模式识别-参考
模式识别课程设计

模式识别课程设计一、教学目标本课程的教学目标是使学生掌握模式识别的基本概念、方法和应用,培养学生运用模式识别解决实际问题的能力。
具体目标如下:1.知识目标:(1)了解模式识别的定义、发展历程和应用领域;(2)掌握特征提取、相似度测量和分类器设计等基本方法;(3)熟悉常见的模式识别算法,如K近邻、决策树、支持向量机等;(4)理解模式识别在图像处理、语音识别、自然语言处理等领域的应用。
2.技能目标:(1)能够运用模式识别方法解决实际问题;(2)具备基本的编程能力,能够实现简单的模式识别算法;(3)学会使用模式识别相关软件和工具,如MATLAB、Python等。
3.情感态度价值观目标:(1)培养学生的创新意识,鼓励积极探索新的模式识别方法;(2)培养学生团队合作精神,学会与他人共同解决问题;(3)培养学生具有良好的职业道德,关注模式识别在现实生活中的影响。
二、教学内容本课程的教学内容主要包括以下几个部分:1.模式识别的基本概念和方法;2.特征提取和相似度测量;3.分类器设计及常见分类算法;4.模式识别在图像处理、语音识别、自然语言处理等领域的应用;5.模式识别相关软件和工具的使用。
三、教学方法为实现教学目标,本课程将采用以下教学方法:1.讲授法:用于讲解基本概念、方法和算法;2.案例分析法:通过分析实际案例,使学生更好地理解模式识别的应用;3.实验法:让学生动手实践,掌握模式识别相关软件和工具的使用;4.讨论法:鼓励学生积极参与课堂讨论,培养团队合作精神。
四、教学资源为实现教学目标,本课程将采用以下教学资源:1.教材:《模式识别与应用》;2.参考书:《模式识别导论》、《模式识别与机器学习》;3.多媒体资料:教学PPT、相关视频资料;4.实验设备:计算机、模式识别相关软件和工具。
五、教学评估本课程的教学评估将采用多元化的评价方式,以全面、客观地评价学生的学习成果。
评估内容包括:1.平时表现:包括课堂参与度、提问回答、小组讨论等,占总成绩的30%;2.作业:包括课后练习、小项目等,占总成绩的20%;3.考试:包括期中和期末考试,占总成绩的50%;4.实验报告:包括实验完成情况、实验结果分析等,占总成绩的10%。
中科院模式识别第二次作业参考答案

4
当 2 3 时,有:
Q( , 0 ) 不存在。
对分布进行归一化,有 P ( x2 ) ~ U (0, 2 ) ,故
P( x )dx
2
2
1
对 P ( x1 ) ,有
p( x1 )dx1
0 0
1
1
e 1x1 dx1 1
因此, 1 1 。
2
1 ( x )2 1 1 x v 2 exp 2 2 nh 2 hn 2 2 hn 2 n 2 hn hn hn nhn hn nhn 1 ( x )2 exp 2 2 2 2 hn 2 2 hn 1 1 ( x )2 1 exp 2 2 2
(c) 用递归公式计算样本均值,每次更新的计算复杂度为: O ( d ) 用递归公式计算样本协方差,每次更新的计算复杂度为: O ( d ) (d) 当样本量非常大,或者样本是边输入边分类的时候,考虑采用递归公式,这是在线分类。 当样本量比较小,可以全部输入之后再分类的时候,考虑采用非递归公式,这是离线分类。
2
2
)1 。
当 1 1, 2 3 时,取得最大值: Q ( , 0 ) 8.52 故,当 3 时, Q( , 0 ) 取得最大值。
1
1 2 x1 2 e (c) 当 4 时,有 P ( x1 , x2 ) 8 0
因此: pn ( x) ~ N ( , hn )
(b) 计算得:
Var [ pn ( x)] Var [
1 nhn
实验课程-091042-模式识别

模式识别实验教学大纲(实验课程)◆课程编号:091042◆课程英文名称:Pattern Recognition◆课程类型:☐通识通修☐通识通选☐学科必修☐学科选修☐跨学科选修☐专业核心 专业选修(学术研究)☐专业选修(就业创业)◆适用年级专业(学科类):计算机科学与技术、网络工程、软件工程四年级◆先修课程:高等数学、线性代数、概率与数理统计、程序设计语言◆总学分:1◆总学时:32一、课程简介与教学目标《模式识别实验》是配合计算机科学与技术、网络工程和软件工程专业课程《模式识别》开设的实验课程。
要求学生在理解模式识别理论及方法的基础上,应具有设计、实现、分析和维护模式识别等方面的能力。
通过本实验课程的训练,使学生熟练掌握模式识别的基本原理和方法,加深对各方法涉及的基础知识的认识,强化编程技能,培养创新能力。
二、教学方式与方法教学方式:学生动手实验为主,辅以适当的提问、小组讨论及实验点评等。
教学方法:探讨式教学、启发式教学、实验教学相结合;尝试包括实验设计、研究设计、答辩、总结等环节的教学。
三、教学重点与难点(一)教学重点理解模式识别系统的基本原理,掌握模式识别中Bayes分类器、Parzen窗估计与K N近邻估计、最近邻方法和C均值聚类算法等,学会使用相应工具进行模式识别方法的设计与实现,从而进一步理解模式识别课程中所讲授的理论知识。
(二)教学难点H-K算法、基于K-L变换的实现。
四、学时分配计划五、教材与教学参考书(一)教材1.《模式识别(第2版)》,边肇祺,张学工等,清华大学出版社,2000。
(二)教学参考书1.《模式识别导论》,齐敏、李大健、郝重阳,清华大学出版社,2009;2.《模式识别原理》,孙亮,北京工业大学出版社,2009;3.《模式识别(第3版)》,张学工,清华大学出版社,2010;4.《模式识别(英文版·第3版)(经典原版书库)》,(希腊)西奥多里迪斯等著,机械工业出版社,2006。
江南大学模式识别课后答案

课程作业十二 一、Agent 体系中的 Agent 联盟的工作方式? 二、机器人规划的基本任务是什么?
3.树根的代价即为解树的代价,计算时是从树叶开始自下而上逐层 计算而求得的,根是指初始节点 S0。 X 是与节点的两种计算公式为: 《1》g(x)=∑{c(x,yi)+g(yi)} 1≤i≤n 称为和代价法。
《2》g(x)=max{c(x,yi)+g(yi)} 1≤i≤n 称为最大代价法。
课程作业五 一、写出下面命题的产生式规则: 1.如果学生的学习刻苦了,那成绩一定会上升。 2.如果速度慢了,则时间一定会长。
¬f(B)∨¬f(D)
--(5)
则:(1)、(4)èf(B) ∨¬f(C) --(6)
(2)、(6) èf(B)
--(7)
(5)、(7) è¬f(D)
--(8)
(8)、(3) èf(C) 所以,最后得出 C 是罪犯。
课程作业四 简答题: 1、什么是启发式搜索,什么是启发式信息。启发式搜索具体有哪些 搜索。 2、状态图表示中的三元组分别是什么? 3、解树的代价是指什么?写出 X 是与节点的两种计算公式。
参考答案: 1、SSP 即业务交换点,实际就是交换机,只用来完成基本呼叫处理。 SSP 即业务控制点,位于 SSP 之上,用来存放智能服务程序和数据。 SCP、SSP 的实时连接通过公共信道信令网实现。SSP 将业务请求提交 给 SCP,SCP 通过查询智能业务数据库,将业务请求解释为 SSP 所能够 进行的处理,这些处理再由 SCP 下达给 SSP。
信息安全专业课程书籍推荐

计算机安全保密Computer Security and Applied Cryptography
课程简介本课程是计算机科学与技术的专业选修课。开设本课程的目的是使学生了解并掌握计算机安全保密所涉及的基本理论和方法,具备保障信息安全的基本能力。10、参考书目《密码学与计算机网络安全》,卿斯汉,清华大学出版社,广西科学技术出版社,2001 《通信网的安全——理论与技术》(第一版)[M],王育民,刘建伟,西安,西安电子科技大第3/4页
编译原理The Principles of Compiler
课程简介本课程是计算机科学与技术专业的专业基础必修课,信息安全专业的专业选修课。开设本课程的目的是使学生了解并掌握编译过程中所涉及的基本理论和方法,具备分析和实现编译程序的基本能力。
指定教材《编译原理》,何炎祥、李晓燕、王汉飞编著,华中科技大学出版社,2000。
参考书目《软件工程概论》,张海潘编著,清华大学出版社。
面向对象程序设计Object—Oriented Programming
课程简介本课程是计算机科学与技术、信息安全专业的专业选修课。本课程借助Java语言讲授面向对象程序设计,进行面向对象思维、方法的训练。通过学习、设计及实现,使学生掌握其方法、原则与理论,具有一定的面向对象设计、开发能力。为后续课程及大型应用软件的研究、设计打下基础。
指定教材《模式识别》,杨光正等,中国科学科技大学出版社,2003。10、
参考书目《模式识别原理、方法及应用》,J.P.Marques de sa,清华大学出版社,2002。 《模式识别》,边肇祺,清华大学出版社,2000。
2算法设计与分析The Design and Analysis of Algorithms
模式识别与机器学习思考题及参考答案

模式识别与机器学习期末考查思考题1:简述模式识别与机器学习研究的共同问题和各自的研究侧重点。
机器学习是研究让机器(计算机)从经验和数据获得知识或提高自身能力的科学。
机器学习和模式识别是分别从计算机科学和工程的角度发展起来的。
然而近年来,由于它们关心的很多共同问题(分类、聚类、特征选择、信息融合等),这两个领域的界限越来越模糊。
机器学习和模式识别的理论和方法可用来解决很多机器感知和信息处理的问题,其中包括图像/视频分析、(文本、语音、印刷、手写)文档分析、信息检索和网络搜索等。
近年来,机器学习和模式识别的研究吸引了越来越多的研究者,理论和方法的进步促进了工程应用中识别性能的明显提高。
机器学习:要使计算机具有知识一般有两种方法;一种是由知识工程师将有关的知识归纳、整理,并且表示为计算机可以接受、处理的方式输入计算机。
另一种是使计算机本身有获得知识的能力,它可以学习人类已有的知识,并且在实践过程中不总结、完善,这种方式称为机器学习。
机器学习的研究,主要在以下三个方面进行:一是研究人类学习的机理、人脑思维的过程;和机器学习的方法;以及建立针对具体任务的学习系统。
机器学习的研究是在信息科学、脑科学、神经心理学、逻辑学、模糊数学等多种学科基础上的。
依赖于这些学科而共同发展。
目前已经取得很大的进展,但还没有能完全解决问题。
模式识别:模式识别是研究如何使机器具有感知能力,主要研究视觉模式和听觉模式的识别。
如识别物体、地形、图像、字体(如签字)等。
在日常生活各方面以及军事上都有广大的用途。
近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的用统计模式和结构模式的识别方法。
特别神经网络方法在模式识别中取得较大进展。
理解自然语言计算机如能“听懂”人的语言(如汉语、英语等),便可以直接用口语操作计算机,这将给人们带来极大的便利。
计算机理解自然语言的研究有以下三个目标:一是计算机能正确理解人类的自然语言输入的信息,并能正确答复(或响应)输入的信息。
模式识别实验指导书2015

6
深圳大学研究生课程“模式识别理论与方法”实验指导书(4th Edition 裴继红编)
(c) 用(b)中设计的分类器对测试点进行分类: (1, 2,1) , (5,3, 2) , (0, 0, 0) , (1, 0, 0) , 并且利用式(45)求出各个测试点与各个类别均值之间的 Mahalanobis 距离。 (d) 如果 P ( w1 ) 0.8, P ( w2 ) P ( w3 ) 0.1 ,再进行(b)和(c)实验。 (e) 分析实验结果。 表格 1
深圳大学研究生课程:模式识别理论与方法
课程作业实验指导
(4th Edition) (分数:5%10=50%) (共 10 题)
实验参考教材:
a) 《Pattern Classification》by Richard O.Duda, Peter E.Hart, David G.Stork, 2nd Edition Wiley-Interscience, 2000. (机械工业出版社,2004 年, 影印版)。 b) 《模式分类》Richard O.Duda, Peter E.Hart, David G.Stork 著;李宏东, 姚天翔等译;机械工业出版社和中信出版社出版,2003 年。(上面 a 的 中文翻译版) c) 《模式识别(英文第四版)》Sergios Theodoridis, Konstantinos Koutroumbas 著;机械工业出版社,2009 年,影印版。 d) 《神经网络与机器学习(原书第三版)》Simon Haykin 著;申富 饶等译,机械工业出版社,2013 年。
裴继红 编
2015 年 2 月 深圳大学 信息工程学院
深圳大学研究生课程“模式识别理论与方法”实验指导书(4th Edition 裴继红编)
模式识别

课堂练习
对于特征模式为二维,类数为2的模式识别,当给出参 考模式r(1)=(2, 5), r(2)=(6, 1)时,试求识别边界会是 什么样? 解:由于边界是由识别函数值相等的点构成的, 所以
d ( y, r ) d ( y, r ) ( y 2) ( y 5)
(1) (2) 2 1 2
xj=(xj1, xj2 , xj3,…,xjn)T
dij
| X
k 1
n
ik
Xjk |
② 欧几里德距离
dij
X
k 1
n
ik
Xjk
2
③明考夫斯基距离
1 q q n dij ( q ) | Xik Xjk| k 1
其中当q=1时为绝对值距离,当q=2时为欧氏距离
• 50年代 Noam Chemsky 提出形式语言理论 美籍华人付京荪 提出句法结构模式识别。 • 60年代 L.A.Zadeh提出了模糊集理论,模 糊模式识别理论得到了较广泛的应用。 • 80年代 Hopfield提出神经元网络模型理论。 近些年人工神经元网络在模式识别和人工 智能上得到较广泛的应用。 • 90年代 小样本学习理论,支持向量机 (SVM)也受到了很大的重视。
d ( y, r )
(c)
y r
n i 1 i
(1)
(c)
i
2
( 2)
若设输入模式被识别出的类别(识别结果)为 c ,则
1 若d ( y, r ) d ( y, r ) c 2 若d ( y, r ) d ( y, r )
(2) (1)
识别函数
在识别中采用的函数,称为识别函数。 识别函数被定义在每一个类别上,输入模式属 于该类时,取比较大的值,属于其他类时, 取较小的值 应用识别函数g©(y),基于最短距离的模式识别 可以写成:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认知第一次作业
刘春华学号:53
以汉字识别为例,说明模式识别的四个模型各自的主要观点,以及这些模型之间有何区别。
1、模板匹配模型
刺激的视网膜图像传递到大脑,并与大脑存储的各种模式直接比较。
长时记忆中存储了各种与过去生活中形成的外部模式相对应的袖珍副本(模板),内在模板与客观事物的刺激模式之间存在着一一对应的关系。
模式识别是将刺激提供的信息与相应的模板进行匹配的过程,是一种自下而上的加工模型。
精确匹配
优点:模板说可以在一定程度上解释人在知觉过程中如何进行模式识别,并在实现具有人工智能的机器模式识别中得到了实际运用。
缺点:模板说在解释人的模式识别方面仍然有许多缺陷。
①按照该理论的假设,每一个有千变万化现象的同一个事物,记忆系统中都要储备与之一一对应的模板才能识别,需要在记忆中存储大量模板②这种理论对模式识别的解释比较刻板和生硬,缺乏人们在实际知觉中对模式识别的灵活性和变通性③没有明确阐释模板匹配的机制,尤其难以解释人们迅速识别一个新的、不熟悉模式的现象。
2、原型模型(Prototype Models)
一类相关的物体或模式抽象的、理想化的样例,允许微小的变化,不需要精确匹配。
记忆中储存的不是与刺激模式一一对应的模板,而是一类刺激模式的原型(有关某一类事物或刺激模式的概括性表征,反映一类客观事物所具有的共同基本特性)。
模式识别是在记忆中找到与当前的刺激模式最相似的原型的过程,不需要严格匹配,只要存在相应的原型,新的、不熟悉的模式也可以得到识别。
优点:原型匹配理论大大减少了模板的数量,不仅减轻了记忆负担,而且使模式识别的过程具有灵活性和变通性。
这种识别过程基本与日常生活经验相符。
缺点:理论不够清晰直观;匹配过程只强调自上而下的加工,而缺少自下而上的加工。
3、区别性特征模型(Distinctive-Features Models)
将模式的特征同存储在记忆中的特征相匹配,而不是将整个模式同模板或原型相匹配。
刺激被看成是一些基本特征(如水平、垂直或斜线、曲线等)模式识别通过特征分析来完成。
每一种刺激模式都能被分解成一些基本特征,同一类别模式的刺激物具有共同的基本特征。
刺激信息的特征和对这些特征的分析在模式识别过程中起着关键性的作用。
人已有的知识经验中的客观事物,以各种基本特征的方式储存在记忆系统中,模式识别的过程首先是对刺激信息的特征加以分析,抽取有关特征并加以合并,再与长时记忆系统中已储存的各种相应的特征比较,一旦获得二者特征之间最佳匹配,刺激就被识别。
优点:①依据刺激的特征进行识别,避免预加工的困难,使识别有更强的适应性。
②同样的特征可以出现在许多不同的模式中,极大地减轻了记忆负担。
③在识别中需要抽取必要的特征,再加以综合,使模式识别过程有更多的学习色彩。
④与模板理论相比,特征模型的优点:特征之间的关系可以确定;不同的模式可以共用相同的特征,更经济。
缺点:只有自下而上的加工,没有自上而下的加工,由局部加工到整体加工,无法说明人在识别模式中的主动性和能动性。
4、混战场模型(Pandemonium Model,Selfridge,1959)
Selfridge (1959)提出,以特征分析为基础,将模式识别过程分为4个层次。
每个层次都有一些“鬼”来执行某个特定的任务,这些层次顺序地进行工作,最后达到对模式的识别。
即映像鬼(对外部刺激进行编码,形成刺激的映像)、特征鬼(对刺激的映像进行分析,分解为各种特征)、认知鬼(监视各种特征鬼的反应,当发现了有关的特征时就会喊叫)和决策鬼(根据这些认知鬼的喊叫,选择喊叫声最大的那个认知鬼所负责的模式,作为所要识别的模式)。