北师大8上教案:2.2 第1课时 算术平方根2
八年级数学上册(北大师版)配套教学教案:2.2第1课时算术平方根

全新修订版教学设计
(教案)
八年级数学上册
老师的必备资料
家长的帮教助手
学生的课堂再现
北师大版
2.2 平方根
第1课时算术平方根
第一环节:问题情境
方法一:问题导入
内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:
有理数是有限小数或无限循环小数,无理数是无限不循
环小数.比如上一节课我们做过的:由两个边长为
1的小正方形,通过剪一剪,拼一拼,得到一个边长为
a 的大的正方形,那么有22a ,a =,2是有理数,而a
是无理数.在前面我们学过若a x
2,则a 叫x 的平方,反过来x 叫a 的什么呢?
本节课我们一起来学习.方法二:问题导入
内容:前面我们学习了勾股定理,请大家根据勾股定理,结
合图形完成填空:
2x ,2y ,2z ,2w .
目的:方法一和二都是带着问题进入到这节课的学习,
让学生体会到学习算术平方根的必要性.
效果:能表示22x
,32y ,42z ,52w ;能求得2z ,但不能求得x ,y ,w 的值.。
北师大版八年级数学上册:2.2《平方根》教案

北师大版八年级数学上册:2.2《平方根》教案一. 教材分析《平方根》是北师大版八年级数学上册第2章“实数与平方根”的第2节内容。
本节内容是在学生已经掌握了有理数、无理数的概念,以及算术平方根的基础上,进一步研究平方根的概念和性质。
通过本节内容的学习,学生能够理解平方根的定义,掌握求一个数的平方根的方法,以及了解平方根在实际生活中的应用。
二. 学情分析学生在学习本节内容之前,已经掌握了有理数、无理数的概念,以及算术平方根的知识。
但是,对于平方根的性质和求法,以及平方根在实际生活中的应用,可能还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,逐步引导学生理解和掌握平方根的知识。
三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。
2.能够运用平方根的知识解决实际问题。
3.培养学生的逻辑思维能力和创新能力。
四. 教学重难点1.平方根的概念和性质。
2.求一个数的平方根的方法。
3.平方根在实际生活中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握平方根的知识。
2.启发式教学法:通过提问和讨论,激发学生的思考,培养学生的创新能力。
3.实践操作法:通过实际操作,让学生掌握求一个数的平方根的方法。
六. 教学准备1.教学课件:制作平方根的概念、性质和求法的课件。
2.教学素材:准备一些实际问题,用于引导学生运用平方根的知识解决。
3.练习题:准备一些有关平方根的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算土地面积等,引出平方根的概念。
提问:你们知道这些实例中涉及到的数学知识吗?2.呈现(10分钟)展示平方根的定义和性质,引导学生理解和掌握。
同时,介绍求一个数的平方根的方法,如:分解因式法、配方法等。
3.操练(10分钟)让学生分组讨论,互相练习求一个数的平方根。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些实际问题,让学生运用平方根的知识解决。
期八年级数学上册 2.2 平方根 第1课时 算术平方根教案 (新版)北师大版

2平方根第1课时算术平方根【知识与技能】1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根.2.根据求一个数的算术平方根与平方是互逆运算,会利用这个互逆运算关系求某些非正负数的算术平方根.【过程与方法】经历求一个数的算术平方根与平方的互逆关系,提高学生逆向思维方法.【情感态度】学生动脑、动口,积极参与教学活动,培养他们对数学的好奇心和求知欲.【教学重点】了解算术平方根的概念,性质,会用根号表示一个正数的算术平方根.【教学难点】理解算术平方根的概念、性质.一、创设情境,导入新课上节课我们学习了无理数、了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如在a2=2中,2是有理数,而a是无理数.在前面我们学过若x2=a,则a 叫x的平方,反过来x叫a的什么呢?本节课我们就来一起研究这个问题.【教学说明】从平方入手,为学生下面学习算术平方根找到了突破口,让他们对算术平方根的求法与开平方这种互逆的关系形成了初步认识.二、思考探究,获取新知算术平方根的概念和求法.下面请大家根据勾股定理,结合图形完成填空:x2= ,y2= ,z2= ,w2=请大家分析一下,x、y、z、w中哪些是有理数?哪些是无理数?【教学说明】回忆勾股定理得到一个数的平方是一个正数,为下面给出算术平方根的概念作了开端.【归纳结论】因为没有任何整数或分数的平方等于2,3,5,所以x、y、w不是有理数,而是无理数,即,因为22=4.所以z=2,是有理数.若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为”读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是0=0.下面我们根据算术平方根的定义求一些数的算术平方根.例1求下列各数的算术平方根:(1)900;(2)1;(3)49/64;(4)14.通过上面的例题,大家思考一下,我们在求算术平方根时是借助于哪一种运算来求的?【教学说明】学生很容易看出一个正数的平方与求算术平方根是互为逆运算,有利于对算术平方根概念的理解.【答案】解:(1)因为302=900,所以900的算术平方根是30;(2)因为12=1,所以1的算术平方根是1,即1=1;(3)因为(7/8)2=49/64,所以49/64的算术平方根是7/8;(4)14【归纳结论】在求算术平方根时是借助于平方来求的.在例题中的步骤采取语言叙述和符号表示相互补充的做法,目的是让大家在计算中进一步体会一个正数的平方与求算术平方根是互为逆运算,在以后的步骤中可以简化.三、运用新知,深化理解1.填空题.(1,则这个数是 .(2)49的算术平方根是 .(3)正数的平方为144/25,719的算术平方根为 .(4)(-1.44)2的算术平方根为 .(5的算术平方根为, = 2.求下列各数的算术平方根,并用符号表示出来:(1)(7.4)2;(2)(-3.9)2;(3)2.25;(4)124.3.自由下落的物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?【教学说明】学生独立完成,加深对算术平方根概念的理解,强化了算术平方根的求法和表示方法.【答案】1.(1)5;(2)2/3;(3)12/5,4/3;(4)1.44;(5)3,0.2.2.(1=7.4;(2=3.9; =1.5;(43.解:将h=19.6代入公式h=4.9t2得t2=4,所以 =2(秒)即铁球到达地面需要2秒.四、师生互动,课堂小结本节课你学习了哪些新知识?还有什么困难?请与同学们交流.【教学说明】教师引导学生回顾所学知识,加深印象.找出不足,共同提高.1.习题2.3第1、2、3题.2.完成本课时练习部分.本节课从一个数的平方入手,用逆向思维求一个数的算术平方根,学生容易接受,解决问题起来应该说是得心应手,但要注意算术平方根的符号表示方法.。
北师大版数学八年级上册《算术平方根》教案1

北师大版数学八年级上册《算术平方根》教案1一. 教材分析《算术平方根》是北师大版数学八年级上册的一章内容。
本章主要介绍了算术平方根的概念、性质和运算方法。
通过学习本章,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够运用算术平方根解决实际问题。
二. 学情分析学生在学习本章之前,已经掌握了实数的概念和运算方法,具备了一定的数学基础。
但是,对于算术平方根的概念和运算方法可能较为陌生,需要通过实例和练习来加深理解和掌握。
三. 教学目标1.知识与技能:学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够运用算术平方根解决实际问题。
2.过程与方法:学生能够通过观察、操作、思考、交流等方式,培养解决问题的能力。
3.情感态度与价值观:学生能够对数学产生兴趣,培养积极的学习态度,增强自信心。
四. 教学重难点1.重点:算术平方根的定义和求法。
2.难点:算术平方根在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引发学生的兴趣和思考,培养解决问题的能力。
2.启发式教学法:通过提问和引导,激发学生的思维,引导学生主动探索和发现。
3.合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学素材:准备相关的实例和实际问题,用于引发学生的兴趣和思考。
2.教学工具:准备黑板、粉笔等教学工具,用于展示和讲解。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量物体长度、计算土地面积等,引发学生的兴趣和思考,引出算术平方根的概念。
2.呈现(15分钟)教师通过讲解和展示,介绍算术平方根的定义和性质,让学生初步了解和认识算术平方根。
3.操练(15分钟)教师给出一些算术平方根的题目,学生独立完成,教师进行个别指导和讲解。
通过反复练习,让学生掌握求算术平方根的方法。
4.巩固(10分钟)教师给出一些实际问题,学生运用算术平方根的知识解决。
通过解决实际问题,巩固学生对算术平方根的理解和掌握。
北师大版数学八年级上册数学课件:2_2 平方根(第1课时)

课堂检测 基础巩固题
1. 4的算术平方根是 ( D )
A. ± 3
2 B. 2
C. ±2
D. 2
2. 下列说法正确的是 ( D )
A. -1的算术平方根是-1
B. 0没有算术平方根
C.-1的相反数没有算术平方根
D. (-1)2的算术平方根是1
课堂检测
基础巩固题
3.填空:(看谁算得又对又快) (1) 一个数的算术平方根是3,则这个数是 9 . (2) 一个自然数的算术平方根为a,则这个自然数是_a_2_;
已知一个正数的平方,求这个正数. 表1和表2中的两种运算有什么关系?
探究新知
一般地,如果一个正数 x 的平方等于a,即x2=a,那么 这个正数x叫做a的算术平方根. a的算术平方根记为 a,读作 “ 根号 a” .
规定:0的算术平方根是0,即 0=0.
探究新知
怎么用符号来表示一个数的算术平方根? 平方根号
(2)有意义; (4)有意义.
巩固练习
变式训练
1.下列各式是否有意义,为什么?
(1) - 3 (2) −3(3)
√
×
(−8)2 (4)
√
1
√92
2.下列各式中,x为何值时有意义?
(1) −x x (2) x2+1
解:因为-x≥0, 解: 因为x2+1≥0恒成立,
所以x≤0.
所以x为任何数.
探究新知 素养考点 2 利用非负性求字母的值 例2 若|m-1| + n+3=0,求m+n的值.
探究新知
二、填表:
正方形的边长/cm 1
2
0.5
2 3
正方形的面积/cm2 1
027.北师大版八年级数学上册2.2 第1课时 算术平方根(教案)

2.2平方根第1课时 算术平方根教学目标1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)教学过程一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32; (3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质 【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计 算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a ≥0,a ≥0教学反思 让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180 °18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20平行四边形判定定理1两组对角分别相等的四边形是平行四边形21平行四边形判定定理2两组对边分别相等的四边形是平行四边形22平行四边形判定定理3对角线互相平分的四边形是平行四边形23平行四边形判定定理4一组对边平行相等的四边形是平行四边形24矩形性质定理1矩形的四个角都是直角25矩形性质定理2矩形的对角线相等26矩形判定定理1有三个角是直角的四边形是矩形27矩形判定定理2对角线相等的平行四边形是矩形28菱形性质定理1菱形的四条边都相等29菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角30菱形面积= 对角线乘积的一半,即S= (a×b )÷231菱形判定定理1四边都相等的四边形是菱形32菱形判定定理2对角线互相垂直的平行四边形是菱形33正方形性质定理1正方形的四个角都是直角,四条边都相等34正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35定理1关于中心对称的两个图形是全等的36定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38等腰梯形性质定理等腰梯形在同一底上的两个角相等。
北师大版八年级数学上册:2.2《平方根》教学设计2

北师大版八年级数学上册:2.2《平方根》教学设计2一. 教材分析《平方根》是北师大版八年级数学上册第二章第二节的内容。
本节主要让学生掌握平方根的概念,了解平方根的性质,会求一个数的平方根。
教材通过引入问题情境,让学生感受数学与生活的联系,培养学生的数学应用意识。
同时,平方根的学习也为后续学习立方根、算术平方根等概念打下基础。
二. 学情分析八年级的学生已经学习了有理数的乘方,对乘方的概念和性质有一定的了解。
但平方根的概念与有理数的乘方有所不同,需要学生能够较好地理解和掌握。
此外,学生可能对实数的概念不是很清晰,需要在教学中引导学生正确理解实数与平方根的关系。
三. 教学目标1.理解平方根的概念,掌握平方根的性质。
2.能够求一个正数的平方根。
3.培养学生的数学思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.重点:平方根的概念和性质。
2.难点:求一个数的平方根,特别是非正数的平方根。
五. 教学方法1.情境教学法:通过引入生活情境,让学生感受数学与生活的联系。
2.启发式教学法:引导学生思考,发现规律,培养学生的数学思维能力。
3.练习法:通过大量的练习,让学生巩固所学知识。
六. 教学准备1.教学课件:制作平方根的概念、性质和求平方根的课件。
2.练习题:准备一些有关平方根的练习题,包括正数、负数和零的平方根。
3.教学视频:准备一个有关平方根的数学故事视频,用于导入新课。
七. 教学过程1.导入(5分钟)播放教学视频,让学生了解平方根的由来。
然后提问:什么是平方根?引导学生思考并回答。
2.呈现(15分钟)讲解平方根的概念,用PPT展示平方根的性质。
让学生观察并总结平方根的性质。
3.操练(15分钟)让学生分组讨论,每组找一个数的平方根,并解释如何找到这个平方根。
然后让学生上台展示并讲解。
4.巩固(10分钟)让学生独立完成练习题,检验学生对平方根的理解。
教师巡回指导,解答学生的疑问。
5.拓展(10分钟)引导学生思考:平方根有哪些应用?让学生举例说明,培养学生的数学应用意识。
北师大版数学八年级上册2.2.1 算术平方根教案

2平方根第1课时算术平方根●置疑导入前面我们学习了勾股定理,请大家根据勾股定理,结合图形(如图)完成下列问题:(多媒体出示)问题1:x2=__2__,y2=__3__,z2=__4__,w2=__5__.问题2:你能求出x,y,z,w的具体值吗?x,y,z,w中哪些是有理数?哪些是无理数?你是怎么判断的呢?没有任何整数或分数的平方等于2,3,5,所以x,y,w不是有理数而是无理数,因为z2=4,所以z=2,是有理数.【教学与建议】教学:通过让学生独立解决问题,既复习了勾股定理的相关知识,同时又为下面算术平方根概念的探究埋下了伏笔.建议:问题2要给学生充足的时间进行感知,让学生学会发现.●复习导入上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道了有理数和无理数的区别:有理数是有限小数或无限循环小数,无理数是无限不循环小数.上一节课我们解决了这样一个问题:有两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a2=2,2是有理数,而a是无理数.那么该怎样表示a呢?在前面我们学过:若x2=a,则a叫x的平方,反过来,x叫a的什么呢?本节课我们一起来学习.【教学与建议】教学:利用复习拼图例子引入,学生知道大正方形的边长是无理数,自然地想知道这个无理数该怎样表示.建议:可把上节课的题目投在屏幕上,让学生看着图形直观体会.命题角度1求算术平方根直接利用算术平方根的定义,求一个非负数的算术平方根.【例1】(1)9的算术平方根是(D)A.±3B.3C.±3 D.3(2)(-2)2的算术平方根是__2__;-916=__-34__.命题角度2已知算术平方根求原数熟练掌握算术平方根的定义,已知算术平方根求出原数.【例2】(1)一个数的算术平方根是4,则这个数是__16__.(2)若一个数的算术平方根是a,则这个数是__a2__.命题角度3概念的双重应用此类型题目,重点考查算术平方根的定义,注意概念的双重应用.【例3】(1)1104=__1100__.(2)16的算术平方根是__2__.命题角度4算术平方根的非负性算术平方根具有非负性,借助“几个非负数的和为零,那么每一个非负数都为零”的性质求字母的值.【例4】(1)若a-3与b-5互为相反数,则a=__3__,b=__5__.(2)若a-2+|b+1|=0,则(a+b)2 023=__1__.高效课堂教学设计1.了解算术平方根的概念,会用根号表示一个正数的算术平方根.2.经历算术平方根及其性质的产生过程,能用概念及性质解决有关问题.▲重点算术平方根与平方根的概念.▲难点算术平方根的性质的应用.◆活动1 创设情境 导入新课(课件)前面我们学习了勾股定理,请大家根据勾股定理,结合图形(投影教材P 26图2-4)完成下列问题:问题1:x 2=__2__,y 2=__3__, z 2=__4__,w 2=__5__.问题2:x ,y ,z ,w 中,__z __是有理数,__x ,y ,w __是无理数.◆活动2 实践探究 交流新知【探究】认识算术平方根(投影出示)一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做__a 的算术平方根__,记作__ a __,读作“__根号a __”.a 叫做__被开方数__,0的算术平方根是__0__.问题1:你能根据132=169说出169的算术平方根是多少吗?169的算术平方根是__13__.问题2:你能根据x 2=7(x >0)说出7的算术平方根是多少吗?7的算术平方根是__x __.◆活动3 开放训练 应用举例【例1】(教材P 26例1)求下列各数的算术平方根:(1)900; (2)1; (3)4964; (4)14. 【方法指导】利用算术平方根的性质求解.解:(1)因为__30__2=900,所以900的算术平方根是__30__,即900 =__30__;(2)因为__1__2=1,所以1的算术平方根是__1__,即1 =__1__;(3)因为__⎝⎛⎭⎫78 __2=4964 ,所以4964 的算术平方根是__78 __,即4964 =__78__; (4)14的算术平方根是__14 __.【例2】(教材P 26例2)s (m)与下落时间t (s)的关系为s =4.9t 2.有一铁球从19.6 m 高的建筑物上自由下落,到达地面需要多长时间?【方法指导】一个正数的算术平方根是正数.解:将s =19.6代入公式s =4.9t 2,得t 2=__4__,所以t =__4 __=__2__(s),即铁球到达地面需要__2__s.【例3】求一个数的算术平方根. (1)(-64)2 =__64__;(2)⎝⎛⎭⎫-361212 =__36121__; (3)(-7.2)2 =__7.2__.【方法指导】当a 为负数时,a 2 =__-a __.◆活动4 随堂练习1.下列各式中正确的是(D)A .49 =±9B .(-8)2 =-8C .(3 )2=-3D .(-5 )2=52.求下列各数的算术平方根:(1)81;(2)121169;(3)0.36;(4)10-6;(5)225;(6)⎝⎛⎭⎫79 0 . 解:(1)9;(2)1113;(3)0.6;(4)10-3;(5)15;(6)1. 3.已知|x -2|+y -4 =0,求y x 的算术平方根.解:∵|x -2|+y -4 =0,∴x -2=0,y -4=0,∴x =2,y =4,∴y x =42=16,16 =4,∴y x 的算术平方根为4.4.在户外活动中,刺激度排名榜首的是“蹦极”(如图).“蹦极”就是跳跃者站在高约40 m以上(相当于10层楼高)的跳台上,把一端固定的长长的橡皮条绑牢跳下,跳跃者在空中享受“自由落体”[已知自由下落物体下落的距离s(m)与下落时间t(s)的关系为s=4.9t2].如果“蹦极”运动起跳点的高度为44.1 m,那么跳跃者在空中能享受多少秒的“自由落体”?解:把s=44.1代入s=4.9t2,得t2=9,所以t=9=3(s),故跳跃者在空中能享受3 s的“自由落体”.◆活动5课堂小结与作业学生活动:这节课的主要收获是什么?有什么感受?教学说明:掌握算术平方根的概念和性质.作业:课本P27习题2.3中的T1、T2、T3.这节课的重点是算术平方根的概念教学和正数的算术平方根的求法,在讲解概念时应注意概念的自然引导和概念的解释,特别是在x2=a中,正数x是a的算术平方根,x为正数,这一点一定要强调清楚.通过师生间频繁地互动,使学生深刻理解概念,准确表述,并通过练习巩固掌握.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 平方根
第1课时 算术平方根
第一环节:问题情境
方法一:问题导入
内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:
有理数是有限小数或无限循环小数,无理数是无限不循
环小数.比如上一节课我们做过的:由两个边长为1
的小正方形,通过剪一剪,拼一拼,得到一个边长为a
的大的正方形,那么有22=a ,a = ,2是有
理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.
方法二:问题导入
内容:前面我们学习了勾股定理,请大家根据勾股定理,结
合图形完成填空:
=2x ,=2y ,=2z ,=2w . 目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.
效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.
说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.
第二环节:初步探究
内容1:情境引出新概念
22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?
目的:让学生体验概念形成过程,感受到概念引入的必要性.
效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数,但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.
说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”
内容2:在上面思考的基础上,明晰概念:
一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方。