人教版《轴对称》单元测试卷及答案
数学八年级上册《轴对称》单元检测(含答案)

9.如图,在 中, , , 平分 , ,则图中共有等腰三角形( )
A. 个B. 个C. 个D. 个
[答案]D
[解析]
[分析]
根据等腰三角形性质和三角形内角和定理求出∠A C B=∠B= (180°−∠A)=72°,求出∠A C D=∠B C D= ∠A C B=36°,求出∠C D B=∠A+∠A C D=72°,根据平行线的性质得出∠ED B=∠A=36°,∠DEB=∠A C B=72°,∠C DE=∠A C D=36°,推出∠A=∠A C D=∠B C D=∠C DE=36°,∠B=∠A C D=∠DEB=∠C D B=72°即可.
A. B. C. D.
3.一个角是 等腰三角形是( )
A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确
4.如图,在一个规格为 (即 个小正方形)的球台上,有两个小球 , .若击打小球 ,经过球台边的反弹后,恰好击中小球 ,那么小球 击出时,应瞄准球台边上的点( )
A. B. C. D.
5.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
[详解]解:∵A B=A C,
∴∠A B C=∠C,
∵B D=B A,
∴∠A=∠B D A,
∴∠A>∠C,
∴2∠A<180°且3∠A>180°,
∴60°<∠A<90°,即60<x<90.
故选C.
[点睛]此题考查了等腰三角形的性质,三角形内角和为180°和三角形外角的性质,关键是得到2∠A<180°且3∠A>180°.
[答案]D
[解析]
[分析]
此题根据△A B C中∠A为锐角与钝角分为两种情况解答.
最新人教版八年级数学《轴对称》单元测试题及答案

新人教版八年级数学《轴对称》单元测试题及答案一、选择题1.如图,下列图形中,轴对称图形的个数是( )A.1 B.2 C.3 D.42. 等腰三角形有两条边长为4cm 和9cm,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm 3.点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 4.如图,在已知△ABC 中,AB=AC, BD=DC,则下列结论中错误的是( )A.∠BAC=∠BB.∠1=∠2C.AD ⊥BCD.∠B=∠C第4题 第8题 第9题5.∠AOB 的平分线上一点P 到OA 的距离为5,Q 是OB 上任一点,则( ) A .PQ >5 B .PQ≥5 C .PQ <5 D .PQ≤56.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为( ).A .2cmB .4cmC .6cmD .8cm 7.已知等腰三角形的一个外角等于100°,则它的顶角是( )A.80°B.20°C.80°或20°D.不能确定8. 如图,△ABC 中,BC <AC ,AB 边上的垂直平分线DE 交AB 于D ,交AC 于E ,AC =10 cm,BC =8 cm.,则 EBC 的周长为( )厘米A :16B :18C :26D :289先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的ABCDMNHEA对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠10如图,等边三角形ABC 中,BD CE =,AD 与BE 交于点P ,则APE ∠的度数是( ) A .45B .55C.60D .75第10题 第11题第13题第14题二、填空题11.如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF 等于_________________12.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是_______________ 13.如图所示,l 是四边形ABCD 的对称轴,AD ∥BC,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有_________________ 14、如图,△ABC 中,AB=AC,∠A=36°AB 的垂直平分线DE 交AC 于D,交AB 于E,下述结论:(1)BD 平分∠ABC ;(2)AD=BD=BC ;(3)△BCD 的周长等于AB +BC ;(4)D 是AC 中点.其中正确的命题序号是_________________. 三、作图题15.已知:如图,已知△ABC,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形 △A 1B 1C 1 和△A 2B 2C 2 ;(2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.(4) 在x 轴上画出点P,使△PAB 的周长最小.16如图,A 、B 两村在一条小河的的同一侧,要在河边建一水厂向两村供水.l OCBDA(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置? (2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.●BA ●四、解答题17.如图, BC=DC,∠B =∠D 求证: AB=ADBCD18.如图,点D 、E 在△ABC 的边BC 上,AD=AE,AB=AC,证明BD=EC.19.在△ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD.求△ABC 各角的度数.20.如图,一艘轮船从点A 向正北方向航行,每小时航行15海里,B CCA小岛P 在轮船的北偏西15°,3小时后轮船航行到点B,小岛P 此时在轮船的北偏西30°方向,在小岛P 的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.21.如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE =EF =FC 的道理.22. 如图1,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上. (1)求证:BE =CE ;(2)若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,如图2,∠BAC =45°,原题设其它条件不变.求证:△AEF ≌△BCF .AEF(第22题图2) AE(第22题图1) A BO E FC。
人教版八年级数学上册第13章 轴对称单元测试(配套练习附答案)

一、选择题(本大题共10小题,共40.0分)
1.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有()
A.4个B.3个C.2个D.1个
【答案】B
A. B. C. D.
【答案】B
【解析】
【详解】试题分析:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P1P2的长,∵OP=5,∴OP2=OP1=OP=5.又∵P1P2=5,,∴OP1=OP2=P1P2,∴△OP1P2是等边三角形, ∴∠P2OP1=60°,即2(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
【详解】 , ,
,
是 的外角,
,
,
.
【点睛】考查等腰三角形的性质,关键是根据三角形外角的性质以及三角形内角和定理解答.
19.已知点A(2m+n,2),B (1,n-m),当m、n分别为何值时,
(1)A、B关于x轴对称;
(2)A、B关于y轴对称.
【答案】 (2)
【解析】
【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得
【分析】首先证明△ACD≌△BAE可得∠ACD=∠BAE,根据∠BAE+∠EAC=60°可得∠ACD+∠EAC=60°,再根据三角形内角与外角的关系可得∠APD=60°.
【详解】∵△ABC是等边三角形,
∴
在△ACD和△BAE中,
数学八年级上册《轴对称》单元检测题附答案

A.40°B.55°C.70°D.110°
[答案]C
[解析]
试题解析:∵m∥n,
∴
∵A B=B C,
∴
故选C.
点睛:平行线的性质:两直线平行,内错角相等.
5.如图,已知DE∥B C,A B=A C,∠1=125°,则∠C的度数是( )
一、选择题(共12小题,总分36分)
1.下列图案是轴对称图形的有 个.
A.1B.2C.3D.4
[答案]B
[解析]
试题分析:根据轴对称图形的概念(延某条直线对折,两部分能够完全重合)可知第一和第四个是轴对称图形.
故选B
考点:轴对称图形
2.点A(-2,5)关于x轴对称的点的坐标是( )
A.(2,5)B.(-2,-5)C.(2,-5)D.(5,-2)
(1)试判定△ODE的形状,并说明你的理由;
(2)线段B D、DE、EC三者有什么关系,写出你的判断过程.
25.如图所示,点O是等边三角形A B C内一点,∠AOB=110°,∠BOC=α,以OC为边作等边三角形OC D,连接A D.
(1)当α=150°时,试判断△AOD 形状,并说明理由;
(2)探究:当A为多少度时,△AOD是等腰三角形?
A. 31°B. 32°C. 59°D. 62°
11.如图,等边三角形A B C与互相平行的直线A,B相交,若∠1=25°,则∠2的大小为( )
A. 25°B. 35°C. 45°D. 55°
12.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )
人教版八年级数学上册《第十三章轴对称》单元测试卷(附带答案)

人教版八年级数学上册《第十三章轴对称》单元测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.如图,ABC 与A B C '''关于直线l 对称,若78A ∠=︒,48C '∠=︒则B ∠的度数为( )A .48︒B .54︒C .74︒D .78︒2.如图,ABC 中36A ∠=︒,AB=AC , BD 平分ABC ∠, DE BC ∥则图中等腰三角形有( )个A .4个B .5个C .6个D .7个3.如图,在ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于点E ,下列结论错误的是( )A .DB 平分CDE ∠ B .DE 平分ADB ∠C .AD BD BC == D .BD 平分ABC ∠ 4.已知ABC 中6BC AB =,、AC 的垂直平分线分别交边BC 于点M 、N ,若2MN =,则AMN 的周长是( )A .4B .6C .4或8D .6或105.如图AB AC BD CD ==,,若70B ∠=︒,则DAC ∠=( )A .15︒B .20︒C .25︒D .30︒6.若点A 和点B ()2,3-关于y 轴对称,则点A 与点B 的距离为( )A .4B .5C .6D .107.若等腰三角形一腰上的高与另一腰的夹角为20︒,则它的底角为( ) A .35︒ B .55︒ C .55︒或35︒ D .70︒或35︒ 8.下列说法错误的有( )个①三角形的高不在三角形内就在三角形外;①多边形的内角和必小于它的外角和; ①周长和面积相等的两个三角形全等;①周长相等的两个等边三角形全等; ①两边和一角分别对应相等的两个三角形全等;①等腰三角形顶角的外角平分线平行于这个等腰三角形的底A .2个B .3个C .4个D .5个二、填空题9.在ABC 中,AB=AC ,=60B ∠︒则A ∠的度数是 .10.在ABC 中,AB=AC ,DE 垂直平分AB ,若10cm 6cm AB AC BC ===,,则BCE 的周长是 .11.如图,在ABC 中90ACB ∠=︒与30B ∠=︒,CD 是AB 边上的中线,则ACD 是 三角形.12.如图ABC 中,AB AC DE AB D =⊥,,是AB 的中点,DE 交AC 于E 点,连接10BE BC =,,BEC 的周长是21,那么AB 的长是 .13.如图,ABC 中70C ∠=︒,AC 边上有一点D ,使得A ABD ∠=∠,将ABC 沿BD 翻折得A BD ',此时∥A D BC ',则ABC ∠= 度.14.点()1,5P -关于x 轴的对称点P '的坐标是 .15.把一张长方形纸条按如图所示的方式折叠,则1∠= .16.如图,Rt ABC △中,906810ACB AC BC AB BD ∠=︒===,,,,平分①ABC ,如果点M ,N 分别为BD BC ,上的动点,那么CM MN +的最小值是 .三、解答题17.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =,连接DE .求证:DB DE =.18.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题.(1)画出格点ABC (顶点均在格点上)关于直线l 对称的111A B C △;(2)在直线l 上画出点P ,使得PB PC +最短;19.若等腰三角形一腰上的中线分周长为9和12两部分,请你画出示意图,并结合图形,求这个等腰三角形的各边长20.如图,在直角坐标系中,ABC 的三个顶点坐标分别为()()()144235A B C ,,,,,,请回答下列问题.(1)作ABC 的关于y 轴的对称图形, A 、B 、C 对应点坐标分别为A B C '''、、.(2)分别写出A B C '''的坐标:A ' ;B ' ;C ' ;(3)求ABC 的面积.21.如图,BA AF ⊥于点A ,ED DC ⊥于点D ,点E 、F 在线段BC 上,DE 与AF 交于点O ,且AB DC =,BE=CF .(1)求证:AF DE =;(2)若OP 平分EOF ∠,求证:OP 垂直平分EF .22.在ABC 中,AB 边的垂直平分线1l 交BC 于D ,AC 边的垂直平分线2l 交BC 于E ,1l 与2l 相交于点O .ADE 的周长为12cm =110BAC ∠︒(1)求BC 的长和DAE ∠的度数;(2)分别连接OA 、OB 、OC ,若OBC △的周长为29cm ,求OA 的长.23.如图,在ABC 中,AB AC AB =,的垂直平分线交AB 于M ,交AC 于N(1)若70ABC ∠=︒,求MNA ∠的度数.(2)连接NB ,若8AB cm BC =,的长6cm ,求NBC 的周长.24.如图,在等腰ABC 中CA CB =,点D 是AB 边上一点,连接DC ,且DA DC =.(1)如图1,CH AB ⊥若78ACB ∠=︒,求HCD ∠的度数.(2)如图2,若点E 在BC 边上且DE DB =,连接AE .点M 为线段CE 的中点,过M 点作MN DE ∥交AB 于点N ,求证:CD BN DN =+.第 1 页 共 7 页 参考答案: 1.B2.B3.A4.D5.B6.A7.C8.C9.60度10.16cm11.等边12.1113.82.514.()1,5--15.65︒16.4.819.这个等腰三角形的底为9或5,这个等腰三角形的腰为6或820. (2)()()()144235-,,-,,-,(3)7222.(1)12cm BC = 40︒(2)8.5cm OA =23.(1)50︒(2)14cm24.(1)12︒。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
人教版八年级上册数学《轴对称》单元测试题(附答案)
15.如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于_____.
三、解答题
16.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).
∴∠CBD=∠A+∠ACB=36°,
∵BC=CD,
∴∠CDB=∠CBD=36°,
∴∠DCE=∠A+∠CDA=18°+36°=54°,
∵CD=DE,
∴∠CED=∠DCE=54°,
∴∠EDF=∠A+∠AED=18°+54°=72°,
∵DE=EF,
∴∠EFD=ห้องสมุดไป่ตู้EDF=72°,
∴∠GEF=∠A+∠AFE=18°+72°=90°.
证明:(1)FC=AD;
(2)AB=BC+AD。
24.如图,在 中, 是 的中点,过点 的直线 交 于点 ,交 的平行线 于点 , 交 于点 ,连接 、 .
(1)求证: ;
(2)请你判断 与 的大小关系,并说明理由.
参考答案
一、选择题
1.下列图形中,不是轴对称图形的是( )
A. B. C. D.
【答案】A
A.10B.16C.8D.4
10.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点E,则DF的长为()
A. 4.5B. 5C. 5.5D. 6
11.如图,等边△ABC 边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为( )
人教版八年级上册数学《轴对称》单元检测(附答案)
人教版数学八年级上学期《轴对称》单元测试满分120分时间100分钟一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.66.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是三角形;(2)补全下面证明过程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)参考答案一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.【解析】D【解答】A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°【解析】C【解答】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′=60°,∵∠A=30°,∴∠B=180°﹣∠A﹣∠C=90°,故选:C.3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【解析】B【解答】∵点A(﹣3,2)与点B关于x轴对称,∴点B的坐标是(﹣3,﹣2).故选:B.4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位【解析】A【解答】∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.6【解析】B【解答】∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+CE+BE=18,则BC+CE+AE=18,即BC+AC=18,又BC=8,∴AC=10,故选:B.6.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°【解析】B【解答】∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm【解析】D【解答】∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=60°,∠ACB=90°,∴∠B=180°﹣∠ACB﹣∠A=30°,∠ACD=180°﹣∠ADC﹣∠A=30°,∵AD=3cm,∴AC=2AD=6cm,∴AB=2AC=12cm,故选:D.8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°【解析】D【解答】当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;故顶角的度数为80°或20°.故选:D.9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根【解析】B【解答】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)【解析】D【解答】由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.【解析】y【解答】∵点(﹣3,2)与点(3,2)的横坐标互为相反数,纵坐标相同,∴点(﹣3,2)与点(3,2)关于y轴对称,故答案为y.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.【解析】50°【解答】∵AD∥BC,∠DAC=50°,∴∠C=∠DAC=50°,∵AB=AC,∴∠B=∠C=50°,故答案为:50°.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.【解析】6【解答】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.【解析】18【解答】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.【解析】(2,0)【解答】如图,∵A(0,2)∴点A关于x轴的对称点A′(0,﹣2),∵B(4,2),连接A′B交x轴于点P, ∵AB=4,AB∥x轴,O是AA′中点,∴P是A′B的中点,∴OP是△A′AB的中位线,∴OP=12AB=2,若要使PA+PB最小,则点P的坐标为(2,0).故答案为(2,0).三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.解:(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x、x、y,由题意可知:2x+y=18,且2x>y,∴y<9,∵x=18−y2=9−y2,x与y都是整数,∴y是2的倍数, ∴y=2时,x=8, y=4时,x=7,y=8,x=5.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB∴∠DOP=∠BOP∵DN∥EM∴∠DPO=∠BOP∴∠DOP=∠DPO∴OD=PD解:(1)我们猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案为:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.解:(1)△ABC的面积为2×3−12×1×2−12×1×2−12×1×3=52;(2)如图所示,△A'B'C'即为所求.(3)点M在△A'B'C'内部的对应点M'的坐标为(x,﹣y).20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.解:(1)∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵∠ABC和∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠OCB=∠FCO,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,OF=FC;∴EF=BE+FC;(2)由(1)证得BE=OE,OF=CF,∴△AEF的周长=AE+EF+AF=AE+EO+OF+AF=AE+BE+FC+AF=AB+AC,∵△ABC的周长比△AEF的周长大10,∴BC=AB+AC+BC﹣AB+AC=10.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF=60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)解:(1)①△BMN≌△CDM.理由如下:∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM∵CD=4(cm)∴BM=CD∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,∴3t=2×(10﹣3t)∴t=209(秒);Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,∴10﹣3t=2×3t∴t=109(秒).∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.。
人教版八年级上册数学《轴对称》单元测试卷(含答案)
人教版数学八年级上学期《轴对称》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图案中,不是轴对称图形的是()A.B.C.D.2.(2018·河北初二期中)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.53.(2018·河北初二期中)如图,AB的垂直平分线分别交AB、AC于点D、E,AC=9,AE:EC=2:1,则点E到点B的距离为()A.5 B.6 C.7 D.8关于直线MN的轴对称图形,其中正确的是( ) 4.(2019·江苏初二期中)下面是四位同学作ABCA.B.C.D.5.(2019·江苏初二期中)如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC 为等腰三角形,且S△ABC=1.5,则满足条件的格点C有()A.1个B.2个C.3个D.4个6.(2019·江苏省盐城市初级中学初二期中)如图,点E是等腰三角形△ABD底边上的中点,点C是AE延长线上任一点,连接BC、DC,则下列结论中:①BC=AD;②AC平分∠BCD;③AC=AB;④∠ABC=∠ADC。
一定成立的是()A.②④B.②③C.①③D.①②7.(2019·山东初二期中)等腰三角形的两条边长分别为3cm和6cm,则它的周长为( ).A.12cm B.15cm C.12cm或15cm D.18cm或36cm8.(2019·山东初二期中)如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm,则△ADC 的周长为()A.14cm B.13cm C.11cm D.9cm9.(2017·广东初二月考)下列各点中,到三角形各顶点的距离相等的是()A.三个内角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高线的交点10.(2019·湖北初二期中)上午8时,一条船从海岛A出发,以15n mile/h(海里/时,1n mile=1852m)的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得NAC=42°,NBC=84°.则从海岛B到灯塔C的距离为()A .45n mileB .30n mileC .20n mileD .15n mile二、填空题(每小题4分,共24分)11.(2019·南京市浦口外国语学校初二期中)如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴,AB =5 cm ,CD =3.5 cm ,则四边形ABCD 的周长为_____cm .12.(2019·如东县新店镇初级中学初二期中)如图,在△ABC 中,AB =AC ,D 是BC 的中点,∠BAD =34°,则∠C =_________°.13.(2019·安徽初二期中)如图,ABC △与A B C '''关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.14.(2019·广西初二期中)如图,在ABC ∆中,DE 垂直平分AC ,若BCD ∆的周长是12,4BC =,则AB 的长______.15.(2019·北京市三帆中学初二期中)如图,在Rt △ABC 中,90B =∠ ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知40C ∠=,则BAE ∠的度数为_________。
数学八年级上册《轴对称》单元测试题(带答案)
∵A B=A C,
∴
故选A.
[点睛]此题考查等腰三角形的性质及三角形的内角与外角等知识点的掌握情况.根据已知求得∠A=40°是正确解答本题的关键.
二、填空题
11.请写出两个具有轴对称性的汉字.
[答案]甲、由、中、田、日等(答案不唯一).
[解析]
[分析]
根据轴对称图形的概念,即可写出:甲,日,田等字.
6.已知M(0,2)关于x轴对称的点为N,线段MN的中点坐标是()
A.(0,﹣2)B.(0,0)C.(﹣2,0)D.(0,4)
[答案]B
[解析]
根据轴对称的性质,知线段MN的中点就是原点,即线段MN的中点坐标是(0,0).
故选B
7.在△A B C中,A B=A C,D为B C的中点,则下列结论:①∠B=∠C;②A D⊥B C;③∠B A C=2∠B A D;④A B,A C边上的中线的长相等.其中正确的结论有( )
故答案选:A.
[点睛]本题考查了用坐标表示轴对称的知识点,熟练掌握点关于x轴、y轴对称的点的坐标特点是解题的关键.
3.已知线段A B和点C,D,且C A=C B,D A=D B,那么直线C D是线段A B的( )
A. 垂线B. 平行线
C. 垂直平分线D. 过中点的直线
[答案]C
[解析]
[分析]
由已知C A=C B根据线段垂直平分线的性质的逆定理可得点C在A B的垂直平分线上,同理得点D的位置
[答案]D
[解析]
[分析]
此题中没有明确指出等边三角形的边长是等腰三角形的底边还是腰长,所以我们应该分两种情况进行分析.先求出等边三角形的边长,再分两种情况进行分析求解.
[详解]解:∵等边三角形周长为45Cm,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 《轴对称》单元测试卷
.
1.下列各时刻是轴对称图形的为( ).
A 、
B 、
C 、
D 、
2.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( ).
A 、21:10
B 、10:21
C 、10:51
D 、12:01
3.如图是屋架设计图的一部分,其中∠A=30°,点D 是斜梁AB 的中点,BC 、DE 垂直于横梁AC ,AB=16m ,则DE 的长为( ).
A 、8 m
B 、4 m
C 、2 m
D 、6 m
4
°,AB=BC=CD=DE=EF ,则∠DEF 等于(
). 、 75° C 、70° D 、 60°
5.把一张长方形的纸沿对角线折叠,则重合部分是( ). A 、直角三角形 B 、长方形 C 、等边三角形 D 、等腰三角形 6.已知等腰三角形的两条边长分别为2和5,则它的周长为( ).
A . 9
B . 12
C . 9或12
D . 5
7.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2
P 交OA 于M ,交OB 于N ,若1
P 2P =6,则△PMN 的周长为( ).
A 、4
B 、5
C 、6
D 、7
8.如图,∠BAC=110°若MP 和NQ 分别垂直平分AB 和AC,则∠PAQ 的度数是( ) .
A 、20°
B 、 40°
C 、50°
D 、 60°
9.如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( ). A 、AD DH AH ≠= B 、AD DH AH == C 、DH AD AH ≠= D 、AD DH AH ≠≠
10.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ). A .①②③ B .①②④ C .①③ D .①②③④ 二、填空题(本大题共有8小题,每空2分,共16分).
11.等腰三角形是轴对称图形,其对称轴是_______________________________. 12.已知点A (x , -4)与点B (3,y )关于x 轴对称,那么x +y 的值为____________. 13.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 __ . 14.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为12cm 2,则图中阴影部分的面积是 ___ cm 2. ABC 上一点,且,AB=BD,AD=DC,..
分别是AB AC ,上的点,且= 度.
17.如图:在△ABC 中,AB=AC=9,∠BAC=120°,AD 是△ABC 的中线,AE 是∠BAD 的角
平分线,DF ∥AB 交AE 的延长线于点F ,则DF 的长为 ;
18.在直角坐标系内,已知A 、B 两点的坐标分别为A (-1,1)、B (3,3),若M 为x 轴上一点,且MA +MB 最小,则M 的坐标是___________. 三、解答题(本大题共有7小题,共54分).19.(6分)如图,已知点M 、N 和∠AOB , 求作一点P ,使P 到点M 、N 的距离相等, •且到∠AOB 的两边的距离相等.
20.(6分)(1)请画出ABC △关于y 轴对称的△(其中A B C ''',,分别是A B C ,,(2)直接写出A B C ''',,三点的坐标:
(_____)(_____)(_____)A B C ''',,.
(3)求△ABC 的面积是多少?
第2题图 第3题图 第4题图 F
E D
C B A B M
N P 1A
P 2
O
P
第7题第8题第9题
M A
N
C
Q
P
B
N
M
D
C
H E
B
A
D C 第14题第15题第16题第17题B C E
D A
C
B
E A
21.(8分)在△ABC 中,AB =AC ,AD ⊥BC ,∠BAD =40°,AD =AE .求∠CDE 的
度数.
22. (8分)已知AB=AC ,BD=DC ,AE 平分∠FAB ,问:AE 与AD 是否垂直?
为什么? 23.(8分)如图,在△ABC 中,AB =AC ,D 是BC 边上的一点, DE ⊥AB ,DF ⊥AC ,
垂足分别为E 、F ,添加一个条件,使DE = DF , 解: 需添加条件是 . 理由是:
24.(8分)如图:E 在△ABC 的AC 边的延长线上,D 点在AB DE 交BC 于点F ,DF=EF ,BD=CE 。
求证:△ABC D 作DG ∥AC 交BC 于G )
25.(10分)如图:已知等边△ABC 中,D 是AC 的中点,E 且CE =CD ,DM ⊥BC ,垂足为M ,求证:M 是BE 的中点. 一、选择题:(每小题 3 分,共 30 分) .
一、选择题:(本大题共10题,每小题3分,共30分). BCBDD BCBBD
二、填空题:(本大题共8题,每小题2分,共16分).
11.顶角的平分线(或底边上的中线或底边上的高)所在的直线 12.7
13.60°或120° 14.6 15.36° 16.60° 17. 18.(0,0)
三、解答题:(本大题共7题,共54分). 19.略
第19题 第20题
20.(2) A ′(2,3),B ′(3,1),C ′(-1,-2)
(3)
21.解: ∵AB=AC ,AD ⊥BC
∴∠CAD=∠BAD=40° ∠ADC=90° 又∵AD=AE
∴∠ADE=2
40180︒
-︒=70° ∴∠CDE=90°—70°=20° 22.解: AE ⊥AD
理由如下: ∵AB=AC ,BD=DC ∴∠C=∠B ,AD ⊥BC 又∵AE 平分∠FAB ∴∠FAE=∠BAE
又∵∠FAB=∠C+∠B ∴∠FAE=∠C
∴AE 理由是:∵在△ABC 中,AB=AC
∴∠B=∠C
又∵DE ⊥AB ,DF ⊥AC ∴∠BED=∠DFC=90° 又∵BE=CF
∴△BED ≌△CFD (ASA ) ∴DE=DF
法二:
解:需添加条件是 BD=DC . 理由是:连接AD
∵AB=AC ,BD=CD ∴AD 是∠BAC 的角平分线 又∵DE ⊥AB ,DF ⊥AC ∴DE=DF
24.证明:过D 作DG//AC 交BC 于G
∴∠DGF=∠FCE ,∠GDF=∠E ,∠BGD=∠BCA 又∵DF=EF
∴△DGF ≌△ECF (AAS ) ∴CE=DG
又∵BD=CE
∴DG=BD ∴∠B=∠BGD ∴∠B=∠BCA ∴AB=AC
∴△ABC 是等腰三解形。
25.证明:连接BD
∵等边△ABC 中,D 是AC 的中点
∴∠DBC=21∠ABC=2
1
×60°=30°
∠ACB=60° 又∵CE=CD
∴∠E=∠CDE 又∵∠ACB=∠E+∠CDE
∴∠E=2
1
∠ACB=30°
∴∠DBC=∠E==30°
∴DB=DE 又∵DM ⊥BC ∴M 是BE 的中点。