热力学作业答案

合集下载

热力学习题与答案(原件)

热力学习题与答案(原件)

材料热力学习题1、阐述焓H 、内能U 、自由能F 以及吉布斯自由能G 之间的关系,并推导麦克斯韦方程之一:T P PST V )()(∂∂-=∂∂。

答: H=U+PV F=U-TS G=H-TS U=Q+W dU=δQ+δWdS=δQ/T, δW=-PdV dU=TdS-PdVdH=dU+PdV+VdP=TdS+VdP dG=VdP-SdTdG 是全微分,因此有:TP P TP ST V ,PT G T P G ,T V P G T P T G P ST G P T P G )()()()()()(2222∂∂-=∂∂∂∂∂=∂∂∂∂∂=∂∂∂∂=∂∂∂∂∂-=∂∂∂∂=∂∂∂因此有又而2、论述: 试绘出由吉布斯自由能—成分曲线建立匀晶相图的过程示意图,并加以说明。

(假设两固相具有相同的晶体结构)。

由吉布斯自由能曲线建立匀晶相图如上所示,在高温T 1时,对于所有成分,液相的自由能都是最低;在温度T 2时,α和L 两相的自由能曲线有公切线,切点成分为x1和x2,由温度T 2线和两个切点成分在相图上可以确定一个液相线点和一个固相线点。

根据不同温度下自由能成分曲线,可以确定多个液相线点和固相线点,这些点连接起来就成为了液相线和固相线。

在低温T 3,固相α的自由能总是比液相L 的低,因此意味着此时相图上进入了固相区间。

HPV UGTSTS FPV3、论述:通过吉布斯自由能成分曲线阐述脱溶分解中由母相析出第二相的过程。

第二相析出:从过饱和固溶体α中(x0)析出另一种结构的β相(xβ),母相的浓度变为xα. 即:α→β+ α1α→β+ α1 的相变驱动力ΔGm的计算为ΔGm=Gm(D)-Gm(C),即图b中的CD段。

图b中EF是指在母相中出现较大为xβ的成分起伏时,由母相α析出第二相的驱动力。

4、根据Boltzman方程S=kLnW,计算高熵合金FeCoNiCuCrAl和FeCoNiCuCrAlTi0.1(即FeCoNiCuCrAl各为1mol,Ti为0.1mol)的摩尔组态熵。

热力学习题答案

热力学习题答案

热力学习题答案Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第9章热力学基础一. 基本要求1. 理解平衡态、准静态过程的概念。

2. 掌握内能、功和热量的概念。

3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。

4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。

5. 了解可逆过程与不可逆过程的概念。

6. 解热力学第二定律的两种表述,了解两种表述的等价性。

7. 理解熵的概念,了解热力学第二定律的统计意义及无序性。

二. 内容提要1. 内能功热量内能从热力学观点来看,内能是系统的态函数,它由系统的态参量单值决定。

对于理想气体,其内能E仅为温度T的函数,即当温度变化ΔT时,内能的变化功热学中的功与力学中的功在概念上没有差别,但热学中的作功过程必有系统边界的移动。

在热学中,功是过程量,在过程初、末状态相同的情况下,过程不同,系统作的功A也不相同。

系统膨胀作功的一般算式为在p—V图上,系统对外作的功与过程曲线下方的面积等值。

热量热量是系统在热传递过程中传递能量的量度。

热量也是过程量,其大小不仅与过程、的初、末状态有关,而且也与系统所经历的过程有关。

2. 热力学第一定律系统从外界吸收的热量,一部分用于增加内能,一部分用于对外作功,即热力学第一定律的微分式为3. 热力学第一定律的应用——几种过程的A、Q、ΔE的计算公式(1)等体过程体积不变的过程,其特征是体积V =常量;其过程方程为在等体过程中,系统不对外作功,即0A。

等体过程中系统吸收的热量与系统内V能的增量相等,即(2) 等压过程压强不变的过程,其特点是压强p =常量;过程方程为在等压过程中,系统对外做的功系统吸收的热量 )(12T T C M MQ P mol P -=式中R C C V P +=为等压摩尔热容。

(3)等温过程 温度不变的过程,其特点是温度T =常量;其过程方程为pV =常量在等温过程中,系统内能无变化,即(4)绝热过程 不与外界交换热量的过程,其特点是dQ=0,其过程方程pV γ=常量在绝热过程中,系统对外做的功等于系统内能的减少,即7. 循环过程 系统从某一状态出发,经过一系列状态变化后又回到了初始状态的整个变化过程。

【精品】热力学作业题答案

【精品】热力学作业题答案

【关键字】精品第二章2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。

解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程P=RT/V=8.314×323.15/124.6×10-6=21.56MPa(2) R-K 方程 ∴()0.5RT aPV b T V V b =--+=19.04MPa (3) 普遍化关系式323.15190.6 1.695r c T T T === 124.6 1.259r c V V V ===<2∴利用普压法计算,01Z Z Z ω=+∵ c r ZRTP P P V == ∴c r PV Z P RT =迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.462301Z Z Z ω=+=0.8938+0.008×0.4623=0.8975此时,P=P c P r =4.6×4.687=21.56MPa同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。

∴ P=19.22MPa2-4.将压力为2.03MPa 、温度为477K 条件下的2.83m 3NH 3压缩到0.142 m 3,若压缩后温度448.6K ,则其压力为若干?分别用下述方法计算:(1)Vander Waals 方程;(2)Redlich-Kwang 方程;(3)Peng-Robinson 方程;(4)普遍化关系式。

解:查附录二得NH 3的临界参数:T c =405.6K P c =11.28MPa V c =72.5 cm 3/mol ω=0.250 (1) 求取气体的摩尔体积对于状态Ⅰ:P=2.03 MPa 、T=447K 、V=2.83 m 3477405.6 1.176r c T T T === 2.0311.280.18r c P P P ===—普维法∴01.6 1.60.4220.4220.0830.0830.24261.176r BT =-=-=- 11c r c rBP PV BP P Z RT RT RT T =+==+→V=1.885×10-3m 3/mol∴n=2.83m 3/1.885×10-3m 3/mol=1501mol对于状态Ⅱ:摩尔体积V=0.142 m 3/1501mol=9.458×10-5m 3/mol T=448.6K (2) Vander Waals 方程 (3) Redlich-Kwang 方程 (4) Peng-Robinson 方程 ∵448.6405.6 1.106r c T T === ∴220.3746 1.542260.269920.3746 1.542260.250.269920.250.7433k ωω=+-=+⨯-⨯=∴()()()a T RTPV b V V b b V b =--++- (5) 普遍化关系式 ∵559.458107.2510 1.305r c V V V --==⨯⨯=<2 适用普压法,迭代进行计算,方法同1-1(3)2-7:答案: 3cm第三章3-3. 试求算1kmol 氮气在压力为10.13MPa 、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。

化工热力学第一章作业参考答案

化工热力学第一章作业参考答案

2、求1nol 理想气体在常压、25℃时的体积由理想气体状态方程有ν=RT/p =8.314×298/101325=0.02445m 3=24.45L4、1mol 丙烷放在2L 容器中,用RK 方程分别求100℃和6℃时容器内的压力。

已知其饱和蒸汽压为0.57MPa 100℃时:R-K 方程 a = 18.301 b = 6.268×10-5 (R 取8.3145) P = 1.3718 MPa SRK 方程m = 0.7617 a(Tr) = 0.9935 a(T) = 0.9447 b = 6.268×10-5 (R 取8.3145) P = 1.3725 MPa 6℃时:R-K 方程 P = 0.9325 MPaSRK 方程 a(Tr) = 1.1969 a(T) = 1.1381 P = 0.922 MPa 饱和液体摩尔体积可采用修正的Rackett 方程计算 V sl = 84.33 cm 3/mol<2.0×10-3 m 3/mol, 故P = 0.57 MPa7. van der waals 方程B = b-a/(RT) 代入数值后B = -5.818×10-5C = b 2 代入数值后 C = 1.850×10-9Z = 1+BP/(RT)+(C-B 2)P 2/(RT)2 代入数值后 Z = 0.7453 RK 方程: B = b-a/(RT 3/2) 代入数值后 B = -5.580×10-5C = b 2+ab/(RT 3/2) 代入数值后 C = 3.441×10-9Z = 1+BP/(RT)+(C-B 2)P 2/(RT)2 代入数值后 Z = 0.7840 SRK 方程: B = b-a(T)/(RT) 代入数值后 B = -5.355×10-5C = b 2+a(T)b/(RT) 代入数值后 C = 3.375×10-9Z = 1+BP/(RT)+(C-B 2)P 2/(RT)2 代入数值后 Z = 0.7958 PR 方程: B = b-a(T)/(RT) 代入数值后 B = -6.659×10-5C = b 2+2a(T)b/(RT) 代入数值后 C = 5.7166×10-9Z = 1+BP/(RT)+(C-B 2)P 2/(RT)2 代入数值后 Z = 0.756210、请将van der waals 方程转换为式(2-67)所示的对比形式23138rr r r V V T P --=解:van der waals 方程为:2Vab V RT P r --=()RT b V V a P =-⎪⎭⎫ ⎝⎛+⇒2由学习van der waals 方程时得到的结论:3,89c c c b RT a υυ== 又由cc c c c c T VP R P RT 3883=⇒=υ代入上式,有: c c rc c c V P T V V V V P P 383322=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛+ 两边消去PcVc ,即得所求。

第8章热力学作业老师用含答案

第8章热力学作业老师用含答案

班级 姓名 学号一、填空题1.一卡诺热机的低温热源温度为280K ,效率为40%,若使效率提高到50%而保持低温热源的温度不变,高温热源温度必须增加 K 。

解:121T T -=ηΘ 4.028*******=-=-=∴T T T η 5.0280111122='-='-=∴T T T η 解得 K T T T 3.9311=-'=∆2.10 mol 的单原子分子理想气体,在压缩过程中外力作功209 J ,气体温度升高1 K ,则气体内能 的增量△E 为 J 。

气体吸收的热量Q 为 J 。

解:3.一台冰箱工作时,其冷冻室中的温度为 -10℃,室温为15℃。

若按理想卡诺致冷循环计算, 则此致冷机每消耗103J 的功。

可以从冷冻室中吸出 ×104J 的热量 。

解:2122T T T W Q e -==Θ 可得 J W T T T Q 4321221005.110)27310()27315(27310⨯=⨯+--++-=⨯-=4.一理想气体经历一次卡诺循环对外作功1000 J ,卡诺循环的高温热源温度T 1 = 500 K ,低温热源的温度T 2 = 300 K ,则在一次循环过程中,在高温热源处吸热Q 1 = 2500 J ;在低温热源处放热Q 2 = 1500 J 。

解:4.050030011112121=-=-=-==T T Q Q Q W ηΘ 可得J W Q 25004.010004.01===; J Q Q 150025006.06.012=⨯== 5.1摩尔的单原子理想气体,在等体过程中温度从27℃加热到77℃,则吸收的热量为 J 。

解:6.一定量的空气吸收了×103J 的热量,并保持在×105Pa 下膨胀,体积从×10-2m 3增加到J T R T T C M m E V 65.124131.823102310)(12m ,=⨯⨯⨯=∆⨯⨯=-=∆JW E Q 35.8420965.124-=-=+∆=J T R T T C M m Q V V 25.623)300350(31.8231231)(12m ,=-⨯⨯⨯=∆⨯⨯=-=×10-2m 3,则空气对外界做的功为 500 J ;空气的内能改变了 ×103J 。

西工大(冯青) 工程热力学作业答案 第一章

西工大(冯青) 工程热力学作业答案 第一章

1-1体积为2L 的气瓶内盛有氧气2.858g,求氧气的比体积、密度和重度。

解:氧气的比体积为3310858.2102−−××==m V v =0.6998 m 3/kg 密度为vm V 110210858.233=××==−−ρ=1.429 kg/m 3重度80665.9429.1×==g ργ=14.01 N/m 31-2某容器被一刚性器壁分为两部分,在容器的不同部分安装了测压计,如图所示。

压力表A 的读数为0.125MPa,压力表B 的读数为0.190 MPa,如果大气压力为0.098 MPa,试确定容器两部分气体的绝对压力可各为多少?表C 是压力表还是真空表?表C的读数应是多少? 解:设表A、B、C 读出的绝对压力分别为A p 、B p 和C p 。

则根据题意,有容器左侧的绝对压力为=+=+==125.0098.0gA b A p p p p 左0.223 MPa 又∵容器左侧的绝对压力为gB C B p p p p +==左 ∴033.0190.0223.0gB C =−=−=p p p 左 MPa<b p∴表C 是真空表,其读数为033.0098.0C b vC −=−=p p p =0.065 MPa 则容器右侧的绝对压力为=−=−=065.0098.0vC b p p p 右0.033 MPa1-5水银温度计浸在冰水中时的水银柱长度为4.0cm,浸在沸水中时的水银柱长度为24.0cm。

试求:1)在室温为22℃时水银柱的长度为多少?2)温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,求溶液的温度。

解:假设水银柱长度随温度线性增加。

则1℃间隔的水银柱长度为424100−=ΔΔz t =5.00 ℃/cm 1) 在室温为22℃时水银柱的长度为=+=ΔΔ+5/224/0ztt z 8.4 cm2) 水银柱的长度为25.4cm时,溶液的温度为=×−=ΔΔ×−=5)44.25()(0ztz z t 107 ℃1-6如图所示,一垂直放置的汽缸内存有气体。

傅秦生工程热力学作业题解答

傅秦生工程热力学作业题解答

1-3 解:根据压力单位换算关系,有2H O Hg 2009.8067Pa 800133.322Pa p p =⨯=⨯所以有(735133.3222009.8067800133.322)Pa 206610.6Pa 206.6kPap =⨯+⨯+⨯==1-4 解:根据微压计的原理,烟道中的压力应等于环境压力和水柱压力之差,所以4sin 2000.89.80.5784Pa=7.8410MPa V p L g ρα-==⨯⨯⨯=⨯0.10.0007840.0992MPa b V p p p =-=-=1-5 解:,,, - = 45k P a g C b g A b g B p p p p p p p p p =+=+=左左右右 ,,,11045155kPa g A g B g C p p p ∴=+=+=2-3 解:(1)根据热一律,有 3573570u q w ∆=-=-= (2)由于完成了一个循环过程,有 120u u u ∆=∆+∆=而 120 0u u ∆=∴∆=(3) 2220590k J u q w ∆=∴=- 2-4 解:(1)a c b a d b a c b a c b a d b a d b U U Q W Q W ----------==∆=∆∴-=-904010 60kJ a d b a d b Q Q ====-=-=(2)50k J (23) 73k Jb a a cb b a b aU U Q Q -----∆=-∆=-=--∴=-(3)50k J5055k Ja db b a b a U U U U U --∆=-=∴=+=5545010kJ 60kJ 50kJd b d b d b a d d b a d Q U W Q Q Q ------=∆+=-+=+==2-5 解:(1)由于流体不可压缩,所以不做功。

(2)由于不做功及绝热,所以0U ∆=。

33()1(30.5)10 2.510kJ H U pV V p ∆=∆+∆=∆=⨯-⨯=⨯3-1 解:(1)2027310.771000273C η+=-=+(2) 92412000.77924kJ 15.4kW 60C W Q P η==⨯=== (3) 211200924276kJ Q Q W =-=-= 3-2 解:(1)建立如图的模型,有,,1 1L A H A B H B H T T W Q W Q T T ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭根据题意,有 ,,L A H B Q Q = 而 ,,,,=11L A A L A H A H AH HQ T TQ Q Q T T η-=-∴= 所以 ,,11L L B H B H AH T T T W Q Q T T T ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭由A B W W =,得,,1=1L H A H AHH T T T Q Q T T T ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭()()11900300600K 22H L T T T =+=+= (2)根据 A B ηη=,有11 519.6K L H T TT T T-=-∴=== 3-5 解:循环A 为卡诺循环,其效率为1LA HT T η=-对于循环B ,有 (),,12L B L B H B H L B Q T S Q T T S =∆=+∆,所以 (),, 211112L B L B LB H BH LH L B Q T S T Q T T T T S η∆=-=-=-++∆故11221L H LA H H H L L L H L LB H HH L H LT T T T T T T T T T T T T T T T T T ηη--+====++--++3-6 解:(1) i s o1500800= 1.92J /K 02000300H L H L Q Q S T T -∆+=+=> 所以该循环可行,且不可逆进行。

第1章化学热力学基础习题解答.doc

第1章化学热力学基础习题解答.doc

A r H/fX298J5/C) = 2x(-393.5U^7w/-1) + 2x(-285.8V-m^/-,)-(-484.5U-m<?/-1)= S14AU-mol-i7.关于热力学第二定律,下列说法不正确的是(D )A.第二类永动机是不可能制造出来的B.把热从低温物体传到高温物体,不引起其他变化是不可能的C.一切实际过程都是热力学不可逆过程D.功可以全部转化力热,但热一定不能全部转化力功这是有条件的,即在不引起环境改变的前提下(不留下痕迹)二、填空题(在以下各小题中岡有“_________ 处填上答案)1.物理量Q (热量)、T (热力学温度)、V (系统体积)、W (功),其中属于状态函数的是_T、V ;与过程有关的量是_Q、W ;状态函数中属于广度量的是_ V •.属于强度景的是_ T 。

2.0', = AU、,的应用条件是_ 恒容;W =0 ; 封闭系统。

100嫩W v 、Q 、AU #AHo解:G )由^2C Cp ,”t _pjn _Q 7=C ZAWI -/? = 28.8-8.314i 43p }V } _ 3.04x10s P6zxl.43xl0-3m 3RT' 8.314J • jnol~l • /C 1x 298.15尺Q=0W v =AU = U(T 2 - 7;) = n(C p .m - /?)(r 2 - 7;) =0.175 x (28.8 - 8.314) x (225 -298.15) -2627\H = nC 戸(72-7;) = 0.175X 28.8X (225-298.15) = -368.6J3. lOOg 液体苯在正常沸点80.2°C 及101.325kPa 下蒸发为苯蒸气,己知苯的摩尔蒸发潜 热2\哪//,。

=30.810以’/^厂1,试求上述蒸发过程的W v 、Q 、Z\U 和Z\H 。

苯的摩尔质量 A/QH6 =78。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 热力学基础一、选择题[ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程(A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。

【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ∆+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =;AB 等压过程:AB AB E A Q ∆+=,且0>∆ABE[ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A) p 0. (B)p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ.【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+∆得 0E ∆=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ∆,熵增量为S ∆,则应有 (A) 0......0=∆<∆S E (B) 0......0>∆<∆S E . (C) 0......0=∆=∆S E . (D)0......0>∆=∆S E【提示】由上题分析知:0=∆E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。

[ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在(A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小.(D) 等压过程中最大,等温过程中最小. 【提示】如图。

等温AC 过程:温度不变,0C A T T -=; 等压过程:A B p p =,根据状态方程pV RT ν=,得:B AB AT T V V =,2B A T T ∴=,B A A T T T -= 绝热过程:11A A D D T V T V γγ--=,1112A D A A D V T T T V γγ--⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,得:1112D A A A T T T T γ-⎡⎤⎛⎫-=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以,选择(D )【或者】等压过程:()()p A B A B A A p V V R T T ν=-=-,pB A A T T Rν-=;绝热过程:()2D A i AE R T T ν=-∆=--,2D A A T T i R ν-=;∵2iR R νν<,由图可知p A A >, 所以 B A D A T T T T ->-[ A ]5.(自测提高3)一定量的理想气体,分别经历如图(1) 所示的abc 过程,(图中虚线ac 为等温线),和图(2)所示的def 过程(图中虚线df 为绝热线).判断这两种过程是吸热还是放热.(A) abc 过程吸热,def 过程放热. (B) abc 过程放热,def 过程吸热.pOVab cpOVdef图(1)图(2)(C) abc 过程和def 过程都吸热.(D) abc 过程和def 过程都放热.【提示】(a ) , 0a c c a T T E E =∴-=,()0abc abc c a abc Q A E E A =+-=>,吸热。

(b )df 是绝热过程,0df Q =,∴f d df E E A -=-,()def def f d def df Q A E E A A =+-=-,“功”即为曲线下的面积,由图中可见,def df A A <,故0def Q <,放热。

[ B ]6.(自测提高6)理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:(A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定.【提示】两条绝热线下的面积大小即为“功的大小”。

绝热过程的功的大小为12()2iA E R T T ν=-∆=-,仅与高温和低温热源的温差有关,而两个绝热过程对应的温差相同,所以作功A 的数值相同,即过程曲线下的面积相同。

二、填空题1.(基础训练13)一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单原子分子气体,则该过程中需吸热 500 J ;若为双原子分子气体,则需吸热 700 J.【提示】据题意200()molMA pdV p V R T J M ==⋅∆=⋅∆=⎰ 22moli M i E R T A M ⎛⎫∆=⋅∆=⎪⎝⎭,22i Q A E A +=+∆= 对于单原子分子:3i =,所以5500()2Q A J ==;对于双原子分子:5i =,所以7700()2Q A J ==2.(基础训练14)给定的理想气体(比热容比为已知),从标准状态(p 0、V 0、T 0)开始,作绝热膨胀,体积增大到三倍,膨胀后的温度T =013T γ-,压强p =03p γ【提示】求温度的变化,可用绝热过程方程:1100T V TV γγ--=,100013V T T T V γγ--⎛⎫==⎪⎝⎭求压强的变化,可用绝热过程方程:00p V pV γγ=,得:0003V p p p V γγ⎛⎫== ⎪⎝⎭3.(自测提高11)有ν摩尔理想气体,作如图所示的循环过程acba ,其中acb 为半圆弧,ba 为等压线,p c =2p a .令气体进行ab 的等压过程时吸热Q ab ,则在此循环过程中气体净吸热量Q < Q ab . (填入:>,<或=)【提示】a-b 过程:2ab iQ A E S R T ν=+∆=+∆矩形而acba 循环过程的净吸热量Q A S '==半圆,∵p c =2p a ,由图可知:S S >矩形半圆,且0T ∆>,0E ∆>,所以 ab Q Q >4.(自测提高12)如图所示,绝热过程AB 、CD ,等温过程DEA , 和任意过程BEC ,组成一循环过程.若图中ECD 所包围的面积为70 J ,EAB 所包围的面积为30J ,DEA 过程中系统放热100 J ,则:(1) 整个循环过程(ABCDEA )系统对外作功为40J .(2) BEC 过程中系统从外界吸热为 140J .【提示】(1) 整个循环过程(ABCDEA )系统对外作功为()307040J EABE ECDE A A A =+=-+=逆循(正循)()环环;(2)ABCDEA AB BEC CD DEA Q Q Q Q Q =+++00(100)BEC Q =+++-, 同时40()ABCDEA Q A J ==, 140()BEC Q J ∴=5.(自测提高13)如图示,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为η1:% ,η2: 50% ,η3: %【提示】由121T T-=η (1T 对应高温热源的温度,2T 对应低温热源的温度),得:010211133cd ab T T T T η=-=-=,02011122ef cd T T T T η=-=-=,03021133ef ab T T T T η=-=-=6.(自测提高15)1 mol 的单原子理想气体,从状态I (p 1,V 1)变化至状态IIpO V3T 02TT 0fa db ce p VabpV2,V 2)(p 2,V 2),如图所示,则此过程气体对外作的功为12211 () 2p p V V +-(),吸收的热量为1221221113 ()() 22p p V V p V p V +-+-()【提示】①气体对外作的功 = 过程曲线下的梯形面积;②由热力学第一定律,得 21()2iQ A E A R T T ν=+∆=+-, 其中3i =,1mol ν=,212211()R T T p V p V ν-=-,三.计算题1.(基础训练18)温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少解:(1)等温膨胀:127325298T K =+=,213V V =,1mol ν=(2)绝热过程:21()2i A E R T T ν=-∆=--,其中5i =,1mol ν=,2T 可由绝热过程方程求得:112211T V TV γγ--=,111211211923V T T T K V γγ--⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,2、(基础训练19)一定量的单原子分子理想气体,从初态A 出发,沿如图所示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A .(1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).解:3i =,(1) A B →:11()()2002B A B A A p p V V J =+-=C B →:20A =A C →:3()100A A C A p V V J =-=-33()()15022A C A A C C i E R T T p V p V J ν∆=-=-=-(2) 123100A A A A J =++=3.(基础训练22)一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.已知:T C =300 K ,T B =400 K .试求:此循环的效率.解: 211Q Q η=-)(1A B P T T C Q -=ν, 2()P C D Q C T T ν=-根据绝热过程方程得到:γγγγ----=D D AA T p T p 11, γγγγ----=C C B B T p T p 11 而 B A p p = , D C p p =所以有 C D B A T T T T //= ,21CBQ T Q T =故 %251112=-=-=BC T T Q Q η (此题不能直接由BCT T -=1η 式得出,因为不是卡诺循环。

相关文档
最新文档