数字温度计单片机总体设计方案
单片机基于stm32的数字温度计设计

单片机基于stm32的数字温度计设计
数字温度计是一种用于测量环境温度的设备。
在这个问题中,我们将使用基于STM32的单片机来设计一个数字温度计。
为了设计这个温度计,我们需要以下组件和步骤:
1. STM32单片机:STM32是一种基于ARM架构的单片机,它具有强大的计算能力和丰富的外设接口,适用于各种应用。
2. 温度传感器:我们需要选择一种适合的温度传感器,常用的有数字式温度传感器,如DS18B20。
3. 连接电路:将温度传感器连接到STM32单片机。
这通常需要使用一些电子元件,如电阻、电容和连接线等来建立电路连接。
4. 编程:使用适合STM32单片机的编程语言,如C语言,来编写程序。
程序将读取温度传感器的数据,并将其转换为数字值。
5. 温度显示:将温度数据显示在合适的显示设备上,如LCD显示屏或七段数码管。
可以使用STM32单片机的GPIO口控制这些显示设备。
6. 数据处理:可以对温度数据进行进一步处理,如计算平均温度、设定警报阈值等。
以上是一个基本的数字温度计设计的流程。
具体的实现细节和代码编写可能需要根据具体的硬件和软件平台进行调整。
单片机的数字温度计设计方案(附代码与仿真)

基于STC89C52的数字温度计目录1、简介....... .......... ..... 3 _ _2、计划选择2.1。
主控片选 (3)2.2.显示模块.............................. (3)2.3、温度检测模块………………………………… .. 43、系统硬件设计3.1。
51单片机最小系统设计………………………… .4 .电源电路设计…………………… .. 5.液晶显示电路设计……………………………… ..63.4.温度检测电路设计………… . . . 74.系统软件设计4.1。
温度传感器数据读取流程图......... .. (9)4.2.系统编程………………… .105. 编程与仿真5.1、Keil编程软件………………… .. .. 115.2.变形杆菌 (11)5.3.模拟界面……………………… ..116.总结........ .......... ........ 12 _ _ _ _ _七、附录附录 1. 原理图........ .......... (12)附录 2. 程序清单…………………………………………………………………… ..131 简介进入信息飞速发展的21世纪,科学技术的发展日新月异。
科学技术的进步带动了测量技术的发展,现代控制设备的性能和结构发生了翻天覆地的变化。
我们已经进入高速发展的信息时代,测量技术也成为当今技术的主流,已经渗透到研究和应用工程的各个领域。
温度与人们的生活息息相关,温度的测量变得非常重要。
2.系统方案选择2.1 主控芯片选型方案一:STC89C52RCSTC89C52RC是8051内核的ISP在线可编程芯片,最高工作时钟频率为80MHz,芯片内含8KB Flash ROM,可反复擦写1000次。
该器件兼容MCS-51指令系统和8051引脚结构。
该芯片集成了通用8位中央处理器和ISP Flash存储单元,具有在线可编程特性,在PC端有控制程序,用户程序代码可下载到单片机部门,无需购买通用编程器,速度更快。
51单片机数字温度计设计与实现

51单片机数字温度计设计与实现温度计是一种常见的电子测量设备,用于测量环境或物体的温度。
而数字温度计基于单片机的设计与实现,能够更准确地测量温度并提供数字化的显示,具备更多功能。
一、设计原理数字温度计的设计原理基于温度传感器和单片机。
温度传感器用于感测温度,而单片机负责将传感器读取的模拟信号转化为数字信号,并进行温度计算及显示。
二、所需材料1. 51单片机2. 温度传感器(例如DS18B20)3. 数码管或液晶显示屏4. 连接线5. 电源电路电容、电阻等元件三、设计步骤1. 连接电路:按照电路原理图将51单片机、温度传感器和显示器等元件进行连接。
注意正确连接引脚,以及电源电路的设计和连接。
2. 编写程序:利用汇编语言或C语言编写51单片机的程序,实现温度读取、计算和显示功能。
3. 温度传感器设置:根据温度传感器的型号和数据手册,配置单片机相应的输入输出口、温度转换方式等参数。
4. 读取温度:通过单片机对温度传感器进行读取,获取传感器采集的温度数据。
5. 温度计算:根据传感器输出的数据和转换方法,进行温度计算,得到更准确的温度数值。
6. 数字显示:将计算得到的温度数值通过数码管或液晶显示屏进行数字显示。
可以选择合适的显示格式和单位。
7. 添加附加功能:可以根据实际需求,增加其他功能,如报警功能、数据记录、温度曲线显示等。
8. 系统测试与优化:将设计的数字温度计进行系统测试,确保其正常运行和准确显示温度。
根据测试结果进行可能的优化或改进。
四、注意事项1. 连接线应牢固可靠,避免出现松动或接触不良的情况。
2. 选择合适的温度传感器,并正确设置传感器的相关参数。
3. 程序设计时应注意算法的准确性和优化性,以确保测量的准确性和实时性。
4. 温度传感器的安装和环境选择也会影响温度计的准确性,应避免与外部环境干扰和热源过近的情况。
五、应用领域1. 家庭和工业温度监测:数字温度计可以广泛应用于室内、室外温度监测,工业生产中的温度控制等。
数字温度计(基于51单片机的设计思路)

一.设计目的
1.理解掌握MCS-51系列单片机的功能和实际应用。
2.掌握仿真开发软件的使用。
3.掌握数字式温度计电路的设计、组装与调试方法。
二.设计要求
1.以MCS-51系列单片机为核心器件,组成一个数字式温度计。
2.采用数字式温度传感器为检测器件,进行单点温度检测,检测精度为0.4 C
3.温度显示采用4位LED数码管显示,三位整数,一位小数。
三.设计思路
1.根据设计要求,选择AT89C52单片机为核心器件。
2.温度检测器件采用DS18B20数字式温度传感器。
与单片机的接口为
P3.6引脚。
硬件电路设计总体框图为图4.1:
四、系统的硬件构成及功能
1.主控制器
图5.1
2.显示电路
显示电路采用四位共阳LED数码管,从P3口RXD,TXD串口输出段码。
LED数码管在仿真软件中如图5.2
图5.2
3.温度传感器
图5.3. 五.系统整体硬件电路
六.技术难点
1.程序设计
2.电路设计
3.电路焊接
4.硬件调试。
单片机课程设计(数字温度计)

单片机课程设计说明书1 引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。
2 总体设计方案2.1 方案论证根据系统的设计要求,选择DS18B20作为本系统的温度传感器,选择单片机AT89C51为测控系统的核心来完成数据采集、处理、显示、报警等功能。
选用数字温度传感器DS18B20,省却了采样/保持电路、运放、数/模转换电路以及进行长距离传输时的串/并转换电路,简化了电路,缩短了系统的工作时间,降低了系统的硬件成本。
该系统的总体设计思路如下:温度传感器DS18B20把所测得的温度发送到AT89C51单片机上,经过51单片机处理,将把温度在显示电路上显示,本系统显示器用4位共阳LED 数码管以动态扫描法实现。
检测范围-55摄氏度到125摄氏度。
按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路。
数字温度计总体电路结构框图如图1所示。
图1 数字温度计总体电路结构框图AT89C51 主 控 制 器显示电路温度传感器 DS18B20扫描驱动2.2 系统硬件电路的设计温度计电路设计原理图如图2所示,控制器使用单片机AT89C51,温度传感器使用DS18B20,用4位共阳LED数码管实现温度显示。
图2 数字温度计设计电路原理图2.2.1 主控制器AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
单片机课程设计方案—数字温度计

1 课题任务、功能要求说明及总体方案介绍1.1 课题目的随着社会的发展,温度的测量及控制变得越来越重要。
本文采用单片机STC89S52设计了温度实时测量及控制系统。
单片机STC89S52 能够根据温度传感器DS18B20 所采集的温度在数码管上实时显示,通过控制从而把温度控制在设定的范围之内。
所有温度数据均通过4位数码管LED显示出来。
系统可以根据时钟存储相关的数据。
通过该课程的学习使我们对计算机控制系统有一个全面的了解、掌握常规控制算法的使用方法、掌握简单微型计算机应用系统软硬的设计方法,进一步锻炼同学们在微型计算机应用方面的实际工作能力。
1.2 功能要求说明设计一个具有特定功能的数字温度计。
该数字温度计上电或按键复位后能自动显示系统提示符“P.”,进入准备工作状态。
测量温度范围0℃~99℃,测量精度小数点后两位,可以通过开始和结束键控制数字温度计的工作状态。
1.3 设计课题总体方案介绍及工作原理说明1.3.1设计课题总体方案(1>根据设计要求,选择AT89C52单片机为核心器件。
(2>温度检测器件采用DS18B20数字式温度传感器。
与单片机的接口为P3.6引脚。
(3>键盘采用独立式按键,由三个按键组成,分别是:设置键<SET),加一建<+1),确认键<RET)。
(4>SET键<上下限温度设置键):当该键按下时,进入上下限温度设置功能。
通过P0.1引脚接入。
(5>+1键<加一调整键):在输入上下限温度时,该键按下一次,被调整位加一。
通过P0.2引脚接入。
(6>RET键<确认键):当该键按下时,指向下一个要调整的位。
通过P0.3引脚接入。
1.3.2 工作原理说明本课题以是80S52单片机为核心设计的一种数字温度控制系统,利用温度传感器DS18B20可以直接读取被测温度值,进行转换的特性,模拟温度值经过DS18B20处理后转换为数字值,然后送到单片机中进行数据处理,并与设置的温度报警限比较,超过限度后通过扬声器报警。
51单片机数字温度计的设计与实现

51单片机数字温度计的设计与实现温度计是一种广泛使用的电子测量仪器,它能够通过感知温度的变化来提供精准的温度数值。
本文将介绍如何使用51单片机设计并实现一款数字温度计。
一、硬件设计1. 采集温度传感器温度传感器是用来感知环境温度的关键器件。
常见的温度传感器有DS18B20、LM35等。
在本次设计中,我们选择DS18B20温度传感器。
通过电路连接将温度传感器与51单片机相连,使51单片机能够读取温度传感器的数值。
2. 单片机选型与连接选择适合的51单片机型号,并根据其引脚功能图对单片机进行合理的引脚连接。
确保温度传感器与单片机之间的数据传输通畅,同时保证电源和地线的正确连接。
3. 显示模块选型与连接选择合适的数字显示模块,如数码管、液晶显示屏等。
将显示模块与51单片机相连,使温度数值能够通过显示模块展示出来。
4. 电源供应为电路提供稳定的电源,保证整个系统的正常运行。
选择合适的电源模块,并根据其规格连接电路。
二、软件设计1. 温度传感器读取程序编写程序代码,使用单片机GPIO口将温度传感器与单片机连接,并通过相应的通信协议读取温度数值。
例如,DS18B20采用一线制通信协议,需要使用单总线协议来读取温度数值。
2. 数字显示模块驱动程序编写程序代码,通过单片机的GPIO口控制数字显示模块的数码管或液晶显示屏进行温度数值显示。
根据显示模块的规格,编写合适的驱动程序。
3. 温度转换算法将温度传感器读取到的模拟数值转换为实际温度数值。
以DS18B20为例,它输出的温度数值是一个16位带符号的数,需要进行相应的转换操作才能得到实际的温度数值。
4. 系统控制程序整合以上各部分代码,编写系统控制程序。
该程序通过循环读取温度数值并进行数据处理,然后将处理后的数据送到数字显示模块进行实时显示。
三、实现步骤1. 硬件连接按照前文所述的硬件设计,将温度传感器、51单片机和数字显示模块进行正确的连接。
确保连接无误,并进行必要的电源接入。
单片机的数字温度计设计方案6

U8引脚封装TO-92封装图3 温度传感器4设计步骤:1温度传感器与单片机的连接温度传感器的单总线(1-Wire>与单片机的P2.0连接,P2.0是单片机的高位地址线A8。
P2端口是一个带内部上拉电阻的8位双向I/O,其输出缓冲级可驱动(吸收或输出电流>4个TTL逻辑门电路。
对该端口写“1”,可通过内部上拉电阻将其端口拉至高电平,此时可作为输入口使用,这是因为内部存在上拉电阻,某一引脚被外部信号拉低时会输出一个电流。
在访问外部程序存储器或16位地址的外部数据存储器时。
如执行MOVX DPTR指令,则表示P2端口送出高8位的地址数据。
在访问8位地址的外部数据存储器时,可执行MOVX RI指令,P2端口内容即为特殊功能寄存器(SFR>区中R2寄存器内容,整个访问期间不改变。
在Flash编程和程序校验时,P2端口也接收高位地址和其他控制信号。
图4为DSl8820内部结构。
图5为DSl8820与单片机的接口电路。
图4 DS18B20内部结构图图5 DS18B20和单片机的接口连接4.2复位信号及外部复位电路单片机的P1.6端口是MAX813看门狗电路中喂狗信号的输入端,即单片机每执行一次程序就设置一次喂狗信号,清零看门狗器件。
若程序出现异常,单片机引脚RST将出现两个机器周期以上的高电平,使其复位。
该复位信号高电平有效,其有效时间应持续24个振荡脉冲周期即两个机器周期以上。
若使用频率为12 MHz的晶体振荡器,则复位信号持续时间应超过2μs才完成复位操作。
4.3单片机与报警电路系统中的报警电路是由发光二极管和限流电阻组成,并与单片机的P1.2端口连接。
P1端口的作用和接法与P2端口相同,不同的是在Flash编程和程序校验期间,P1接收低8位地址数据。
4.4电源电路由于该系统需要稳定的5 V电源,因此设计时必须采用能满足电压、电流和稳定性要求的电源。
该电源采用三端集成稳压器LM7805。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机课程设计报告数字温度计专业班级应教022班姓名李世朋时间 16 周~ 18 周指导教师李国厚苗青林邵峰20005 年 12 月 29 日1 设计要求■基本范围-50℃-110℃■精度误差小于0.5℃■LED数码直读显示2 扩展功能■实现语音报数■可以任意设定温度的上下限报警功能数字温度计应教022 李世朋摘要:随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。
关键词:单片机,数字控制,温度计,DS18B20,A T89S511 引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。
本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器使用单片机AT89S51,测温传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。
2 总体设计方案2.1数字温度计设计方案论证2.1.1方案一由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。
2.1.2 方案二进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。
从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。
2.2方案二的总体设计框图温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。
图1总体设计方框图2.2.1 主控制器单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。
2.2.2 显示电路显示电路采用3位共阳LED数码管,从P3口RXD,TXD串口输出段码。
2.2.3温度传感器DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
DS18B20的性能特点如下:●独特的单线接口仅需要一个端口引脚进行通信;●多个DS18B20可以并联在惟一的三线上,实现多点组网功能;●无须外部器件;●可通过数据线供电,电压范围为3.0~5.5V;●零待机功耗;●温度以9或12位数字;●用户可定义报警设置;●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图2所示。
图2 DS18B20内部结构64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。
温度报警触发器TH和TL,可通过软件写入户报警上下限。
DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。
高速暂存RAM的结构为8字节的存储器,结构如图3所示。
头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。
第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。
DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。
该字节各位的定义如图3所示。
低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率。
..TM R11R01111..图3 DS18B20字节定义由表1可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。
因此,在实际应用中要将分辨率和转换时间权衡考虑。
高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。
第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。
当DS18B20接收到温度转换命令后,开始启动转换。
转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。
单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625℃/LSB形式表示。
当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。
表2是一部分温度值对应的二进制温度数据。
表1 DS18B20温度转换时间表R0R10 00 1 0 11 19101112分辨率/位温度最大转向时间/ms93.75187.5375750....DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。
若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。
因此,可用多只DS18B20同时测量温度并进行报警搜索。
在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。
主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。
DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。
器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。
计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1、温度寄存器中,计数器1和温度寄存器被预置在-55℃所对应的一个基数值。
减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。
其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。
表2一部分温度对应值表另外,由于DS18B20单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要。
系统对DS18B20的各种操作按协议进行。
操作协议为:初使化DS18B20(发复位脉冲)→发ROM 功能命令→发存储器操作命令→处理数据。
VCC....图4 DS18B20与单片机的接口电路2.3 DS18B20温度传感器与单片机的接口电路DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。
另一种是寄生电源供电方式,如图4 所示单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET 管来完成对总线的上拉。
当DS18B20处于写存储器操作和温度A/D 转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us 。
采用寄生电源供电方式时VDD 端接地。
由于单线制只有一根线,因此发送接口必须是三态的。
2.4 系统整体硬件电路 2.4.1 主板电路系统整体硬件电路包括,传感器数据采集电路,温度显示电路,上下限报警调整电路,单片机主板电路等,如图5 所示。
图5中有三个独立式按键可以分别调整温度计的上下限报警设置,图中蜂鸣器可以在被测温度不在上下限范围内时,发出报警鸣叫声音,同时LED数码管将没有被测温度值显示,这时可以调整报警上下限,从而测出被测的温度值。
图5 中的按健复位电路是上电复位加手动复位,使用比较方便,在程序跑飞时,可以手动复位,这样就不用在重起单片机电源,就可以实现复位。
2.4.2 显示电路显示电路是使用的串口显示,这种显示最大的优点就是使用口资源比较少,只用p3口的RXD,和TXD,串口的发送和接收,四只数码管采用74LS164右移寄存器驱动,显示比较清晰。
图5 单片机主板电路图6 温度显示电路3系统软件算法分析系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等。
3.1主程序主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。
这样可以在一秒之内测量一次被测温度,其程序流程见图7所示。
初始化调用显示子程序N 发DS18B20复位命令发跳过ROM命令发读取温度命令图7 主程序流程图图8读温度流程图3.2读出温度子程序读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。
其程序流程图如图8示图9 温度转换流程图3.3温度转换命令子程序温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时转换时间约为750ms ,在本程序设计中采用1s 显示程序延时法等待转换的完成。
温度转换命令子程序流程图如上图,图9所示 3.4 计算温度子程序计算温度子程序将RAM 中读取值进行BCD 码的转换运算,并进行温度值正负的判定,其程序流程图如图10所示。
图10 计算温度流程图 图11 显示数据刷新流程图3.5显示数据刷新子程序显示数据刷新子程序主要是对显示缓冲器中的显示数据进行刷新操作,当最高显示位为0时将符号显示位移入下一位。
程序流程图如图11。
4总结与体会经过将近三周的单片机课程设计,终于完成了我的数字温度计的设计,虽然没有完全达到设计要求,但从心底里说,还是高兴的,毕竟这次设计把实物都做了出来,高兴之余不得不深思呀!在本次设计的过程中,我发现很多的问题,虽然以前还做过这样的设计但这次设计真的让我长进了很多,单片机课程设计重点就在于软件算法的设计,需要有很巧妙的程序算法,虽然以前写过几次程序,但我觉的写好一个程序并不是一件简单的事,举个例子,以前写的那几次,数据加减时,我用的都是BCD码,这一次,我全部用的都是16进制的数直接加减,显示处理时在用除法去删分,感觉效果比较好,有好多的东西,只有我们去试着做了,才能真正的掌握,只学习理论有些东西是很难理解的,更谈不上掌握。