九年级上册数学期末模拟题
九年级数学期末模拟精品测试题及答案,精品3套

(第2题)(第3题)(第6题)九年级数学期末模拟精品测试题及答案,精品3套九年级上全册精品试卷(满分:150分)一、选择题。
(本题共10个小题,每小题4分,共40分)1、2010上海世博会刚刚圆满闭幕,下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是()A、 B、 C、 D、2、如图,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O•的半径为()A、、、cm3、图中∠BOD的度数是()A、55°B、110°C、125° D.150°4、若x<0,则xxx2-的结果是()A.0 B.-2 C.0或-2 D.25、下列各式中,最简二次根式是()A、32B、22+a C、a8 D、23a6、我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中,垂线段最短”在此基础上,人们定义了点与点的距离,•点到直线的距离.类似地,如图,若P是⊙O外一点,直线PO交⊙O 于A、B两点,PC•切⊙O于点C,则点P到⊙O的距离是()A、线段PO的长度B、线段PA的长度C、线段PB的长度 D、线段PC的长度7、下列命题错误..的是()A、经过三个点一定可以作圆B、三角形的外心到三角形各顶点的距离相等C、同圆或等圆中,相等的圆心角所对的弧相等D、经过切点且垂直于切线的直线必经过圆心8、如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,(第8题)(第14题)(第15题)(第16题)∠AOD =90°,则∠B 的度数是( )A 、500B 、400C 、450D 、6009、已知一元二次方程230x px ++=的一个根为3-,则p 的值为( )A .1B .2C .3D .410、若m,n 是方程020102=--x x 的两根,则代数式)20102()20102(22++-⨯--n n m m 的值为( ).A .-2010 B.2010 C.0 D.1二、填空题。
九年级上学期期末数学模拟测试题

九年级上学期期末数学模拟测试题一、选择题:(1)个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为 ( ) A ︒30 B ︒45 C ︒60 D ︒75(2)若函数y=k 1x(k 1≠0)和函数y=xk2(k 2≠0)在同一坐标系内的图象没有公共点,则k 1和k 2的关系是( )A 、互为倒数B 、符号相反C 、绝对值相等D 、符号相同(3)、如图3,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的……………( )A 、51 B 、41 C 、31 D 、103 (4)、A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为 ( )A 、±6 B、±3 C 、±23D 、不能确定(5)、既是轴对称,又是中心对称图形的是 ( )A .矩形B .平行四边形C .正三角形D .等腰梯形(6).如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2 ,那么S 1、S 2的大小关系是(A) S 1 > S 2 (B) S 1 = S 2 (C) S 1<S 2 (D) S 1、S 2 的大小关系不确定(7)如图,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是 ( )(A )一组对边平行而另一组对边不平行 (B )对角线相等 (C )对角线互相垂直 (D )对角线互相平分 (8).如果小强将镖随意投中如图8所示的正方形木板, 那么镖落在阴影部分的概率为( ) A .61 B .81 C .91 D .121 (9)四边形ABCD 对角线AC 、BD 交于O ,若AO=OD 、BO=OC 则下列说法正确的是( )A 平行四边形B 等腰梯形C 矩形D 以上都不对(10)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志。
期末模拟试题(一)- 2022-2023学年九年级上册数学同步培优题库(浙教版)(解析卷)

2022-2023学年九年级上期期末模拟试题(一)测试内容:九年级上全册+九年级下1-2章注意事项:本试卷满分120分,考试时间120分钟,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·浙江九年级期末)对一批校服进行抽查,统计合格校服的套数,得到合格校服的频率频数表如下:抽取件数50 100 150 200 500 800 1000合格频数30 80 120 140 445 720 900合格频率0.6 0.8 0.8 0.7 0.89 0.9 0.9估计出售1200套校服,其中合格校服大约有()A.1080套B.960套C.840套D.720套【答案】A【分析】根据表格中数据估计合格校服的概率约为0.9,再根据概率公式计算即可.【详解】解:根据表格数据可估计合格校服的概率约为0.9,∴估计出售1200套校服,其中合格校服大约有1200×0.9=1080(套),故选:A.【点睛】本题考查频率估计概率、样本估计总体,根据表格数据估计出合格校服的概率是解答的关键.2.(2022·四川巴中市·中考真题)两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足BP APAP AB=,则称点P是AB的黄金分割点.黄金分割在日常生活中处处可见,例如:主持人在舞台上主持节目时,站在黄金分割点上,观众看上去感觉最好.若舞台长20米,主持人从舞台一侧进入,设他至少走x米时恰好站在舞台的黄金分割点上,则x满足的方程是()A.(20﹣x)2=20x B.x2=20(20﹣x)C.x(20﹣x)=202D.以上都不对【答案】A【分析】点P是AB的黄金分割点,且PB<P A,PB=x,则P A=20−x,则BP APAP AB=,即可求解.【详解】解:由题意知,点P是AB的黄金分割点,且PB<P A,PB=x,则P A=20−x,∴BP APAP AB=,∴(20−x)2=20x,故选:A.【点睛】本题考查黄金分割,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.3.(2022·石家庄市九年级二模)现从四个数2-,0,1,2中任意选出两个不同的数,分别作为函数y ax b =+中a ,b 的值.那么所得图像中,分布在一二三象限的概率是( )A .16B .112 C .13D .23【答案】A【分析】先利用列表的方法求解从四个数2-,0,1,2中任意选出两个不同的数的结果数,再判断使函数y ax b =+的图像分布在一二三象限的结果数,再直接利用概率公式进行计算即可得到答案. 【详解】解:列表如下:2-0 1 22-()2,0-()2,1-()2,2- 0()0,2-0,1()0,21()1,2-()1,01,22()2,2- ()2,0 ()2,1一共有12种等可能的结果,而y ax b =+分布在一二三象限,a ∴>0,b >0, 所以符合条件的等可能的结果数有2种,所以使y ax b =+分布在一二三象限的概率是21=.126选:.A 【点睛】本题考查的是利用画树状图或列表的方法求解等可能事件的概率,一次函数的性质,灵活应用以上知识解题是解题的关键.4.(2022•绵阳市九年级一模)如图,以O 为圆心的,C 、D 三等分,连MN 、CD ,下列结论错误的是( )A .∠COM =∠CODB .若OM =MN ,则∠AOB =20°C .MN ∥CD D .MN =3CD 【分析】连接ON 、MC 、DN ,过点O 作OE ⊥CD 交于点E ,根据圆周角定理判断A ;根据等边三角形的判定定理和性质定理判断B;根据垂径定理、平行线的判定定理判断C,根据两点之间线段最短判断D.【解析】连接ON、MC、DN,过点O作OE⊥CD交于点E,∵,∴∠COM=∠COD,A选项结论正确,不符合题意;∵OM=MN,OM=ON,∴OM=ON=MN,∴△OMN为等边三角形,∴∠MON=60°,∵,∴∠AOB=20°,B选项结论正确,不符合题意;∵OE⊥CD,∴,∴,∴OE⊥MN,∴MN∥CD,C选项结论正确,不符合题意;∵MC+CD+DN>MN,∴MN<3CD,D选项结论错误,符合题意;故选:D.【点评】本题考查的是圆心角、弧、弦直径的关系、垂径定理、平行线的判定,掌握圆心角、弧、弦直径的关系定理是解题的关键.5.(2022·广西·九年级专题练习)如图,在△ABC中,点D在AC上,点F是BD的中点,连接AF 并延长交BC点E,BE:BC=2:7,则AD:CD=()A.2:3 B.2:5 C.3:5 D.3:7【答案】A【分析】过点D作DH∥AE交BC于H,根据平行线的性质得BE=EH,即可得EH:CH=2:3,根据平行线等分线段定理即可得23 AD EHDC CH==.【详解】解:如图,过点D作DH∥AE交BC于H,∵BF =DF ,FE ∥DH ,∴BE =EH ,∴BE :BC =2:7,∴EH :CH =2:3, ∵AE ∥DH ,∴23AD EH DC CH ==,故选:A . 【点睛】本题考查了平行线等分线段定理,解题的关键是学会添加辅助线,利用平行线等分线段成比例定理解决问题.6.(2022·江苏·南京郑和外国语学校九年级期中)如图,正方形ABCD 和正三角形AEF 内接于O ,DC 、BC 交EF 于G 、H ,若正方形ABCD 的边长是4,则GH 的长度为( )A .22B .44233-C .463D .8233- 【答案】A【分析】连接AC 交EF 于M ,连接OF ,根据正方形的性质、等边三角形的性质及等腰三角形的性质即可求解.【详解】解:连接AC 交EF 于M ,连接OF ,四边形ABCD 是正方形,90B ∴∠=︒,AC ∴是O 的直径,ACD ∴∆是等腰直角三角形,242AC AD ∴==,22OA OC ∴==,AEF ∆是等边三角形,AM EF ∴⊥,30OFM ∠=︒,122OM OF ∴==,2CM ∴=,45ACD ∴∠=︒,90CMG ∠=︒,45CGM ∴∠=︒,CGH ∴∆是等腰直角三角形,222GH CM ∴==.故选:A .【点睛】本题考查正多边形与圆的关系,涉及到特殊锐角三角函数值、正方形的性质、等边三角形的性质及等腰三角形的性质,解题的关键是综合运用所学知识.7.(2022·河南南阳·二模)如图,平面直角坐标系中,A (4,0),点B 为y 轴上一点,连接AB ,tan ∠BAO =2,点C ,D 为OB ,AB 的中点,点E 为射线CD 上一个动点、当△AEB 为直角三角形时,点E 的坐标为( )A .(4,4)或(25+2,4)B .(4,4)或(25-2,4)C .(12,4)或(25+2,4)D .(12,4)或(25-2,4)【答案】C【分析】根据已知可得OA =4,OB = 8,从而利用勾股定理可求出AB ,然后分两种情况,当∠AE 1B =90°,当∠BAE 2=90°,进行计算即可解答. 【详解】解:∵A (4,0),∴OA =4, 在Rt △ABO 中,tan ∠BAO =2BOOA=,∴OB =2OA =8, ∴22228445AB OA OB =+=+=, ∵点C ,D 为OB ,AB 的中点,∴142OC OB ==,122CD OA ==,//CD OA 如图,分两种情况:当∠AE 1B =90°,点D 为AB 的中点, ∴DE 1=1252AB =,11225CE CD DE =+=+,∴E 1(52+2,4 ), 当∠BAE 2=90°,过点E 2作E 2F ⊥x 轴,∴∠BAO +∠E 2AF = 90°, ∵∠BOA =90°,∴∠ABO +∠BAO =90°,∴∠ABO =∠E 2AF , ∵∠BOA =∠AFE 2=90°,∴△BOA ∽△AFE 2,∴2BO AF OA E F =,∴844AF =,∴AF =8,∴OF =OA +AF =12,∴E 2(12,4). 综上所述,当△AEB 为直角三角形时,点E 的坐标为(52+2,4 )或(12,4).【点睛】本题考查了解直角三角形,相似三角形的判定与性质,三角形的中位线定理,勾股定理的逆定理,坐标与图形的性质,熟练掌握一线三等角构造相似模型是解题的关键,同时渗透了分类讨论的数学思想.8.(2022·重庆九年级开学考试)重庆实验外国语学校坐落在美丽且有灵气的华岩寺旁边,特别是金灿灿的大佛让身高1.6米的小王同学很感兴趣,刚刚学过三角函数知识,他就想测一下大佛的高度,小王到A 点测得佛顶仰角为37︒,接着向大佛走了10米来到B 处,再经过一段坡度4:3i =,坡长为5米的斜坡BC 到达C 处,此时与大佛的水平距离 6.2DH =米(其中点A 、B 、C 、E 、F 在同一平面内,点A 、B 、F 在同一条直线上),请问大佛的高度EF 为( )(参考数据:tan370.75︒≈,sin370.60︒≈,cos370.80)︒≈.A .15米B .16米C .17米D .18米【答案】B【分析】过点C 作CM BF ⊥于点M ,过点G 作GN EF ⊥于点N ,设4CM x =,3BM x =,则由勾股定理可以求出x =1,再证明四边形DHFM 和四边形AGNF 是矩形,得到 6.2DH FM ==米,从求出19.2AF GN ==米,最后解直角三角形即可.【详解】解:过点C 作CM BF ⊥于点M ,过点G 作GN EF ⊥于点N , 斜坡BC 的坡度4:3i =,5BC =米,∴设4CM x =,3BM x =,∵222CM BM BC += 222(4)(3)5x x ∴+=,解得1x =,4CM ∴=米,3BM =米, ∵DH ⊥EF ,AB ⊥EF ,DM ⊥AB ,GA ⊥AB ,∴四边形DHFM 和四边形AGNF 是矩形, 6.2DH FM ∴==米,10AB =米,103 6.219.2AF GN AB BM MF ∴==++=++=米,在Rt ENG ∆中,37EGN ∠=︒,tan 370.75ENNG∴︒=≈, 0.750.7519.214.4EN NG ∴=⨯=⨯=米,14.4 1.616EF EN NF ∴=+=+=米.故选B .【点睛】本题主要考查了坡比,勾股定理,解直角三角形,矩形的性质与判定等等,解题的关键在于能够熟练掌握相关知识进行求解.9.(2022·四川旌阳·九年级期末)关于x 的函数2|2|41y x x x k =---++的图象与x 轴有四个不同的公共点,则k 的取值范围是( ) A .134k <且3k ≠ B .1334k <<C .134k >D .134k <【答案】B【分析】首先根据绝对值的意义将2|2|41y x x x k =---++整理为2253(2)31(2)x x k x y x x k x ⎧-++≥=⎨-+-<⎩,根据图象与x 轴有四个不同的公共点得到判别式24>0b ac ∆=-,代入列出不等式组求解即可.【详解】解:∵2|2|41y x x x k =---++∴2253(2)31(2)x x k x y x x k x ⎧-++≥=⎨-+-<⎩,由题意得22(5)4(3)0(3)4(1)0k k ⎧--+>⎨--->⎩,且当2x =时,>0y ,即4810k -++>,解得:1334k <<.故选:B . 【点睛】此题考查了绝对值的意义,二次函数的判别式和与x 轴交点的关系,解题的关键是熟练掌握.抛物线与x 轴交点个数由△决定:Δ=b 2﹣4ac >0时,抛物线与x 轴有2个交点;Δ=b 2﹣4ac =0时,抛物线与x 轴有1个交点;Δ=b 2﹣4ac <0时,抛物线与x 轴没有交点.10.(2022·绵阳市·九年级期末)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,下列结论:①abc <0;②9a +3b +c <0;③a >3c;④若方程ax 2+bx +c =0两个根x 1和x 2,则3<|x 1﹣x 2|<4,其中正确的结论有( )A .①②③B .①②④C .①③④D .②③④【答案】A【分析】①根据对称轴的位置可判断出ab 的符号,然后根据函数和y 轴的交点坐标可判断出c 的正负,进而可判断出abc 的正负;②根据二次函数的对称性可得当x =3时,即可判断函数值y 的正负;③首先由对称轴公式得出a 与b 的关系,然后根据当x =1时函数值y 为负求解即可; ④根据二次函数与x 轴的交点坐标的取值范围求解即可.【详解】①抛物线对称轴在y 轴右侧,则a ,b 异号,而c >0,则abc <0,故结论正确; ②由图象可知x =3时,y =9a +3b +c <0,故结论正确; ③∵2b a=2,∴b =﹣4a ,∵当x =1时,y =a +b +c <0,∴﹣3a +c <0,∴a >3c,故结论正确; ④若方程ax 2+bx +c =0两个根x 1和x 2,由图象可知,0<x 1<1,3<x 2<4, ∴则2<|x 1﹣x 2|<4,故结论错误;故选:A .【点睛】此题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的图像和性质. 二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·江苏)小红在地上画了半径为2m 和3m 的同心圆,如图,然后在一定距离外向圈内掷小石子,若每一次都掷在大圆形成的封闭区域内,则掷中阴影部分的概率是________________.【答案】59【分析】用阴影部分的面积除以大圆的面积即可求得概率. 【详解】解:S 阴影=π(32﹣22)=5π(cm 2), 所以掷中阴影部分的概率是55==99S S 阴影大圆ππ,故答案为:59.【点睛】考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.12.(2022·黑龙江·九年级期中)设a 、b 为两实数,且满足2430a a --=,2430b b --=,则b aa b+=______.13.(2022·四川旌阳·九年级期末)点11(2,)P y -,22(2,)P y ,33(3,)P y 均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是________(用“>”连接). 【答案】231y y y >>【分析】根据二次函数的解析式求得开口方向和对称轴,根据二次函数的性质可得离对称轴越远的点的函数值越小,分别计算123,,P P P 到对称轴1x =的距离,进而即可求得1y ,2y ,3y 的大小关系. 【详解】解:22y x x c =-++,∴对称轴为212x =-=-,10a =-< ∴二次函数的图象开口向下,则离对称轴越远的点的函数值越小,点11(2,)P y -,22(2,)P y ,33(3,)P y 均在二次函数22y x x c =-++的图象上, 点123,,P P P 到对称轴1x =的距离分别为3,1,2,则231y y y >>故答案为:231y y y >> 【点睛】本题考查了二次函数图象的性质,掌握二次函数的图象的性质是解题的关键.14.(2022·河南·郑州中原一中实验学校九年级月考)如图,在ABC 中,8AB cm =,16BC cm =,动点P 从点A 开始沿AB 边运动,速度为2/cm s ;动点Q 从点B 开始沿BC 边运动,速度为4/cm s ;如果P 、Q 两动点同时运动,那么经过______秒时QBP △与ABC 相似.【答案】0.8或2【分析】设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:BP BQBA BC=时,BPQ BAC ∽,即824816t t-=;当BP BQ BC BA=时,BPQ BCA △∽△,即824168t t -=,然后解方程即可求出答案. 【详解】解:设经过t 秒时,QBP △与ABC 相似,则2AP tcm =,(82)BP t cm =-,4BQ tcm =, ∵PBQ ABC ∠=∠,∴当BP BQ BA BC=时,BPQ BAC ∽,即824816t t-=,解得:2t =; 当BP BQ BC BA=时,BPQ BCA △∽△,即824168t t-=,解得:0.8t =; 综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似,【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角相等的两个三角形相似,解题的关键是准确分析题意列出方程求解.15.(2022·辽宁·沈阳实验中学二模)如图,新疆部A 位于学校主教学楼P 南偏东45°方向,且距离教学楼60米,某同学从这里出发沿着正北方向走了一段时间后,到达位于主教学楼北偏东30°方向的综合楼B 处,此时这位同学一共走的距离为______米.【答案】(2306.【分析】过P 作PC ⊥AB 于C ,由新疆部A 位于学校主教学楼P 南偏东45°方向,可得∠A =45°可证PC =AC ,由P A =60米,由三角函数可得A C=PC =2B 处在教学楼北偏东30°方向,可得∠B =30°,可求PB =2PC =602Rt △BCP 中,BC =PB cos30°=6AB =BC +AC (302306=米即可.【详解】解:过P 作PC ⊥AB 于C ,∵新疆部A 位于学校主教学楼P 南偏东45°方向, ∴∠A =45°∴∠CP A =90°-∠A =45°,∴PC =AC , 设A C=PC =x ,∵P A =60米∴A C=PC =P A cos45°=6023022⨯=, ∵综合楼B 处在教学楼北偏东30°方向,∴∠B =30°,∴PB =2PC =602, 在Rt △BCP 中,BC =PB cos30°36023062=⨯=, ∴AB =BC +AC ()302306=+米.故答案为:()302306+.【点睛】本题考查解直角三角形应用,掌握方位角,三角函数定义,以及三边之间关系是解题关键. 16.(2022·黑龙江龙凤·九年级期末)如图,平行四边形ABCD 中,AC BC ⊥,5AB =,3BC =,点P 在边AB 上运动以P 为圆心,PA 为半径作P ,若P 与平行四边形ABCD 的边有四个公共点,则AP 的长度满足条件是_______.【答案】201295AP <<或52AP =【分析】求出⊙P 与BC ,CD 相切时AP 的长以及⊙P 经过A ,B ,C 三点时AP 的长即可判断. 【详解】解:如图1中,当⊙P 与BC 相切时,设切点为E ,连接PE . 在Rt △ABC 中,由勾股定理得:22AB BC -=4,设AP=x ,则BP=5-x ,PE=x ,∵⊙P 与边BC 相切于点E ,∴PE ⊥BC , ∵BC ⊥AC ,∴AC ∥PE ,∴PE PB AC AB =,∴545x x -=,∴2020,99x AP ==;如图2中,当⊙P与CD相切时,设切点为E,连接PE.∵S平行四边形ABCD=2×12×3×4=5PE,∴PE=125,观察图象可知:209<AP<125时⊙P与平行四边形ABCD的边的公共点的个数为4,②⊙P过点A、B、C三点,如图3,⊙P与平行四边形ABCD的边的公共点的个数为4,此时AP=52,综上所述,AP的值的取值范围是:201295AP<<或AP=52.故答案为:201295AP<<或AP=52.【点睛】本题考查平行四边形的性质,勾股定理,直线与圆的位置关系等知识,解题的关键是学会利用特殊位置解决问题.三、解答题(本大题共8小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2022·江苏·常州外国语学校九年级月考)计算:(1)2tan45°•sin30°+cos30°•tan60°;(2)cos60°2cos45°+3tan230°.【答案】(1)52;(2)1.【分析】(1)将tan45°=1,sin30°=12,cos30°=3tan60°= 3(2)将cos60°=12,cos45°=22,tan230°=231()=33分别代入,再计算解题.【详解】解:(1)2tan45°•sin30°+cos30°•tan60°13=21+322⨯⨯⨯3=1+25=2;(2)cos60°﹣22cos45°+3tan230°21223=3()2223-⨯+⨯1113223=-+⨯1=.【点睛】本题考查特殊角的锐角函数值、锐角三角函数值的混合运算等知识,是重要考点,掌握相关知识是解题关键.18.(2022·广东广州·九年级期末)为落实“双减”,进一步深化白云区“数学提升工程”,提升学生数学核心素养,2021年12月3日开展“双减”背景下白云区初中数学提升工程成果展示现场会,其中活动型作业展示包括以下项目:①数独挑战;②数学谜语;③一笔画;④24点;⑤玩转魔方.为了解学生最喜爱的项目,随机抽取若干名学生进行调查,将调查结果绘制成两个不完整的统计图,如图:(1)本次随机抽查的学生人数为__________人,补全图(Ⅰ);(2)参加活动的学生共有500名,可估计出其中最喜爱①数独挑战的学生人数为__________人,图(Ⅱ)中扇形①的圆心角度数为__________度;(3)计划在①,②,③,④四项活动中随机选取两项作为重点直播项日,请用列表或画树状图的方法,求恰好选中①,④这两项活动的概率【答案】(1)60,见解析;(2)125、90;(3)1 6【分析】(1)由②的人数除以所占百分比求出抽查的学生人数,即可解决问题;(2)由该校人数乘以最喜爱“①数独挑战”的人数所占的比例得出该校学生最喜爱“①数独挑战”的人数,再用360°乘以最喜爱“①数独挑战”的人数所占的比例即可;(3)画树状图,再由概率公式求解即可.【详解】解:(1)本次随机抽查的学生人数为:18÷30%=60(人),则喜爱⑤玩转魔方游戏的人数为:60-15-18-9-6=12(人),补全图(Ⅰ)如下:故答案为:60;(2)估计该校学生最喜爱“①数独挑战”的人数为:500×1560=125(人),图(Ⅱ)中扇形①的圆心角度数为:360°×1560=90°,故答案为:125,90; (3)画树状图如图:共有12个等可能的结果,恰好选中“①,④”这两项活动的结果有2个, ∴恰好选中“①,④”这两项活动的概率为212=16. 【点睛】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.19.(2022·四川成都·九年级期末)如图,在平面直角坐标系中,ABC 的顶点坐标分别为A (0,2),B (1,3),C (2,1).(1)请在平面直角坐标系中,以原点O 为位似中心,画出ABC 的位似图形A 1B 1C 1,使它与ABC 的相似比为2:1;(2)求出A 1B 1C 1的面积. 【答案】(1)见解析 (2)6【分析】(1)分别作出三个顶点的对应点,再首尾顺次连接即可; (2)用矩形的面积减去四周三个三角形的面积. (1)如图所示,即为所求.(2)△A 1B 1C 1的面积为4×4-12×4×2-12×2×2-12×2×4=6.【点睛】本题主要考查作图—位似变换,解题的关键是掌握位似变换的定义与性质.20.(2022·贵州遵义)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,AB 是灯杆,CD 是灯管支架,灯管支架CD 与灯杆间的夹角60BDC ∠=︒.综合实践小组的同学想知道灯管支架CD 的长度,他们在地面的点E 处测得灯管支架底部D 的仰角为60°,在点F 处测得灯管支架顶部C 的仰角为30°,测得3AE =m ,8EF =m (A ,E ,F 在同一条直线上).根据以上数据,解答下列问题:(1)求灯管支架底部距地面高度AD 的长(结果保留根号);(2)求灯管支架CD 的长度(结果精确到0.1m 3 1.73≈). 【答案】(1)33m (2)1.2m【分析】(1)解Rt ADE △即可求解;(2)延长FC 交AB 于点G ,证明DGC ∴是等边三角形,解Rt AFG △,根据DC DG AG AD ==-即可求解.(1)在Rt ADE △中,tan tan 603ADAED AE∠==︒= 3AE =m 333AD AE ∴==m(2)如图,延长FC 交AB 于点G ,3,8AE EF == 11AF AE EF ∴=+= 3tan tan30AG F AF ==︒=113AG ∴=Rt AFG 中,90,30A F ∠=︒∠=︒60AGF ∴∠=︒60BDC GDC ∠=∠=︒ DGC ∴是等边三角形1123333 1.233DC DG AG AD ∴==-=≈ 答:灯管支架CD 的长度约为1.2m .【点睛】本题考查了解直角三角形的应用,等边三角形的性质与判定,掌握以上知识是解题的关键. 21.(2022·内蒙古呼和浩特·)某市计划在十二年内通过租房建设,解决低收入人群的住房问题,已知前7年,每年竣工投入使用的公租房面积y (单位:百万平方米),与时间x (第x 年)的关系构成一次函数(1≤x ≤7且x 为整数),且第一和第三年竣工投入使用的公租房面积分别为236和72百万平方米;后五年竣工面积与时间的关系是y =18-x +154(7<x ≤12且x 为整数).(1)已知第六年竣工使用的公租房面积可解决20万人的住房问题,如果人均住房面积最后一年比第六年提高20%,那么最后一年竣工投入使用的公租房面积可解决多少万人的住房问题?(2)受物价上涨的影响,已知这12年中,每年投入使用的租金与时间的函数解析式为m =2x +36.假设每年的公租房当年全部出租完,写出这12年中每年竣工的公租房年租金W 关于时间x 的函数解折式,并求出W 的最大值(单位:亿元).如果在W 取得最大值的这一年,老张租用了58平方米的房子,计算老张这一年应交的租金为多少?【答案】(1)最后一年竣工投入使用的公租房面积可解决12.5万人的住房问题;(2)()()2212144173131357124x x x W x x x ⎧-++≤≤⎪⎪=⎨⎪-++<≤⎪⎩,,;W 的最大值为1.47亿元;老张这一年应交的租金为2436元.【分析】(1)用待定系数法求出一次函数表达式,算出第六年对应的y 值,由已知条件即可求得答案;(2)分别算出17x ≤≤和712x <≤时,W 的函数表达式,配方求得最值,对比分析即可知道W 的最大值,进一步求得老张应交的租金. 【详解】解:设()0,17y kx b k x =+≠≤≤由已知得:236732k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:164k b ⎧=-⎪⎨⎪=⎩∴()14176y x x =-+≤≤ 当6x =时,164=36y =-⨯+∴30020=15÷(平方米),15(120)18⨯+=%(平方米)当12x =时,115912=844y =-⨯+∴910018=12.54⨯÷(万人)所以最后一年可解决12.5万人的住房问题.(2)当17x ≤≤时,()2112364214463W x x x x ⎛⎫=+-+=-++ ⎪⎝⎭;当712x <≤时,()21151********44W x x x x ⎛⎫=+-+=-++ ⎪⎝⎭∴这12年中每年竣工的公租房年租金W 关于时间x 的函数解折式为()()2212144173131357124x x x W x x x ⎧-++≤≤⎪⎪=⎨⎪-++<≤⎪⎩,, 又∵当17x ≤≤时,()22112144314733W x x x =-++=--+∴当3x =时,=147W ;∵当712x <≤时,()22113135614444W x x x =-++=--+∴当8x =时,=143W ;∵147>143∴当3x =时,年租金最大,W 的最大值为1.47亿元 当3x =时,233642m =⨯+=∴58422436⨯=(元) 所以老张这一年应交的租金为2436元【点睛】本题考查一次函数实际应用,二次函数的应用.能够从大量文字中提取出解题所需要的条件,并能够列出符合题意的表达式,利用配方法将二次函数一般式配成顶点式,从而求出最值是解题的关键.22.(2022·杭州市十三中教育集团九年级)如图,OAB 中,OA OB =,O 过AB 中点C ,且与OA 、OB 分别交于点E 、F .(1)求证:直线AB 是O 的切线;(2)延长AO 交O 于点D ,连结DF 、DC ,求证:EDC FDC ∠=∠;(3)在(2)的条件下,若10DE =,6DF =,求CD 的长.【答案】(1)见解析;(2)见解析;(3)45【分析】(1)连接OC ,证OC AB ⊥即可证直线AB 是O 的切线;(2)由圆周角定理可得12EDC AOC ∠=∠,12FDC BOC ∠=∠,由(1)证AOC BOC ∠=∠即可;(3)作ON DF ⊥于N ,延长DF 交AB 于M ,在t R CDM 中求出DM 、CM 即可求出CD . 【详解】解(1)证明:连接OC ,如下图:∵OA=OB ,C 为AB 的中点,∴OC AB ⊥,∵点C 在O 上,∴AB 是O 的切线;(2)根据圆周角定理可知,12EDC AOC ∠=∠,12FDC BOC ∠=∠,由(1)可得AOC BOC ∠=∠,∴EDC FDC ∠=∠; (3)作ON DF ⊥于N ,延长DF 交AB 于M ,如下图:∵ON DF ⊥,=OD OF ,∴1===32DN NF DF ,在t R ODN 中,∵=90OND ∠︒,1==52OD DE ,=3DN ,∴22==4ON OD DN -,∵=OD OC ,∴=OCD EDC ∠∠,∵=EDC FDC ∠∠,∴=OCD FDC ∠∠,∴OC ∥DM , ∵OC AB ⊥,∴DM AB ⊥,∴四边形OCMN 是矩形,∴4ON CM ==, 5MN OC ==, 在t R CDM 中,=90DMC ∠︒,4CM =,==35=8DM DN MN ++∴22228445CD DM CM ++=【点睛】本题比较综合,考查了圆的切线,圆周角与圆心角的关系,勾股定理等相关知识,熟练掌握并能灵活运用每一个细小的知识点,是解决此类综合大题的关键.23.(2022.成都市初三一诊)天府新区某校数学活动小组在一次活动中,对一个数学问题作如下探究: (1)问题发现:如图1,在等边△ABC 中,点P 是边BC 上任意一点,连接AP ,以AP 为边作等边△APQ ,连接CQ .求证:BP = CQ ;(2)变式探究:如图2,在等腰△ABC 中,AB =BC ,点P 是边BC 上任意一点,以AP 为腰作等腰△APQ ,使AP =PQ ,∠APQ =∠ABC ,连接CQ .判断∠ABC 和∠ACQ 的数量关系,并说明理由;(3)解决问题:如图3,在正方形ADBC 中,点P 是边BC 上一点,以AP 为边作正方形 APEF ,Q 是正方形APEF 的中心,连接CQ .若正方形APEF 的边长为6,22CQ =,求正方形ADBC 的边长.【答案】(1)证明见解析;(2)ABC ACQ ∠=∠,理由见解析;(3)正方形ADBC 的边长为214+. 【分析】(1)易证∠BAP =∠CAQ ,根据AB =AC ,AP =AQ ,由SAS 证得△BAP ≌△CAQ ,即可得出结论;(2)由等腰三角形的性质得出∠BAC =∠PAQ ,证得△BAC ∽△PAQ ,得出BA PAAC AQ=,易证∠BAP =∠CAQ ,则△BAP ∽△CAQ ,可得∠ABC =∠ACQ ; (3)连接AB 、AQ ,由正方形的性质得出2ABAC=,∠BAC =45°,2AP AQ =,∠PAQ =45°,易证∠BAP =∠CAQ ,则可得△ABP ∽△ACQ ,根据相似三角形的性质求出BP =4,设PC =x ,则BC =AC =4+x ,在Rt △APC 中,利用勾股定理列方程求出x ,即可得出结果. 【详解】(1)证明:如图1,ABC 与APQ 都是等边三角形,60BAC PAQ ∴∠=∠=︒,1323∴∠+∠=∠+∠,12∠∠∴=.又AB AC =,AP AQ =,ABP ACQ ∴≅,BP CQ ∴=;(2)ABC ACQ ∠=∠,理由:如图2,在ABC 中,AB BC =,1802ABC BAC ︒-∠∴∠=,在PAQ △中,PA PQ =,1802APQPAQ ︒-∠∴∠=,APQ ABC ∠=∠,BAC PAQ ∴∠=∠,BACPAQ ∴,BA PAAC AQ∴=,又13BAC ∠+∠=∠,23PAQ ∠+∠=∠,12∠∠∴=,ABP ACQ ∴,∴ABC ACQ ∠=∠;(3)如图3,连接AB ,AQ ,正方形ADBC ,2ABAC∴=,45BAC ∠=︒, 又Q 为正方形APEF 的中心,2APAQ∴=,45PAQ ∠=︒, 13BAC ∠+∠=∠,23PAQ ∠+∠=∠,12∠∠∴=,AB APAC AQ=,ABP ACQ ∴,22AC CQ AB BP ∴==,22CQ =,4BP ∴=,设PC x =,则4BC AC x ==+,在Rt APC 中,222AP AC PC =+,即2236(4)x x =++, 解得:214x =-±,0x,214x ∴=-+,∴边长4214AC x =+=+.【点睛】本题是四边形综合题,主要考查了等边三角形的性质、等腰三角形的性质、全等三角形的判定与性质、正方形的性质、相似三角形的判定与性质、勾股定理、解一元二次方程等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.24.(2022·广东·广州九年级期中)如图,抛物线23y ax bx =++与x 轴交于()2,0A -、()6,0B 两点,与y 轴交于点C .直线l 与抛物线交于A 、D 两点,点D 的坐标为()4,n .(1)求抛物线的解析式与直线l 的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接PA PD 、,求当PAD 面积最大时点P 的坐标及该面积的最大值;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,请直接写出点Q 的坐标. 【答案】(1)2134y x x =-++,112y x =+(2)151,4P ⎛⎫ ⎪⎝⎭(3)()09Q -, 【分析】(1)先利用待定系数法求二次函数解析式,然后再根据点D 的横坐标为4,代入二次函数解析式求得D 点坐标,再用待定系数法求直线l 的解析式即可;(2)过点P 作PF y ∥轴交AD 于F ,设P (n ,21,34P n n n ⎛⎫-++ ⎪⎝⎭),则1,12F n n ⎛⎫+ ⎪⎝⎭,根据()132PAD D A S x x PF PF =⋅-⋅=,得到PF 的值最大时,△P AD 的面积最大,求出PF 的最大值即可; (3)如图2,将线段AD 绕点A 顺时针旋转90︒,得到AT ,作DM x ⊥轴于M ,TN x 轴于N ,则90ANT DMA AT AD ∠=∠=︒=,,证明AAS ANT DMA ≌(),得到16T -(,),设DT 交x 轴于Q ,证得ATD 是等腰直角三角形,则45ADQ ∠=︒,利用待定系数法求得直线DT 的解析式为39y x =-,再求得与y 轴的交点Q 的坐标即可.【详解】(1)解:将点A 、B 的坐标代入23y ax bx =++,得423036630a b a b -+=⎧⎨++=⎩,解得141a b ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为2134y x x =-++; ∵当4x =时,2144334y =-⨯++=,∴3(4)D ,; ∵直线l 经过点A ,D ,∴设直线l 的解析式y kx m =+,将点A ,点D 坐标代入得:2043k m k m -+=⎧⎨+=⎩,得121k m ⎧=⎪⎨⎪=⎩. ∴直线l 的解析式为112y x =+. (2)解:如图1,过点P 作PF y ∥轴交AD 于F设21,34P n n n ⎛⎫-++ ⎪⎝⎭,则1,12F n n ⎛⎫+ ⎪⎝⎭ ∵()132PAD D A S x x PF PF =⋅-⋅=,∴PF 的值最大时,PAD 的面积最大,∵2113142PF n n n ⎛⎫=-++-+ ⎪⎝⎭=()219144n --+, ∴当1n =时,PF 的值最大,最大值为94, 此时PAD 的面积最大值为:2743max PF =, 当1x =时,2115344y x x =-++=∴此时151,4P ⎛⎫ ⎪⎝⎭. 综上所述:当ΔP AD 面积最大时点P 的坐标为151,4⎛⎫ ⎪⎝⎭,该面积的最大值为274. (3)解:如图2,,将线段AD 绕点A 顺时针旋转90︒,得到AT ,作DM x ⊥轴于M ,TN x 轴于N ,则90ANT DMA AT AD ∠=∠=︒=,,∵90NAT DAM MDA DAM ∠∠∠∠︒+=+=,∴NAT MDA ∠=∠,∴AAS ANT DMA ≅(),∴36AN DM NT MA ====,,∴1ON AN OA =-=,∴()16T -,,设DT 交x 轴于Q , ∵90TAD AD AT ∠︒=,= ,∴ATD 是等腰直角三角形,∴45ADQ ∠=︒,设直线DT 的解析式为=+y px t ,∵()()4316D T -,,,,∴346p t p t =+⎧⎨-=+⎩,解得39p t =⎧⎨=-⎩, ∴直线DT 的解析式为39y x =-,令0x =,得9y =-.∴()09Q -,. 【点睛】本题主要考查了二次函数与一次函数的综合、待定系数法求函数解析式、二次函数的最值问题、直线与x 轴的交点、全等三角形的判定与性质等知识点,灵活运用相关知识并正确添加辅助线是解题的关键.。
广东省东莞市2023-2024学年九年级上册期末数学模拟试题(附答案)

广东省东莞市2023-2024学年九年级上学期期末数学模拟试题说明:1.全卷共6页,满分为120分,考试时间为120分钟。
2.答题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目的指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
3.考生必须保持答题卷的整洁。
考试结束后,将试题卷和答题卷一并交回。
一.选择题(共10题,每小题3分,共30分)1.方程的二次项系数和一次项系数分别为()。
22310x x --=A.和 B.和 C.2和 D.2和322x 3x -22x 3x 3-2.“福禄寿喜”图是中华传统祥云图纹,以下四个图案是中心对称图形的是()A. B. C. D.3.一个不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件中是不可能事件的是()。
A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球4.二次函数的图象可由的图象()。
()2212y x =-+22y x =A.向左平移1个单位,再向下平移2个单位得到B.向左平移1个单位,再向上平移2个单位得到C.向右平移1个单位,再向下平移2个单位得到D.向右平移1个单位,再向上平移2个单位得到5.如图,在平面直角坐标系中,的顶点为,,。
以点O OAB △()0,0O ()6,4A -()3,0B -为位似中心,在第四象限内作与的位似比为的位似图形,则点C 坐标为OAB △12OCD △()。
A. B. C. D.()3,2-()2,1-33,22⎛⎫- ⎪⎝⎭3,12⎛⎫- ⎪⎝⎭6.如图,在中,点C 是上一点,若,则的度数为()。
O e ¶AB 126AOB ∠=︒C ∠A.127°B.117°C.63°D.54°7.为积极响应国家“双减”政策,某市推出名师公益大课堂,为学生提供线上线下免费辅导,据统计第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次。
2022—2023学年山东省烟台市九年级上册数学期末调研模拟(一模)含答案

2022—2023学年山东省烟台市九年级上册数学期末调研模拟(一模)说明:解答全部在答题卡上完成,最后只交答题卡。
一、选择题:(本题共12个小题,每小题3分,满分36分。
每小题部给出标号A 、B 、C 、D 的四个备选答案,其中只有一个是正确的,请将正确答案用2B 铅笔在答题卡上涂黑。
)1.如图是小红在一天中四个时刻看到的一棵树的影子的图,请你将它们按时间先后顺序进行排列()A .①②③④B .①③④②C .②①④③D .④②①③2.已知sin A =0.8917,运用科学计算器求锐角A 时,若要显示以“度”、“分”、“秒”为单位的结果,按下的键是( )A.B.C.D.3.班级举办手抄报展览,确定了“5G 时代”、“北斗卫星”、“高铁速度”三个主题,若小明和小亮每人随机选择其中一个主题,则他们恰好选择同一个主题的概率是( )A .B .C .D .191613234.已知二次函数的图象与x 轴交于A (x 1,0)、B (x 2,0)两点,且²y x x a =++,则a 的值是( )2212111x x +=A .B .CD .1-1±2±5.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上,点A ,B 的读数分别为86°,30°,则∠ACB 的度数是()6.如图,几何体是沿着圆锥体的轴切割后得到的“半个”圆锥体,它的左视图是()A .B .C .D .7.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成,现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为( )A .B .C .D .133812238.一条船从海岛A 出发,以16海里/小时的速度向正北航行,2小时后到达海岛B 处.灯塔C 在海岛A 的北偏西42.5°方向上,在海岛B 的北偏西85°方向上。
九年级上册数学期末试卷【含答案】

九年级上册数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则下列哪个选项一定成立?A. a + c > b + cB. a c > b cC. ac > bcD. a/c > b/c (c ≠ 0)2. 下列哪个数是实数?A. √-1B. 3/0C. 2.5D. √-93. 已知一组数据的平均数为10,方差为4,则这组数据中不可能出现的值为?A. 6B. 12C. 8D. 144. 下列哪个函数是奇函数?A. y = x²B. y = |x|C. y = x³D. y = x² + 15. 在直角坐标系中,点P(2, -3)关于原点的对称点是?A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)二、判断题(每题1分,共5分)1. 若 a > b,则 1/a < 1/b。
()2. 任何两个奇数之和都是偶数。
()3. 方程x² + 1 = 0 有实数解。
()4. 一组数据的众数可以不止一个。
()5. 在直角坐标系中,所有关于y轴对称的点的横坐标互为相反数。
()三、填空题(每题1分,共5分)1. 若a² = b²,则 a = ______ 或 a = ______。
2. 两个连续奇数的平均数是 ______。
3. 函数 y = 2x + 3 的图像是一条 ______。
4. 若一组数据从小到大排列为 2, 4, 5, 7, 9,则这组数据的中位数是 ______。
5. 在直角坐标系中,点 (3, -2) 的第四象限的对称点是 ______。
四、简答题(每题2分,共10分)1. 简述有理数的定义。
2. 什么是算术平方根?如何计算一个数的算术平方根?3. 解释一次函数的图像特点。
4. 什么是众数?如何找出一组数据的众数?5. 简述坐标轴上点的坐标特征。
青岛版2022-2023学年九年级数学上册期末模拟测试题(附答案)

2022-2023学年九年级数学上册期末模拟测试题(附答案)一、选择题(本题满分24分)1.|﹣2022|的相反数是()A.2022B.C.﹣D.﹣20222.如图所示,该几何体的俯视图是()A.B.C.D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13 5.下面计算错误的是()A.(﹣2a2b)3=﹣8a6b3B.a2+a﹣1=aC.(﹣a﹣b)2=a2+2ab+b2D.(a+2b)(a﹣2b)=a2﹣4b26.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(1,0)B.(5,2)C.(3,﹣2)D.(﹣3,2)7.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为6,sin B=,则线段AC的长是()A.3B.4C.5D.68.已知反比例函数y=的图象如图所示,则二次函数y=2kx2﹣x+k2的图象大致为()A.B.C.D.二、填空题(本题满分18分)9.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为.10.计算:cos245°﹣tan60°•cos30°=.11.二次函数y=ax2+bx的图象如图所示,若关于x的一元二次方程ax2+bx+m=0有实数根,则m的最大值为.12.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为.13.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A 按逆时针方向旋转90°后得到△AB'C'.则图中阴影部分的面积为.14.已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.当P在AB上运动时,矩形PNDM的最大面积为.三、作图题(本题满分4分)15.用圆规、直尺作图.不写作法.但要保留作图痕迹.已知:△ABC求作菱形ADEF使顶点D、E、F分别在AB、BC、AC上.四、解答题(本题满分68,共有9道小题)16.(1).(2)解不等式组,并写出不等式组的最大整数解.17.国家“十四五”规划明确强化实施“健康中国”战略.为了引导学生积极参与体育运动,增强身体素质,某校举办了一分钟跳绳比赛,随机抽取了m名学生一分钟跳绳的次数x 进行调查统计,按照以下标准划分为四档:不合格合格良好优秀100≤x<120120≤x<140140≤x<160160≤x<180并根据统计结果绘制了如下条形统计图和扇形统计图:请结合上述信息完成下列问题:(1)m=,a=;(2)在扇形统计图中,“良好”等级对应的圆心角的度数是;(3)若该校有2400名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.18.某中学举行“中国梦•我的梦”演讲比赛.九年级(1)班的小明和小刚都想参加.现设计了如下游戏规则:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去,这个游戏规则是否公平?并说明理由.19.小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD 的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).20.在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?21.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C 到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D 的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为多少米?(参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)22.某宾馆客房部有50个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.每个房间每天的定价每增加10元时,就会有一个房间空闲.设每个房间每天的定价增加x元.(1)求房间每天的入住量y(间)关于x(元)的函数关系式;(2)某一天,该宾馆客房部的总收入为12000元,问这天每个房间的定价是多少元?(3)若对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.求该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?23.几何模型条件:如图1,A、B是直线l同侧的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.方法:作点B关于直线l的对称点B’,连接AB’交l于点P,则P A+PB=AB’的值最小(不必证明).直接应用如图2,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN 的最小值为.变式练习如图3,点A是半圆上(半径为1)的三等分点,B是()的中点,P是直径MN上一动点,求P A+PB的最小值.深化拓展(1)如图4,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,求BM+MN的最小值.(2)如图5,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.(要求:保留作图痕迹,并简述作法.)24.已知:如图,菱形ABCD中,AB=5cm,AC=6cm,动点P从点B出发,沿BA方向匀速运动;同时,动点Q从点C出发,沿CB方向匀速运动,它们的运动速度均为1cm/s.过点P作PM∥BC,过点B作BM⊥PM,垂足为M,连接QP.设运动时间为t(s)(0<t <5).解答下列问题:(1)菱形ABCD的高为cm,cos∠ABC的值为;(2)在运动过程中,是否存在某一时刻t,使四边形MPQB为平行四边形?若存在,求出t的值;若不存在,请说明理由.(3)是否存在某一时刻t,使四边形MPQB的面积是菱形ABCD面积的?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使点M在∠PQB的角平分线上?若存在,求出t的值;若不存在,请说明理由.参考答案一、选择题(本题满分24分)1.解:|﹣2022|=2022,故|﹣2022|的相反数是:﹣2022.故选:D.2.解:从上往下看,可以看到选项C所示的图形.故选:C.3.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.4.解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.5.解:A.(﹣2a2b)3=﹣8a6b3,因此选项A不符合题意;B.a2×a﹣1=a,因此选项B符合题意;C.(﹣a﹣b)2=a2+2ab+b2,因此选项C不符合题意;D.(a+2b)(a﹣2b)=a2﹣4b2,因此选项D不符合题意;故选:B.6.解:如图:观察图象可得:点A的对应点A2的坐标是(5,2),故选:B.7.解:连接CD,则∠DCA=90°.Rt△ACD中,sin D=sin B=,AD=12.则AC=AD•sin D=12×=4.故选:B.8.解:∵函数y=的图象经过二、四象限,∴k<0,∴抛物线开口向下,对称轴x=﹣=<0,即对称轴在y轴的左边.故选:D.二、填空题(本题满分18分)9.解:439000用科学记数法表示为:4.39×105.故答案为:4.39×105.10.解:原式=()2﹣×=﹣=﹣1.故答案为:﹣1.11.解:一元二次方程ax2+bx+m=0有实数根,则二次函数y=ax2+bx的图象与直线y=﹣m有交点,由图象得,﹣m≥﹣7,解得m≤7,∴m的最大值为7,故答案为:7.12.解:连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°﹣2×28°=124°;而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故答案是:62°.13.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=,故答案为:;14.解:设矩形PNDM的边DN=x,NP=y,则矩形PNDM的面积S=xy(2≤x≤4),易知CN=4﹣x,EM=4﹣y,且有=,即=,∴y=﹣x+5,S=xy=﹣x2+5x(2≤x≤4),此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值是随x的增大而增大,对2≤x≤4来说,当x=4,即PM=4时,S有最大值,S最大=﹣×42+5×4=12,故答案为:12.三、作图题(本题满分4分)15.解:如图:四边形AEDF即为所求.四、解答题(本题满分68/分)16.解:(1)原式=(+)•=•=;(2)解不等式3(x﹣2)+1≥5x+2得:x≤﹣3.5,解不等式1﹣<得:x<1,∴不等式组的解集是x≤﹣3.5,∴该不等式组的最大整数解为﹣4.17.解:(1)m=10÷25%=40,a=40﹣4﹣12﹣10=14;故答案为:40,14;(2)在扇形统计图中,“良好”等级对应的圆心角的度数是360°×=108°;故答案为:108°;(3)估计该校一分钟跳绳次数达到合格及以上的人数为2400×=2160(人).18.解:这个游戏规则不公平,理由:由题意可得,树状图如右图所示,共有12种等可能的结果数,摸出的两个球上的数字和为奇数占8种,摸出的两个球上的数字和为偶数的占4种,所以P(奇数)==,P(偶数)==,因为,所以这个游戏规则不公平.19.解:连接P A、PB,过点P作PM⊥AD于点M;延长BC,交PM于点N 则∠APM=45°,∠BPM=60°,NM=10米设PM=x米在Rt△PMA中,AM=PM×tan∠APM=x tan45°=x(米)在Rt△PNB中,BN=PN×tan∠BPM=(x﹣10)tan60°=(x﹣10)(米)由AM+BN=46米,得x+(x﹣10)=46解得,=18﹣8,∴点P到AD的距离为米.20.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=6,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设甲工程队施工a天,乙工程队施工b天刚好完成绿化任务,由题意得:100a+50b=3600,则a==﹣b+36,根据题意得:1.2×+0.5b≤40,解得:b≥32,答:至少应安排乙工程队绿化32天.21.解:延长DC交EA的延长线于点F,则CF⊥EF,∵山坡AC上坡度i=1:2.4,∴令CF=km,则AF=2.4km,在Rt△ACF中,由勾股定理得,CF2+AF2=AC2,∴k2+(2.4k)2=262,解得k=10,∴AF=24m,CF=10m,∴EF=30m,在Rt△DEF中,tan E=,∴DF=EF•tan E=30×tan48°=30×1.11=33.3(m),∴CD=DF﹣CF=23.3m,因此,古树CD的高度约为23.3m.22.解:(1)∵宾馆客房部有50个房间供游客居住,每个房间每天的定价每增加10元时,就会有一个房间空闲,∴房间每天的入住量y关于x的函数关系式为y=50﹣;(2)当客房部的总收入为12000元时,有(50﹣)(200+x)=12000,解得:x1=100,x2=200,200+100=300(元),200+200=400(元),∴每个房间的定价是300元或400元;(3)根据题意,得w=(200+x﹣20)(50﹣)=﹣+32x+9000=﹣+11560,∵﹣<0,∴当x=160时,w max=11560,此时定价为160+200=360(元),∴当每个房间定价为每天360元时,w有最大值,最大值是11560元.23.解:直接应用,如图2,连接BM,则BM的长就是DN+NM的最小值.在直角△BCM中,BC=8,CM=8﹣2=6,则BM===10;变式练习:如图3,作B关于MN的对称点C,则C在圆上,且∠AOC=90°,连接AC,则AC的长就是AP+BP的最小值.△AOC是等腰直角三角形,则AC=OA=,即AP+BP的最小值是;深化拓展:(1)图4.作出N关于AM的对称点N′,作BH⊥AC于H.∵BM+MN=BM+MN′,又∵BM+MN′≥BH,∴BH的长就是BM+MN的最小值,∵∠BAC=45°,∴△ABH是等腰直角三角形,∴BH=×4=4.(2)作点B关于直线AC的对称点B',连接DB'交AC于点P,即为所求.24.解:(1)如图1,连接BD交AC于点O,作AE⊥BC于点E,则∠AEB=90°,∵四边形ABCD是菱形,AB=5cm,AC=6cm,∴BC=AB=5cm,BD⊥AC,OA=OC=AC=3cm,∴∠AOB=90°,∴OD=OB===4(cm),∴S菱形ABCD=AC•OD+AC•OB=×6×4+×6×4=24(cm2),∴5AE=24,∴AE=(cm),∴菱形ABCD的高为cm;∵BE===(cm),∴BE:AE:AB=7:24:25,∴cos∠ABC==,∴cos∠ABC的值为,故答案为:,.(2)存在,如图2,∵四边形MPQB为平行四边形,且∠M=90°,∴四边形MPQB是矩形,∴∠PQB=90°,∴=cos∠ABC=,∴BQ=BP,∵BP=CQ=t,∴BQ=5﹣t,∴5﹣t=t,解得t=,∴t的值为.(3)存在,如图1,∵PM∥BC,∴∠BPM=∠ABC,∴=cos∠BPM=cos∠ABC=,=sin∠BPM=sin∠ABC=,∴PM=t,BM=t,∵S四边形MPQB=S菱形ABCD,∴×t(t+5﹣t)=×24,整理得18t2﹣125t+100=0,解得t1=,t2=(不符合题意,舍去).∴t的值为.(4)不存在,理由:如图3,作MR⊥QP交直线QP于点R,∵∠MBQ=180°﹣∠PMB=90°,∴MB⊥QB,∵=tan∠BPM=tan∠ABC=,∴MP=MB,∴MP<MB,∵MR≤MP,∴MR<MB,∴点M不可能在∠PQB的平分线上,∴不存在某一时刻t,使点M在∠PQB的角平分线上.。
华东师大版数学九年级上册期末模拟试题50题(含答案)

华东师大版数学九年级上册期末模拟试题50题含答案(填空题+解答题)一、填空题1.如图,梯形ABCD 中,AD∥BC ,∥A =90°,它恰好能按图示方式被分割成四个全等的直角梯形,则AB :BC =_____.2.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启17秒,按此规律选一下去.如果不考虑其他因素,一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是__.3.已知1<a <2_____. 4.在Rt ABC 中,190,cos 2C A ︒∠==,那么A ∠的度数是___________. 5.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长边的长为52,那么此三角形的周长为___,面积为___.6.计算的结果是_____.7=___________. 8.若两个三角形是相似形,其中一个三角形的两个角分别是60°、50°.则另一个三角形的最小的内角为_________. 9.已知654a b c==,且26a b c +-=,则a 的值为__________. 10.如图是用计算机模拟抛掷一枚啤酒瓶盖试验的结果,由此可以推断,抛掷该啤酒瓶盖一次,“凸面向上”的概率是___________. (精确到 0.001).11.下列事件是必然事件的是________.∥射击一次,中靶;∥100件某种产品中有2件次品,从中任取1件恰好是次品; ∥太阳从东方升起;∥一只不透明的袋子中有10个红球,从中任意摸出一个球是红球.12.计算:13.书架上有2本英语书,3本数学书,4本语文书,从中任意取出一本是数学书的概率是________.14.已知x m =是方程²230x x --=的一个解,则代数式22m m -的值为______. 15.已知1x ,2x 是方程230x x +-=的二根,则2112239x x x +++=________. 16.设α、β是方程220220x x +-=的两个实数根,则22a αβ++的值为 ___________.17.如图,已知矩形ABCD 与矩形EFGO 是位似图形,点P 是位似中心,若点B 、F 的坐标分别为()4,3、()2,1-,则点P 的坐标为______.18.若357a b c ==,且3249a b c +-=,则a b c ++=_________. 19.如图,在ABC 在,//DE BC ,23AD DB =,8ADE S =△,则四边形BDEC 的面积为_____.20.关于x 的方程kx 2+3x +1=0有实数根,则实数k 的取值范围是_____. 21.方程x 3-9x =0的解是_____.22.如图,四边形ABCD 是矩形,对角线相交于点O ,点E 为线段AO 上一点(不含端点),点F 是点E 关于AD 的对称点,连接CF 与BD 相交于点G .若2OG =,4OE =,则BD 的长________.23.若a 是方程2310x x -+=的解,计算:22331aa a a -++=______. 24.班里有18名男生,15名女生,从中任意抽取a 人打扫卫生,若女生被抽到是必然事件,则a 的取值范围是_____.25.如果关于x 的方程x 2+kx+9=0(k 为常数)有两个相等的实数根,则k=_____. 26.如图,在ABCD 中,ABC ∠的平分线BE 与AD 交于点,E BED ∠的平分线EF与DC 交于点F ,若8,2,2AB DE DF FC ===,则BE =______.27.如图,在直角坐标系中,点 E (-4, 2), F (-2, -2 ),以 O 为位似中心,按 2:1 的相似比把∆EFO 缩小为∆E 'F 'O ,则点 E 的对应点 E ' 的坐标为______________.28.设a 、b 为x 2+x ﹣2011=0的两个实根,则a 3+a 2+3a+2014b=________ . 29.如图,在平面直角坐标系中,已知点A 、B 、C 的坐标分别为()1,0-,()5,0,()0,2.若点P 从A 点出发,沿x 轴正方向以每秒1个单位长度的速度向B 点移动,连接PC 并延长到点E ,使CE PC =,将线段PE 绕点P 顺时针旋转90︒得到线段PF ,连接FB .若点P 在移动的过程中,使PBF ∆成为直角三角形,则点F 的坐标是__________.二、解答题30.∥ABC 在平面直角坐标系中的位置如图所示.将∥ABC 向右平移5个单位长度,再向下平移4个单位长度得到∥111A B C , ∥ABC 内部有一点D (m ,n )平移后的对应点为1D .(图中每个小方格边长均为1个单位长度) .(1)在图中画出平移后的∥111A B C ;(2)直接写出下列各点的坐标: 1C ___________,1D _____________; (3)求出∥A 1B 1C 1的面积.31.先化简,再求值:224431(1)1a a a a a a a++÷--+++,其中a 是方程228=0x x --的根.32.如图,平行四边形ABCD ,对角线,AC BD 交于点O ,点,E F 分别是,AB BC 的中点,连接EF 交BD 于G ,连接OE(1)证明:四边形COEF 是平行四边形(2)点G 是哪些线段的中点,写出结论,并选择一组给出证明. 33.计算:(1(2)32(1)(3)⎤--⎦34.在四边形ABCD 中,对角线AC ,BD 交于点O ,AC 平分∥BAD ,∥BAC =∥CBD ,AC =AD .(1)求证:∥ABC AOD ≌△△; ∥2DO OC AC =⋅; (2)当∥BAD =90°时,求ABAD的值. 35.如图,甲、乙为两座建筑物,它们之间的水平距离BC 为30m ,在A 点测得D 点的仰角∥EAD 为45°,在B 点测得D 点的仰角∥CBD 为60°,则乙建筑物的高度为多少米?36.如图,海中有一个小岛B ,它的周围14海里内有暗礁,在小岛正西方有一点A 测得在北偏东60°方向上有一灯塔C ,灯塔C 在小岛B 北偏东15°方向上20海里处,渔船跟踪鱼群沿AC 方向航行,每小时航行(1)如果渔船不改变航向继续航行,有没有触礁危险?请说明理由. (2)求渔船从A 点处航行到灯塔C ,需要多少小时?37.(1)解方程:23720x x ++=;(2)计算:2cos45sin30cos60︒+︒⋅︒+︒.38.(1)计算:2102331)2sin 30---⨯++︒(2)先化简,再求值:211()2x x x x x++÷-,其中.39.如图,在ABC 中,30B ∠=︒,6AB AD BC =⊥,于点D 且2tan 3CAD ∠=,求BC 的长.40.如图,已知ABC .(1)画出ABC 关于y 轴对称的图形111A B C △; (2)求111A B C △的面积.41.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒.42.在平面直角坐标系xOy 中,对于点P(x ,y),若点Q 的坐标为(ax+y ,x+ay),其中a 为常数,则称点Q 是点P 的“a 级关联点”例如,点P(1,4)的“3级美联点”为Q(31x +4,1+34x ),即Q(7,13).(1)已知点A(一2,6)的“12级关联点”是点1A ,求点1A 的坐标.(2)已知点M(m 一1,2m)的“一3级关联点”M’位于y 轴上.求点M’的坐标. 43.解方程:(1)2x 3x 10+-= (2) ()()x x 37x 3+=+ (3)2631x 1x 1-=-- 44.如图,有四张背面完全相同的卡片A B C D ,,,,小伟将这四张卡片背面朝上洗匀后摸出一张,放回洗匀后再摸一张.()1用树状图(或列表法)表示两次摸出卡片所有可能出现的结果(卡片可用A B C D ,,,表示);()2求摸出两张卡片所表示的几何图形是轴对称图形而不是中心对称图形的概率.45.某商场根据第二季度某品牌运动服装的S 号、M 号、L 号、XL 号、XXL 号销售情况绘制了如图所示的不完整的两幅统计图.根据图中信息解答下列问题:(1)第二季度该品牌运动服装的销售总量是 件,扇形统计图中XXL 号服装销量占总量的百分比是 ,XL 号所对应的圆心角度数是 ; (2)请补全条形统计图;(3)从M 号、XL 号运动服装中按照M 号,XL 号运动服装的销量比,分别取出一定数量的运动服,再取3件XXL 号运动服装,将它们放在一起,现从这些运动服装中,随机取出1件,取得M号运动服装的概率为35,求取出了M号、XL号运动服装各多少件?46.2021年秋学期泰兴市某初中举办“请党放心,强国有我”主题运动会,张同学报名参加运动会,有以下4个项目可供选择:田赛项目:铅球,跳远;径赛项目:100m,800m.(1)张同学从4个项目中任选一个,恰好是田赛项目的概率为______;(2)张同学从4个项目中任选两个,利用树状图或表格列举出所有可能的结果,并求恰好选的是一个田赛项目和一个径赛项目的概率.47.在▱ABCD中,∥C=45°,AD=BD,点P为射线CD上的动点(点P不与点D重合),连接AP,过点P作EP∥AP交直线BD于点E.(1)如图∥,当点P为线段CD的中点时,请直接写出P A,PE的数量关系;(2)如图∥,当点P在线段CD上时,求证:DA=DE;(3)点P在射线CD上运动,若AD=,AP=5,请直接写出线段BE的长.48.如图,四边形ABCD是矩形,点E在AD边上,点F在AD的延长线上,且BE=CF.(1)求证:四边形EBCF是平行四边形.(2)若∠BEC=90°,∠ABE=30°,ED的长.49.阅读下面材料:有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE 于点N.(1)【猜想】线段DE 与AM 之间的数量关系是___________,位置关系是__________; (2)【探究】将图1中的正方形AEGF 绕点A 顺时针旋转,使点G 恰好落在边AB 上,如图2,其他条件不变,线段DE 与AM 之间的关系是否仍然成立?请说明理由. (3)【应用】在(2)的条件下,若4AE =,15MAB ∠=︒,请直接写出线段AM 的长.答案第1页,共32页参考答案:1【分析】如图连接EC ,设AB =a ,BC =b 则CD =2b .只要证明∥D =60°,根据sin 60CECD,即可解决问题. 【详解】解:如图连接EC ,设AB =a ,BC =b 则CD =2b .由题意四边形ABCE 是矩形,∥CE =AB =a ,∥A =∥AEC =∥CED =90°, ∥∥BCF =∥DCF =∥D , 又∥∥BCF+∥DCF+∥D =180°, ∥∥D =60°, ∥3sin 2CE D CD, ∥322a b , ∥3AB aBCb, ∥:3:1ABBC.【点睛】本题考查直角梯形的性质,锐角三角函数等知识,解题的关键是理解题意,利用角相等这个信息解决问题,发现特殊角是解题的突破口,属于中考常考题型.2.35##0.6【分析】直接根据概率公式计算即可.【详解】解:红灯亮30秒,黄灯亮3秒,绿灯亮17秒,P ∴(红灯亮)303303175==++,故答案为:35【点睛】此题考查了概率的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.3.2a﹣2【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:∥1<a<2,(2)22a a a--=-故答案为:2a﹣2.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键. 4.60【分析】直接利用特殊角的三角函数值得出答案.【详解】∥∥C=90°,cos A12=,∥∥A=60°.故答案为:60°.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解题的关键.5.120,480.【分析】由相似三角形的对应边比相等,可设其他两边长为a,b,求出a和b,进而可求周长和面积.【详解】设较大三角形的其他两边长为a,b.∥由相似三角形的对应边比相等,∥52 51213a b==,解得:a=20,b=48,又∥202+482=522,∥三角形为直角三角形,∥三角形的周长为:20+48+52=120,三角形的面积为:12×20×48=480.故此三角形的周长为120,面积为:480.【点睛】相似三角形的对应边比相等是本题的考点,根据题意求出其他两边并证明三角形是直角三角形是解题的关键.6【分析】化简成最简二次根式,后合同类二次根式即可.【详解】解:原式=4×2﹣=【点睛】本题考查了二次根式的化简,同类二次根式,熟练进行化简,灵活进行合并同类二次根式是解题的关键.7.2x >##2x <【分析】根据分式和二次根式有意义的条件进行求解即可.【详解】解:∥∥102020x x x -≥⎧⎪-≥⎨⎪-≠⎩,∥2x >,故答案为:2x >.【点睛】本题主要考查了二次根式和分式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零,分式有意义的条件是分母不为零是解题的关键.8.50°【分析】先求出三角形的另一个角,比较后得出三角形的最小的内角为50°.再根据相似三角形的性质得出结论.【详解】解:∥一个三角形的两个角分别为60°、50°,∥另一个角为180°-(60°+50°)=70°,∥三角形的最小的内角为50°.∥两个三角形相似,∥相似的另一个三角形的最小的内角为50°.故答案为:50°.【点睛】本题主要考查了相似三角形的性质,解题的关键是掌握三角形的内角和定理及相似三角形的性质.9.12【分析】直接利用已知比例式假设出a ,b ,c 的值,进而利用a +b -2c =6,得出答案.【详解】解:∥654a b c ==, ∥设a =6x ,b =5x ,c =4x ,∥a +b -2c =6,∥6x +5x -8x =6,解得:x =2,故a =12.故答案为12.【点睛】此题主要考查了比例的性质,正确表示出各数是解题关键.10.0.440【分析】根据大量反复试验下,频率的稳定值即为概率值求解即可.【详解】解:∥大量反复试验下,频率的稳定值即为概率值,∥抛掷该啤酒瓶盖一次,“凸面向上”的概率是0.440,故答案为:0.440.【点睛】本题主要考查了用频率值估计概率,解题的关键在于熟知大量反复试验下,频率的稳定值即为概率值.11.∥∥##∥∥【分析】根据必然事件与随机事件的定义,即可一一判定【详解】解:∥射击一次,中靶,属于随机事件;∥100件某种产品中有2件次品,从中任取1件恰好是次品,属于随机事件;∥太阳从东方升起,属于必然事件;∥一只不透明的袋子中有10个红球,从中任意摸出一个球是红球,属于必然事件. 故答案为:∥∥.【点睛】本题考查了必然事件与随机事件的定义,熟练掌握和运用必然事件与随机事件的定义是解决本题的关键.12.【分析】运用二次根式加减法则进行运算即可.【详解】解:【点睛】本题考查了二次根式的加减法则,即二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.13.13【分析】直接根据概率公式,计算即可得出答案. 【详解】解:从中任意取出一本是数学书的概率31==2+3+43. 故答案为:13 【点睛】本题考查了概率公式,熟练掌握概率公式是解本题的关键.概率公式=所求情况数与总情况数之比.14.3.【分析】把x 的值代入方程中,变形即可.【详解】把x m =代入原方程²230x x --=,可得223m m --=0,即22m m -=3. 【点睛】本题考查了一元二次方程的解,求代数式的值,利用整体思想求值较简. 15.11【分析】把x =x 1 代入方程求得x 1 2 +x 1 =3,利用根与系数的关系得到x 1 +x 2 =-1,所以将其整体代入整理后的代数式进行求值.【详解】∥x 1 ,x 2 是方程x 2 +x -3=0的二根,∥x 1 2 +x 1 -3=0,x 1 +x 2 =-1,∥x 1 2 +x 1 =3,∥2x 1 2 +3x 1 +x 2 +9=2(x 1 2 +x 1 )+(x 1 +x 2 )+9=3-1+9=11.故答案为11.【点睛】本题考查了根与系数的关系,一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.16.2021【分析】利用一元二次方程的解的定义得到220220αα+-=,再根据根与系数的关系得到1αβ+=-,然后利用整体代入的方法计算.【详解】解:∥α是方程220220x x +-=的根,∥220220αα+-=,即22022αα+=∥α、β是方程220220x x +-=的两个实数根,∥1αβ+=-,∥()222202212021a a αβααβ++=++-=+=+.故答案为:2021.【点睛】本题主要考查一元二次方程的解和一元二次方程根与系数关系,解决本题的关键是要熟练掌握一元二次方程根与系数关系.17.(0,53) 【分析】根据题意求出EF 、AB 、AE ,根据位似图形的概念得到EF ∥AB ,证明△EPF ∥∥APB ,根据相似三角形的性质计算即可.【详解】解:∥点B 、F 的坐标分别为(4,3)、(-2,1),∥EF =2,AB =4,AE =3-1=2,∥矩形ABCD 与矩形EFGO 是位似图形,∥EF ∥AB ,∥∥EPF ∥∥APB , ∥EP EF AP AB =,即224EP EP =-, 解得,EP =23,∥OP =1+23=53, 则点P 的坐标为(0,53), 故答案为:(0,53). 【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,掌握位似图形的概念是解题的关键.18.-15【分析】先设比例系数为k ,代入3a+2b-4c=9,转化为关于k 的一元一次方程解答. 【详解】解:设357a b c k ===,则a=3k ,b=5k ,c=7k ,代入3a+2b-4c=9,得9k+10k-28k=9,解得:k=-1,∥a=-3,b=-5,c=-7,于是a+b+c=-3-5-7=-15.故答案为:-15.【点睛】本题主要考查比例的性质,解答此类题关键是灵活运用设“k”法求解代数式的值. 19.42.【详解】∥23AD DB =,∥22325AD AB ==+,∥DE∥BC ,∥∥ADE∥∥ABC , ∥2()ADEABC S AD S AB ∆∆=,即8425ABC S ∆=,∥S △ABC =50, ∥四边形BDEC 的面积=S △ABC -S △ADE =50-8=42.考点:相似三角形的判定与性质.20.k 94≤ 【分析】分类讨论,当k ≠0时与当k =0时即可.【详解】解:当k ≠0时,∥=9﹣4k ≥0,∥k 94≤, ∥k 94≤且k ≠0, 当k =0时,此时方程为3x +1=0,满足题意,故答案为:k 94≤. 【点睛】本题考查方程有根的情况,关键在于分类讨论.21.x 1=0,x 2=3,x 3=-3.【分析】根据x 3-9x =0将原式分解为x (x +3)(x -3)=0,即可得出答案.【详解】解:∥x 3-9x =0,∥x (x +3)(x -3)=0,∥x 1=0,x 2=3,x 3=-3,故答案为:x 1=0,x 2=3,x 3=-3.【点睛】此题主要考查了因式分解法解一元二次方程,将方程分解为两式相乘等于0的形式是解决问题的关键.22.16【分析】根据矩形的性质和翻折的性质得到AF BD ∥,根据O 是AC 的中点,利用中位线性质求出AF ,再求出OA 即可.【详解】解:∥点F 是点E 关于AD 的对称点,∥∥EAD =∥F AD ,AE =AF ,∥四边形ABCD 是矩形,∥∥OAD =∥ODA ,∥∥F AD =∥ODA ,∥AF BD ∥,∥O 是矩形ABCD 的对角线的交点,∥O 是AC 的中点,∥O 、G 两点在线段BD 上,且AF BD ∥,AF OG ∴∥,由平行线分线段成比例定理可知,“A 字形”中有CG CO GF OA =, 前面已证明O 是AC 的中点, ∴1CG CO GF OA==,即CG GF =, ∥G 为CF 的中点,∥OG 是∥CAF 的中位线,∥AF =2OG =2×2=4,∥AE =4,∥OE =4,∥OA =AE +EO =8,∥AC =2OA =16,∥BD =AC =16,故答案为:16.【点睛】本题考查矩形的性质、翻折的性质以及三角形中位线的性质,关键是利用中位线性质得出AF 的长.23.0【分析】根据一元二次方程的解的定义得a 2﹣3a +1=0,即a 2﹣3a =﹣1,再代入22331a a a a -++,然后利用整体思想进行计算即可. 【详解】∥a 是方程x 2﹣3x +1=0的一根,∥a 2﹣3a +1=0,即a 2﹣3a =﹣1,a 2+1=3a ∥2233=11=01-+-++a a a a 故答案为0.【点睛】本题考查了一元二次方程的解:使一元二次方程两边成立的未知数的值叫一元二次方程的解.也考查了整体思想的运用.24.18<a≤33【分析】利用随机事件的定义进而得出答案.【详解】∥班里有18个男生15个女生,从中任意抽取a 人打扫卫生,女生被抽到的是必然事件,∥18<a≤33.【点睛】本题考查的知识点是随机事件的定义,解题关键是正确把握定义.25.±6【分析】先根据关于x 的方程x2+kx+9=0(k 为常数)有两个相等的实数根可得出△=0,据此求出k 的值即可.【详解】∥关于x 的方程x2+kx+9=0(k 为常数)有两个相等的实数根,∥∥=k2-4×9=k2-36=0,解得k=±6.故答案为:±6.【点睛】本题考查的是根的判别式,根据题意得出关于k 的一元二次方程是解答此题的关键.26.11【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰三角形,并求AE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据∥EFD ∥∥GFC 得出CG 与DE 的倍数关系,并根据BE =BG =BC +CG 进行计算即可.【详解】解:如图,延长EF 和BC ,交于点G ,∥在ABCD 中,∥B 的角平分线BE 与AD 交于点E ,∥∥ABE=∥CBE,∥BEG=∥DEG,∥AD∥BC,∥∥AEB=∥CBE,∥∥AEB=∥ABE,∥AB=AE,∥ AB=AE=8,又∥BED∠的平分线EF与DC交于点F,∥∥BEG=∥DEG,∥AD∥BC,∥∥DEG=∥G,∥∥BEG=∥G,∥BE=BG=BC+CG,∥AD//BC,∥∥DEF=∥G,∥EFD=∥GFC,∥∥EFD∥∥GFC,∥122 CG CF CFDE DF CF===,∥1 22 CG=,∥1CG=,∥四边形ABCD为平行四边形,∥BC=AD=AE+ED=8+2=10,∥BE=BG=BC+CG=10+1=11.故答案为:11.【点睛】本题主要考查了平行四边形性质、相似三角形判断与性质,以及等腰三角形判断与性质,解决问题的关键是掌握平行四边形性质、相似三角形判断与性质,以及等腰三角形判断与性质,解题时注意:有两个角对应相等的两个三角形相似.27.(2,-1)或(-2,1).【分析】由在直角坐标系中,点E (-4,2),F (-2,-2),以O 为位似中心,按2:1的相似比把△EFO 缩小为△E′F′O ,利用位似图形的性质,即可求得点E 的对应点E′的坐标.【详解】解:∥点E (-4,2),以O 为位似中心,按2:1的相似比把△EFO 缩小为△E′F′O ,∥点E 的对应点E′的坐标为:(2,-1)或(-2,1).故答案为(2,-1)或(-2,1).【点睛】此题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解此题的关键.28.﹣2014【详解】试题分析:∥a 为x 2+x -2011=0的根,∥a 2+a -2011=0,∥a 2+a =2011,∥a 3+a 2+3a +2014b =a (a 2+a )+3a +2014b=2011a +3a +2014b=2014(a +b ),∥a 、b 为x 2+x -2011=0的两个实根,∥a +b =-1,∥a 3+a 2+3a +2014b=2014(a +b )=-2014.故答案为:-2014.点睛:本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a.也考查了一元二次方程的解的定义.29.(5,2),) 【分析】当P 位于线段OA 上时,显然∥PFB 不可能是直角三角形;由于∥BPF <∥CPF=90°,所以P 不可能是直角顶点,可分两种情况进行讨论:∥F 为直角顶点,过F 作FD∥x 轴于D ,BP=6-t ,DP=2OC=4,在Rt∥OCP 中,OP=t-1,由勾股定理易求得CP=t 2-2t+5,那么PF 2=(2CP )2=4(t 2-2t+5);在Rt∥PFB 中,FD∥PB ,由射影定理可求得PB=PF2÷PD=t2-2t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t2-2t+5=6-t,即;2∥B为直角顶点,得到∥PFB∥∥CPO,且相似比为2,那么BP=2OC=4,即OP=OB-BP=1,此时t=2.【详解】解:能;∥若F为直角顶点,过F作FD∥x轴于D,则BP=6-t,DP=2OC=4,在Rt∥OCP中,OP=t-1,由勾股定理易求得CP2=t2-2t+5,那么PF2=(2CP)2=4(t2-2t+5);在Rt∥PFB中,FD∥PB,由射影定理可求得PB=PF2÷PD=t2-2t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t2-2t+5=6-t,即2P0),−1);则F点坐标为:∥B为直角顶点,得到∥PFB∥∥CPO,且相似比为2,那么BP=2OC=4,即OP=OB-BP=1,此时t=2,P点坐标为(1,0).FD=2(t-1)=2,则F点坐标为(5,2).).故答案是:(5,2),【点睛】此题考查直角三角形的判定、相似三角形的判定和性质,解题关键在于求有关动点问题时要注意分析题意分情况讨论结果.30.(1)见解析(2)(5,-3),(m +5,n -4)(3)4【分析】(1)根据图形平移的性质画出图形即可;(2)根据各点在坐标系中的位置写出各点坐标;(3)利用正方形的面积减去三个顶点上三角形的面积即可.(1)解:如图所示;(2)解:1C (5,-3),1D (m +5,n -4)(3) 解:11111133131322222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯△=4 所以111A B C △的面积为4.【点睛】本题考查作图-平移变换,熟知图形平移不变性的性质是解题的关键. 31.1.【详解】试题分析:先将分式的分子和分母分别分解因式,约分化简,再解一元二次方程,然后将a 的值代入化简后的代数式即可求值.试题解析:原式=22(2)131(1)1a a a a a a+--÷+++22(2)(2)a a a a a a +-=+-- 2=2a - ∥a 是方程228=0x x --的根∥a =4或a =-2∥a +2≠0∥a =4∥原式=2142=- 考点: 1.分式的化简求值;2.一元二次方程的解法.32.(1)见解析;(2)G 是线段OB 的中点,也是EF 的中点,证明见解析【分析】(1)根据三角形的中位线定理可得EF 与AC 的数量关系和位置关系,再由平行四边形的性质即可证得EF 与CO 的关系,进一步即可证得结论;(2)根据三角形中位线定理即可得出结论.【详解】(1)证明:∥,E F 分别是,AB BC 中点,∥EF ∥AC 且12EF AC =, ∥四边形ABCD 是平行四边形,∥AO CO =,∥CO EF =,∥四边形COEF 是平行四边形.(2)解:G 是线段OB 的中点,也是EF 的中点.证明:∥EF ∥AC ,E 为AB 中点,∥G 为OB 中点.∥FG 、GE 分别是∥BCO 、∥BAO 的中位线, ∥11,22FG CO GE AO ==, ∥AO =CO ,∥FG GE =,即G 为EF 的中点.【点睛】本题考查了平行四边形的判定和三角形的中位线定理,熟练掌握平行四边形的判定方法和三角形的中位线定理是解题的关键.33.(1)(2)13【分析】(1)先利用二次根式的除法法则计算,再把各二次根式化为最简二次根式,然后合并即可.(2)先算乘方和开方,再算括号内的,然后计算乘法,最后计算加减.【详解】解:(1=4==(2)32(1)(3)⎤--⎦=()1229--⨯-=114-+=13【点睛】本题考查了二次根式的混合运算,实数的混合运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.34.(1)∥见解析;∥见解析(2)1AB AD【分析】(1)∥根据ASA 证明ABC AOD ≌△△即可;∥证明BCO ACB ∽△△,得BC CO AC BC=,由∥得OD =BC ,从而可得结论; (2)分别证明AOD BOC ∽和AOB DOC ∽△△,可证明BCD △是等腰直角三角形,得BD =,知1BO OD=,最后证明1AB BO AF OD ==即可得到结论. (1)∥∥AC 平分∥BAD ,∥∥BAC =∥DAC ,又∥∥BAC =∥CBD ,∥∥CBD =∥DAC ,又∥∥AOD =∥BOC ,∥∥ADO =∥ACB ,又∥AC =AD ,∥ABC AOD ≌△△;∥∥BAC =∥CBD ,∥BCA =∥AC B .∥BCO ACB ∽△△, ∥BC CO AC BC=, ∥2BC OC AC =由∥知ABC AOD ≌△△, ∥OD =BC ,∥2DO OC AC =⋅.(2)当∥BAD =90°时,AC 平分∥BAD ,∥∥BAC =∥DAC =45°,∥∥BAC =∥CB D ,∥CBD =∥DAC =45°,∥AOD =∥BO C .∥AOD BOC ∽, ∥OA OD OB OC =, ∥OA OB OD OC=, ∥∥AOB =∥COD .∥AOB DOC ∽△△,∥∥BAC =∥CDO =45°∥BCD △是等腰直角三角形, ∥BD =,∥BD =,∥1BO BD OD OD OD-==, 过点D 作DF AC ∥交BA 的延长线与F ,∥AC 平分∥BAD ,∥,,F BAC ADF DAC ∠=∠∠=∠∥,BAC DAC ∠=∠∥AF =AD ,1AB BO AF OD ==.∥1AB AD=. 【点睛】本题主要考查了全等三角形的判定与性质,相似三角形的判定与性质,等腰直角三角形的判定与性质以及勾股定理等知识,正确作出辅助线是解答本题的关键.35.30【分析】在Rt∥BCD 中可求得CD 的长,即求得甲的高度,过A 作AF∥CD 于点F,在Rt∥ADF 中可求得DF,则可求得CF 的长,即可求得乙的高度.【详解】过A 点向CD 做垂线,垂足为F ,在Rt∥BCD 中:∥∥DBC=60°,BC=30mtan 60CD BC ︒=⋅==由图可知,AF=BC,在Rt∥ADF 中F tan 45tan 4530D AF BC BC ︒︒=⋅=⋅==m30)AB CD DE ∴=-=m所以乙的高度为(30)m.【点睛】本题考查了解直角三角形的应用,解决本题的关键是做出辅助线,构建直角三角形,熟练掌握直角三角形中边角关系.36.(1)渔船不改变航向继续航行,没有触礁危险,理由见解析;(2)渔船从A 点处航行到灯塔C ,需要(1小时.【分析】(1)作BH∥AC 于H ,根据余弦的概念求出BH ,比较即可判断;(2)根据正切的概念求出AH ,求出AC 的长,根据渔船的速度计算即可.【详解】解:(1)渔船不改变航向继续航行,没有触礁危险.作BH∥AC 于H ,由题意得,∥CAB=30°,∥ABC=105°,则∥ABH=60°,∥HBC=45°,cos BH BC HBC ∴=⨯∠= 10214>,∥渔船不改变航向继续航行,没有触礁危险;(2)HC BH ==tan BH AH CAB==∠AC AH HC ∴=+=则渔船从A 点处航行到灯塔C ,需要的时间为:1÷=+答:渔船从A 点处航行到灯塔C ,需要(1小时.【点睛】本题考查的是解直角三角形的应用-方向角问题.正确标注方向角、熟记锐角三角函数的定义是解题的关键.37.(1)12x =-,213x =-;(274【分析】(1)根据因式分解法解一元二次方程即可求解;(2)根据特殊角的三角函数值进行计算即可求解.【详解】解:(1)解:23720x x ++=,()()2310x x ++=,20x +=或310x +=,12x =-,213x =-;(2)原式11222=⨯1342+ 74. 【点睛】本题考查了解一元二次方程,特殊角的三角函数值的混合运算,掌握一元二次方程的解法以及特殊角的三角函数值是解题的关键.38.(1)-3;(2) 21x - 【分析】(1)根据有理数的乘方运算、负指数幂的性质、0指数幂的性质以及特殊角的锐角三角函数值依次进行计算后,再合并即可;(2)首先根据分式的四则混合运算顺序进行计算化简,然后代值计算.【详解】(1)原式=﹣4﹣1+1+2×12=﹣3;(2)原式=221212x x x x x +--÷ =2112x x x x+-÷ =12(1)(1)x x x x x +⋅+- =21x -,当x +1时,【点睛】本题考查了幂运算的性质、特殊角的锐角三角函数值、分式的混合运算.在求分式的值时,要把分式化到最简,然后代值计算.39.2【分析】先在Rt ABC 中根据30︒角的三角函数值求出AD 和BD 的长,再在Rt ADC △中根据2tan 3DC CAD AD ∠==求出DC 的长,即可得到BC 的长. 【详解】解:∥AD BC ⊥于点D ,∥90ADB ADC ∠=∠=︒,ABD ∴,ADC △为直角三角形,∥Rt ADB 中,30B ∠=︒,6AB =,∥3AD =,tan AD B BD ==,∥BD =∥Rt ADC △中,2tan 33CD CAD AD AD ∠===,, ∥2CD =,∥2BC =.【点睛】本题主要考查了解直角三角形,掌握特殊角的三角函数值是解题的关键. 40.(1)见解析(2)5【分析】(1)先确定()()()3,4,1,2,5,1A B C ,再确定对称点坐标,画图即可.(2) 111A B C △的面积就是ABC 的面积.【详解】(1)∥()()()3,4,1,2,5,1A B C ,∥关于y 轴对称的对称点坐标为()()()1113,4,1,2,5,1A B C ---,画图如下:则111A B C △即为所求.(2)∥111A B C △的面积就是ABC 的面积,()()()3,4,1,2,5,1A B C ,∥111A B C △的面积为:111343222415222.【点睛】本题考查了坐标的对称,三角形面积的计算,熟练掌握对称点坐标计算方法是解题的关键.41.12- 【分析】根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.42.(1) 1A (5,1); (2)M '(0,-16).【分析】(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义和点M (m-1,2m )的“-3级关联点”M′位于y 轴上,即可求出M′的坐标.【详解】解(1)因为点A (-2,6)的“12级关联点”是点1A ,所以∥A 1(-2×12+6,-2+12×6),即1A 为1A (5,1);(2)因为点M (m- 1,2m )的“一3级关联点”为M’(-3m (m-1)+2m·m-1+(-3)·2m ).又因为点M’位于y 轴上,所以-3(m-1)+2m=0, 解得m=3. 所以m-1+(-3)·2m=-16,所以M’(0,-16)【点睛】本题考查一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.43.(1)1x =,2x =;(2)1x 3=-,2x 7=;(3)x 4=-. 【分析】()1先求出2b 4ac -的值,再代入公式求出即可;()2移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;()3先把分式方程变成整式方程,求出方程的解,再进行检验即可.【详解】()21x 3x 10+-=,()22b 4ac 341113-=-⨯⨯-=,x =1x =,2x =; ()()()2x x 37x 3+=+,()()x x 37x 30+-+=,()()x 3x 70+-=,x 30+=,x 70-=,1x 3=-,2x 7=;()26331x 1x 1-=--, 方程两边都乘以()()x 1x 1+-得:()()()63x 1x 1x 1-+=+-,解得:1x 4=-,2x 1=,经检验:x 1=是增根,x 4=-是原方程的解,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习题
一.选择题
1.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.
2.若代数式有意义,则x的取值范围是()
A.x>1且x≠2 B.x≥1 C.x≠2 D.x≥1且x≠2
3.下列根式中属最简二次根式的是()
A.B.C.D.
4.用配方法解一元二次方程x2﹣4x+3=0时可配方得()
A.(x﹣2)2=7 B.(x﹣2)2=1 C.(x+2)2=1 D.(x+2)2=2
5.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为()A.相离B.相切C.相交D.内含
6.某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程准确的是()
A.289(1﹣x)2=256 B.256(1﹣x)2=289 C.289(1﹣2x)2=256 D.256(1﹣2x)2=289 7.高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=10米,净高CD=7米,则此圆的半径OA=()
A.5B.7C.D.
8.若=1﹣a,则a的取值范围是()
A.a>1 B.a≥1 C.a<1 D.a≤1
9.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()
A.5B.7C.8D.10
10.在Rt△ABC中,∠C=90°,BC=4cm,AC=3cm.把△ABC绕点A顺时针旋转90°后,得到△AB1C1,如图所示,则点B所走过的路径长为()
A.5cm B.
πcm C.
πcm
D.5πcm
二、填空题
11.把一元二次方程(x﹣3)2=4化为一般形式为:
,二次项为,一次项系数
为,常数项为.
12.若方程x2﹣3x ﹣1=0的两根为x1,x2,则的值为_________
13.某一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是.
14.已知两圆的半径分别为2和
6,圆心距为5,则这两圆的位置关系是_______
15.已知一元二次方程(a﹣1)x2+a2+3a﹣4=0有一个根为零,则a的值为.
16.在半径为2的⊙O中,弦AB的长为2,则弦AB所对的圆周角的度数为.17.如图,三个圆心相同的圆心角∠AOB=120°,半径OA=6cm,C、D是的三等分点,则阴影部分的面积之和为cm2(结果保留π).
18.在平面直角坐标系中,已知点A(2a﹣b,﹣8)与点B(﹣2,a+3b)关于原点对称,则a=_____,b=_______.
19.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为__________
20.已知圆锥的底面半径为r=20cm,高h=cm,现在有一只蚂蚁从底边上一点A出发.在侧面上爬行一周又回到A点,则蚂蚁爬行的最短距离为_______.
第19题图
第20题图
三、解答题
21.如图,已知△ABC.
(1)AC的长等于;
(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是;(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是.
22.计算:.
23.解方程:(1)2x2﹣4x﹣6=0(用配方法);(2)2y2+4(y﹣1)=0(用公式法).
24.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1
个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.
25.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?
26.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;
(2)若∠CAB=120°,AB=2,求BC的值.。