能被7、11整除数的特点

合集下载

能被7、11整除数的特点

能被7、11整除数的特点

能被11 整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11 的倍数(包括0),那么,原来这个数就一定能被11 整除。

例如:判断491678 能不能被11整除。

奇位数字的和9+6+8=23
偶位数位的和4+1+7=12
23-12=11
因此,491678 能被11 整除。

这种方法叫“奇偶位差法”。

除上述方法外,还可以用割减法进行判断。

即:从一个数里减去11的10倍、20倍、30倍……到余下一个100以内的数为止。

如果余数能被11 整除,那么,原来这个数就一定能被11 整除。

又如:判断583 能不能被11 整除。

用583减去11的50倍(583-11 >50=33)余数是33, 33能被11 整除,583 也一定能被11 整除。

能被7 整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2 倍,如果差是7 的倍数,则原数能被7 整除。

如果差太大或心算不易看出是否7 的倍数,就需要继续上述截尾、倍大、相减、验差」的过程,直到能清楚判断为止
例如,判断133是否7的倍数的过程如下:13 - 3^2 =乙所以133是7 的倍数;又例如判断6139是否7 的倍数的过程如下:613-9^2= 595 , 59- 5^2 = 49,所以6139 是7 的倍数,余类推。

能被2、3、5、7、9、11、13、17、19整除的数的特征

能被2、3、5、7、9、11、13、17、19整除的数的特征

能被2、3、5、7、9、11、13、17、19整除的数的特征能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍数)能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

能被9整除的数的特征是所有位数的和是9的倍数能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

奇位数字的和9+6+8=23偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。

这种方法叫“奇偶位差法”。

能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

如:判断1284322能不能被13整除。

128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。

【其它方法:能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

】例1:判断1059282是否是7的倍数?例2:判断3546725能否被13整除?能被17整除的数的特征把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

能被11整除的数的特征

能被11整除的数的特征

能被11 整除的数的特征能被11 整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11 的倍数(包括0),那么,原来这个数就一定能被11 整除.例如:判断491678 能不能被11 整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678 能被11 整除."奇偶位差法".这种方法叫除上述方法外,还可以用割减法进行判断.即:从一个数里减去11 的10 倍,20 倍,30 倍⋯⋯到余下一个100 以内的数为止.如果余数能被11 整除,那么,原来这个数就一定能被11 整除.又如:判断583 能不能被11 整除.用583 减去11 的50 倍(583- 11×50=33)余数是33, 33 能被11整除,583 也一定能被11 整除.(1)1 与0 的特性:1 是任何整数的约数,即对于任何整数a,总有1|a.0 是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6 或8,则这个数能被 2 整除。

(3)若一个整数的数字和能被 3 整除,则这个整数能被 3 整除。

(4) 若一个整数的末尾两位数能被 4 整除,则这个数能被 4 整除。

(5)若一个整数的末位是0 或5,则这个数能被 5 整除。

(6)若一个整数能被 2 和3 整除,则这个数能被 6 整除。

(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的 2 倍,如果差是7 的倍数,则原数能被7 整除。

如果差太大或心算不易看出是否7 的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133 是否7 的倍数的过程如下:13-3×2=7,所以133 是7 的倍数;又例如判断6139 是否7 的倍数的过程如下:613-9×2=595 ,59-5×2=49 ,所以6139 是7 的倍数,余类推。

整除的特征

整除的特征

整除的特征:一个数能否被另一个数整除,要根据一定的规律来判断,所以要掌握一些特征。

(1)能被2 整除的数的特征:个位数是0、2、4、6、8的整数能被2整除。

例如:10、72、34、56、98都能被2整除。

(2)能被5整除的数的特征:个位数是0或5的整数能被5整除。

例如:180、315都能被5整除。

(3)能被3或9整除的数的特征:各个数位上数字的和是3或9的倍数的整数,能被3或9整除。

例如:5037各数位上的数的和是15,15是3的倍数,所以5037能被3整除。

4878各数位上的数的和是27,27是9的倍数,所以4878能被9整除。

能被9整除的数必然能被3整除,但能被3整除的数不一定能被9整除。

一个自然数除以9的余数与它的各个数位上的数字和除以9的余数相同。

(4)能被4 和25整除的数的特征:末尾两位数是4或25的倍数的整数,能被4或25整除。

例如:712末尾两倍数是12,12是4 的倍数,所以712能被4整除。

975的末尾两倍数是75,75是25的倍数,所以975能被25整除。

如果一个数既能被4整除,又能被25整除,那么这个数一定是整百数。

如700、2800都能同时被4 和25整除。

(5)能被8和125整除的数的特征:末尾三位数是8或是125的倍数,能被8或25整除。

例如:2408的末尾三位数是408,408是8的倍数,所以2408能被8整除。

9250末尾三位数是250,因为250是125的倍数,所以9250能被125整除。

如果一个数既能被8整除,又能被125整除,那么这个数一定是整千数。

如1000、3000、78000等。

(6)能被11整除的数的特征:如果一个数奇数位上的数之和与偶数位上的数之和的差是11的倍数,那么这个整数就能被11整除。

例如:189354奇数位上的数之和是1+9+5=15,偶数位的数之和是8+3+4=15,它们的差是15-15=0,因为0能被11整除,所以189354能被11整除。

能被2、3、5、7、9、11、13、17、19整除的数的特征

能被2、3、5、7、9、11、13、17、19整除的数的特征

能被2、3、5、7、9、11、13、17、19整除的数的特征能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍数)能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

能被9整除的数的特征是所有位数的和是9的倍数能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

奇位数字的和9+6+8=23偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。

这种方法叫“奇偶位差法”。

能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果数字仍然太大不能直接观察出来,就重复此过程。

如:判断1284322能不能被13整除。

128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。

【其它方法:能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

】例1:判断1059282是否是7的倍数?例2:判断3546725能否被13整除?能被17整除的数的特征把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

数的整除特征

数的整除特征

数的整除特征知识概要数的整除特征具有较强的实际意义,常用的数的整除特征如下:1、能被2整除数的特征:个位数字是0、2、4、6、8的数能被2整除。

2、能被5整除的数的特征:个位数字是0和5的数能被5整除。

3、能被3(或9)整除的数的特征:各位数字和能被3(或9)整除。

这个数能被3(或9)整除。

4、能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

5、能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

6、能被7(或11或13)整除的数的特征:末三位数与末三位以前的数字所组成的数之差(大减小)能被7(或11或13)整除。

、7、能被11整除的数的特征:奇数位数字和与偶数位数字和的差(大减小)能被11整除。

例题解评例1、如果六位数12x40y 能被72整除,试求此六位数。

思路点拨:因为六位数12x40y 是72的倍数,且72=9×8 ,所以12x40y既是8的倍数又是9的倍数。

据能被8整除的数的特征,知40y是8的倍数。

(1)当y=0时,根据1+2+x+4是9的倍数,且0≤x≤9可得x=2(2)当y=8时,根据1+2+x+4+8是9的倍数,且0≤x≤9可得x=3所以所求的六位数是122400或123408。

例2 、一个四位数,减去它的各位数字之和,其差还是一个四位数603A ,试求出A。

思路点拨:设这个四位数为abcd , 则abcd=1000×a+100×b+10×c+d,它的各位数字之和为a+b+c+d。

于是有:abcd-(a+b+c+d)=1000×a+100×b+10×c×d-(a+b+c+d)=999×a+99×b+9×c=9×(111×a+11×b+c).这表明“一个自然数减去它的各位数字之和后,所得之差一定是9的倍数,”由已知这个差等于603A ,由此就可求出A来。

能被7和11整除数的特点

能被7和11整除数的特点

能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。

这种方法叫“奇偶位差法”。

除上述方法外,还可以用割减法进行判断。

即:从一个数里减去11的10倍、20倍、30倍……到余下一个100以内的数为止。

如果余数能被11整除,那么,原来这个数就一定能被11整除。

又如:判断583能不能被11整除。

用583减去11的50倍(583-11×50=33)余数是33,33能被11整除,583也一定能被11整除。

能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

数的整除(能被7、9、1、13整除的数的特征)专题训练知识梳理:1、整数a除以整数b(b≠0),所得的商正好是整数而没有余数,我们就说a 能被b整除(也可以说b能整除a)。

2、如果整数a能被整数b(b≠0)整除,则称a是的倍数,b是a的约数。

3、能被9整除的数,其数字和一定是9的倍数.4、能被11整除的数的特征是这个数的奇数位数字之和与偶数位数字之和的差能被11整除。

5、一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位以前的数字组成的数的差(以大减小)能否被7(11或13)整除。

能被7 11 13整除的数规律

能被7 11 13整除的数规律

能被七整除得数规律若一个整数得个位数字截去,再从余下得数中,减去个位数得2倍,如果差就是7得倍数,则原数能被7整除。

如果差太大或心算不易瞧出就是否7得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止。

例如,判断133就是否7得倍数得过程如下:13-3×2=7,所以133就是7得倍数;又例如判断6139就是否7得倍数得过程如下:613—9×2=595 ,59-5×2=49,所以6139就是7得倍数,余类推。

能被9整除得数得规律规律:能被9整除得数,这个数得所有位上得数字得与一定能被9整除。

能被11整除得数得规律若一个整数得奇位数字之与与偶位数字之与得差能被11整除,则这个数能被11整除.11得倍数检验法:去掉个位数,再从余下得数中,减去个位数,如果差就是11得倍数,则原数能被11整除。

如果差太大或心算不易瞧出就是否11得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止.例如,判断132就是否11得倍数得过程如下:13-2=11,所以132就是11得倍数;又例如判断10901就是否11得倍数得过程如下:1090—1=1089,108-9=99,所以10901就是11得倍数,余类推.被13整除得数规律相当于1000除以13余-1,那么1000^2除以13余1(即-1得平方),1000^3除以13余-1,……所以对一个位数很多得数(比如:51578 953270),从右向左每3位隔开从右向左依次加、减,270—953+578—51=—156能被13整除,则原数能被13整除什么样得数能被7与11与13整除???有什么规律就是分开来得三个问题还就是同时被这三个整除?若一个整数得个位数字截去,再从余下得数中,减去个位数得2倍,如果差就是7得倍数,则原数能被7整除。

如果差太大或心算不易瞧出就是否7得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级下册数学第一周双休日补充作业能被11整除的数的特征
一、学习材料
把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

—→奇位数字的和9+6+8=23
—→偶位数位的和4+1+7=12
23-12=11
因此,491678能被11整除。

这种方法叫“奇偶位差法”。

除上述方法外,还可以用割减法进行判断。

即:从一个数里减去11的10倍、20倍、30倍……到余下一个100以内的数为止。

如果余数能被11整除,那么,原来这个数就一定能被11整除。

又如:判断583能不能被11整除。

用583减去11的50倍(583-11×50=33)余数是33,33能被11整除,583也一定能被11整除。

二、练习:用上述方法判断下列3个数是不是能被11整除
请写出过程
(1)53416
(2)695799
(3)502678
能被7整除的数的特征
一、学习材料
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;
又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

二、练习:用上述方法判断下列3个数是不是能被7整除
请写出过程
(1)45661
(2)1015
(3)562745。

相关文档
最新文档