轴对称的知识有个深层次的认识,从而进一步培养学生的几何解题能力.
教学过程
一、创设情境
本章节内容回顾:
问题1 轴对称图形的定义是什么?
问题2 怎么去画出一个图形的对称轴?
问题3 轴对称图形对称点的连线与对称轴有什么关系?
问题4 线段的垂直平分线与角平分线的性质是什么?
问题5 等腰三角形的特征是什么?
问题6 如何识别一个三角形是等腰三角形和等边三角形?
本章知识结构:
二、探究归纳
例1 如图,若AD平分∠BAC,CE∥DA,找出图中的等腰三角形,并说明理由?
解在上图中,△ACE是等腰在三角形.
因为CE∥DA
所以∠BAD=∠E,∠DAC=∠ACE
因为AD平分∠BAC
所以∠BAD=∠DAC
所以∠E=∠ACE
所以AC=AE 即△ACE是等腰在三角形.
延伸拓展:
变形1 如图,若AD平分∠BAC,DE∥BA,找出图中的等腰三角形,并说明理由?
变形2如图,若AD平分∠BAC,CE∥BA,找出图中的等腰三角形,并说明理由?
变形3 如图,若AD平分∠BAC,AD∥EG,找出图中的等腰三角形,并说明理由?
小结:在题目中若出现平行与角平分线的条件,往往可跟等腰三角形联系起来.三、实践应用
例2 画出如图中,△ABC与半圆O关于直线MN的轴对称图形.

例3 如图,在△ABC中,∠BAC=106O,EF、MN分别是AB、AC的中垂线,E、M在BC上,求∠EAM的度数.
解由三角形三内角关系得:∠B +∠C=180°-106°=74°
因为EF、MN分别是AB、AC的中垂线
EB=EA,MC=MA
所以∠1+∠2=∠B +∠C=74°
所以∠EAM=106°-74°=32°
例4 已知在△ABC中,AB=AC,BD是∠ABC的角平分线,且BD=BE,
∠A=100°,试求∠DEC的度数.
解 因为 AB =AC ,BD 是∠ABC 的角平分线
∠DBE =21 [21
(180°-∠A )]= 20°
因为BD =BE
所以∠DEB =21
(180°-∠DBE )= 80°
所以∠DEC =180°- 80°=100°
四、交流反思
通过这一课的学习,重点是要求学生掌握轴对称和等腰三角形的有关知识的应用,并能熟练地应用这些技能去解决相关数学问题.
五、检测反馈
1.已知等腰三角形有一个内角为70°,求其它两个内角的度数.
2.已知等腰三角形有一个内角为100°,求其它两个内角的度数.
3.已知AE 平分∠DAC ,AE ∥BC ,△ABC 是等腰三角形吗?为什么?
4.如图,CE 垂直平分AB ,∠DCA =70°,则∠A = °.
5.如图,在铁路l的同侧有A、B两个工厂,要在路边建一个货场C,使A、B两个工厂到货场C的距离之和最小,请你在图上作出点C,并说出你这样作的数学道理.。

相关文档
最新文档