MIT 信号与系统 Lecture 16

合集下载

美国MIT信号与系统课程的基本结构

美国MIT信号与系统课程的基本结构

MIT 2009 年秋季学期信号与系统课程教学日程表 Wednesday / Recitation 备注 教学内容 Thursday / Lecture 教学内容 L1 : Signals and Systems L3 : Feedback, Cycles and Modes L5 : Feedback Control Schemes L7 : Laplace Transforms and Z Friday / Recitation 教学内容 R2 : Difference Equations R4 : Feedback, Cycles and Modes R6 : Feedback Control Schemes R8 : Laplace Transforms and Z
பைடு நூலகம்
由 S. Mahajan 和 D. Freeman 于 2009 年编著的《离 。教 学 内 容 涵 盖 了 散时间 信 号 与 系 统: 算 子 法 》 Oppenheim著作的全部主要内容。 此外, 还包括补充
表1 日期 / 课型 周次 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Tuesday / Lecture 教学内容 ( Registration Day) L2 : DT Systems L4 : Feedback and Position Control L6 : CT Systems,Difference Eqs. L8 : CT Operator Representations ( For Columbus Day) L11 : Frequency sponse ReHW1 due HW2 due HW3 due EX4 HW5 due HW6 due EX7 HW8 due HW9 due EX10 HW11 due HW12 due EX13

信号与系统ppt课件

信号与系统ppt课件

02
时不变:系统的特性不随时间变 化。
系统的数学模型为非线性微分方 程或差分方程。
03
频域分析方法不适用,需采用其 他方法如几何法、状态空间法等

04
时变系统
系统的特性随时间变 化,即系统在不同时 刻的响应具有不同的 特性。
时域分析方法:积分 方程、微分方程等。
系统的数学模型为时 变微分方程或差分方 程。
信号与系统PPT课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本特性 • 系统分析方法 • 系统分类与特性 • 系统应用实例
01
CHAPTER
信号与系统概述
信号的定义与分类
总结词
信号是传输信息的一种媒介,具有时间和幅度的变化特性。
详细描述
信号是表示数据、文字、图像、声音等的电脉冲或电磁波,它可以被传输、处理和记录。根据不同的特性,信号 可以分为模拟信号和数字信号。模拟信号是连续变化的物理量,如声音、光线等;数字信号则是离散的二进制数 据,如计算机中的数据传输。
04
CHAPTER
系统分类与特性
线性时不变系统
线性
系统的响应与输入信号的 线性组合成正比,即输出 =K*输入+常数。
时不变
系统的特性不随时间变化 ,即系统在不同时刻的响 应具有相同的特性。
频域分析方法
傅里叶变换、拉普拉斯变 换等。
非线性时不变系统
01
系统的响应与输入信号的非线性 关系,即输出不等于K*输入+常 数。
系统的定义与分类
总结词
系统是由相互关联的元素组成的整体,具有输入、输出和转 换功能。
详细描述
系统可以是一个物理装置、生物体、组织或抽象的概念,它 能够接收输入、进行转换并产生输出。根据不同的分类标准 ,系统可以分为线性系统和非线性系统、时不变系统和时变 系统等频域分析方法将信号和系统从时间域转换到频率域,通过分析系统的频率响应 来了解系统的性能,如系统的幅频特性和相频特性,这种方法特别适用于分析 周期信号和非周期信号。

MIT信号与系统网络课程练习题答案

MIT信号与系统网络课程练习题答案

1 x(−t) 2
1 t
−4 −2
-1
2
4
1
xe (t)
t
−4 −2
-1
2
4
8
xo (t)
1 t
−4 −2
-1
2
4
The value of the even part (and the odd part for that matter) at t = 0 is ambiguous as it depends on how the plot for x(t) is defined at t = 0. The plots in this solution assume that the value of x(t) at t = 0 is halfway between 0 and 2, i.e. 1. Using a different definition you may get an even part that is discontinuous at t = 0. This is also correct provided it is consistent with your assumption of what the value of x(t) is at the discontinuity. For instance, if you assume that x(0) = 2, then the plot of the even part will have a “spike” at t = 0 of height 2.
� � n=0
� � n�n = � 1 + � + �2 + · · · + � + 2�2 + 3�3 + · · ·

MIT(麻省理工)信号与系统讲义-lecture2

MIT(麻省理工)信号与系统讲义-lecture2
Signals and Systems
Fall 2003 Lecture #2
9 September 2003 1) Some examples of systems 2) System properties and examples a) Causality b) Linearity c) Time invariance
11
CAUSAL OR NONCAUSAL
depends on causal
noncausal
depends on future
depends on future
noncausal
depends on
causal
12
TIME-INVARIANCE (TI)
Informally, a system is time-invariant (TI) if its behavior does not depend on what time it is. • Mathematically (in DT): A system x[n] → y[n] is TI if for any input x[n] and any time shift n0, If x[n] →y[n] then x[n -n0] →y[n -n0] •Similarly for a CT time-invariant system, If x(t) →y(t) then x(t -to) →y(t -to) .
• This system detects changes in signal slope
7
Observations
1)A very rich class of systems (but by no means all systems of interest to us) are described by differential and difference equations. 2)Such an equation, by itself, does not completely describe the input-output behavior of a system: we need auxiliary conditions (initial conditions, boundary conditions). 3)In some cases the system of interest has time as the natural independent variable and is causal. However, that is not always the case. 4)Very different physical systems may have very similar mathematical descriptions.

MIT(麻省理工)信号与系统讲义-lecture5

MIT(麻省理工)信号与系统讲义-lecture5

Desirable Characteristics of a Set of “Basic” Signals a. We can represent large and useful classes of signals using these building blocks
b. The response of LTI systems to these basic signals is particularly simple, useful, and insightful
- As N→ ∞, xN(t) exhibits Gibbs’ phenomenon at points of discontinuity
Demo:Fourier Series for CT square wave (Gibbs phenomenon).
Portrait of Jean Baptiste Joseph Fourier
Image removed due to copyright considerations. Signals & Systems, 2nd ed. Upper Saddle River, N.J.: Prentice Hall, 1997, p. 179.

For real periodic signals, there are two other commonly used forms for CT Fourier series:
or

Because of the eigenfunction property of e jωt , we will usually use the complex exponential form in 6.003.

信号与系统的概念

信号与系统的概念

f
[
n N
],
0,
n为N整倍数 其它
1.4 信号的基本运算 1.4.1 两信号相加
两信号相加,是指两信号对应时刻的信号值(函数 值)相加,得到一个新的信号。
f (t) f1(t) f2 (t) 或 f [n] f1[n] f2[n] (1.4.1)
f1(t) 1
1
0
1
t
(a) 信号f1(t)波形
(1.2.5)
可以看出,复信号是由两个实信号a(t )和 (t )构成的, 当然也可看成是由两个实信号 和i(t) 构q(成t) 的,且
i(t) a(t) cos((t)) q(t) a(t)sin((t))

a(t) i2(t) q2(t) tan[(t)] q(t)
i(t)
1.2.4 周期信号与非周期信号
t
(a) 信号 f (t)的波形
0 1/ 2 1
t
(b) 信号 f (2t)的波形
0
1
2
3
4
t
(c) 信号 f (1 t)的波形 2
图1.3.3 信号 f (t)及其尺度变换
2. 离散时间信号的展宽和压缩
设离散时间信号 f [n] 的波形如图1.3.4(a)所示, 其时间展宽 倍的N情况可表示为
f1[n]
抽样信号(函数)
Sa(t) sin(t) t
抽样信号是信号处理中的一个重要信
号,在t 0时,函数取得最大值1,
而在t k 时(为非零整数),函数
Sa(t)
值为0,如图1.2.5所示。
1
(1.2.3)
4 3 2
0
2 3 4
t
图1.2.5

MIT(麻省理工)信号与系统讲义-lecture7

Note: To really understand these examples, we need to understand frequency contents of aperiodic signals ⇒ the Fourier Transform
Note for DT:
Passband
Stopband
Highpass Filters
Remember: highest frequency in DT
high frequency
high frequency
Bandpass Filters
Demo: Filtering effects on audio signals
Example #1: Audio System
Adjustable Filter
Equalizer
Speaker
Bass, Mid-range, Treble controls
For audio signals, the amplitude is much more important than the phase.
Signals and Systems
Fall 2003 Lecture #7
25 September 2003
1.
Fourier Series and LTI Systems
2.
Frequency Response and Filtering
3.
Examples and Demos
The Eigenfunction Property of Complex Exponentials
Example #2: Frequency Selective Filters

MIT 公开课程 信号与系统 Lecture 2

6.003:Signals and SystemsDiscrete-Time SystemsFebruary4,2010Discrete-Time SystemsWe start with discrete-time(DT)systems because they•are conceptually simpler than continuous-time systems•illustrate same important modes of thinking as continuous-time•are increasingly important(digital electronics and computation)From Samples to SignalsLumping all of the(possibly infinite)samples into a single object—the signal—simplifies its manipulation.This lumping is an abstraction that is analogous to•representing coordinates in three-space as points•representing lists of numbers as vectors in linear algebra•creating an object in PythonLet Y=R X.Which of the following is/are true:1.y[n]=x[n]for all n2.y[n+1]=x[n]for all n3.y[n]=x[n+1]for all n4.y[n−1]=x[n]for all n5.none of the aboveOperator ApproachApplies your existing expertise with polynomials to understand block diagrams,and thereby understand systems.Example: AccumulatorThese systems are equivalent in the sense that if each is initially atrest, they will produce identical outputs from the same input.(1 −R ) Y 1 = X 1⇔ ?Y 2 =(1+ R + R 2+ R 3+ ···) X 2Proof: Assume X 2 = X 1:Y 2 =(1+ R+ R 2 + R 3 + ···) X 2 =(1+ R + R 2 + R 3 + ···) X 1 = (1+ R + R 2 + R 3 + ···)(1 −R ) Y 1= ((1 + R + R 2 + R 3 + ···) −(R + R 2 + R 3 + ···)) Y 1 = Y 1It follows that Y 2 = Y 1.It also follows that (1 −R) and (1 + R + R 2 + R 3 + ···) are reciprocals .Example: AccumulatorThe reciprocal of 1−R can also be evaluated using synthetic division.1+R +R 2 +R 3 + ···1 −R 11 −RRR −R 2R 2R 2 −R 3R 3R 3 −R 4···Therefore1=1+ R + R 2 + R 3 + R 4 + ··· 1 −RAnalysis of Cyclic Systems:Geometric GrowthIf traversing the cycle decreases or increases the magnitude of the signal,then the fundamental mode will decay or grow,respectively.If the response decays toward zero,then we say that it converges. Otherwise,we it diverges.M IT OpenCourseWare6.003 Signals and SystemsSpring 2010For information about citing these materials or our Terms of Use, visit: /terms.。

Mitco交通信号控制系统介绍课件

新一代交通信号控制器研发内部系列技术交流之一
MiTCO交通信号控制系统 介绍与分析
上海宝康电子技术部 2009年4月
前言
MITCO信号控制系统是我公司面向城市交通管理,于 本世纪初投放市场的一款产品,包括信号控制系统、 信号机等一整套技术,为公司的发展做出了不可磨灭 的贡献。
为了便于读者能够系统、详细的了解整个MiTCO交通 信号控制系统,本文档按照交通信号控制系统的组成 方式,力争用通俗易懂的方式对各组成部分分别进行 介绍,每部分均包括设计阶段、实现阶段、优点、缺 点、下一步的发展方向等。
一个交通流向的饱和度(x)是它相应车辆活 动水平的一个定义。
0.2 0.4 0.6 0.8 1.0
一个高饱和度值对应于拥挤状况,而低饱和 度是具有较自由流的状况。
饱和度
智能交通环境下的交通信号 控制
随着社会科技水平的进步,诞生了智能交通系统,智能交 通的核心之一就是交通信息化,把交通状态实时的用具体 的数字表示出来,实现更为精确的控制,车辆检测手段较 以前更为快捷、准确;
交通流量可以用小客车单位 pcu (passenger car unit)来表示。
这是一个使不同类型和流向的车辆标准化的过程。(比如货运车 对小客车以及不同速度的“转弯”车对“直行”车之比较。)
这就使得二个可能具有完全不同组成的交通流可以直接比较。
不同车种和流向之间的关系举例:(澳大利亚) * 一辆直行小车 =1 PCU * 一辆直行货车 =2 PCU’s * 一辆右转小车 =1.25 PCU’s (小转弯) * 一辆左转小车 =3 PCU’s (大转弯) * 一辆右转货车 =2.5 PCU’s (小转弯) * 一辆左转货车 = 6 PCU’s (大转弯)
MiTCO系统推出至今已经将近10年,为了满足新时代 条件下交通管理的需求,公司决定开发新一代交通信 号控制系统,在开发之前,从交通工程的角度对 MITCO系统进行系统的分析,希望能够吸取以往开发、 使用过程中的经验教训,有助于我们更加明确新一代 信号控制系统开发的方向。

清华大学电子系陆健华《信号与系统》电子课件推荐优秀PPT

如:移动通信中信号波动/抖动消除 信号设计:设计具有特定性质的信号以满足系统的要求
如:通信信号设计满足传输要求 (如带宽限制)
清华大学电子工程系
5
陆建华
§1.1 信号与系统
本课程的范围及重点
讨论范围: 信号分析与系统分析
工程背景: 通信系统与控制系统 讲授重点: 基本概念(物理意义)、分析工具
(变换)、方法
本课程的性质与地位
专业基础课,其概念、方法为今后从事通信及控 制系统理论和工程技术研究之必备、之基石。
清华大学电子工程系
6
陆建华
§1.1 信号与系统
本课程的授课安排
教材:《信号与系统》郑君里等
参考:《Signals & Systems》 Oppenheim, 2nd Edition
《Circuits, Signals, and Systems》, Siebert, MIT
4 阶跃信号与冲激信号
举例:移动通信中的多径传播现象
变换域描述:正交变换、频谱分析
连续与离散: 2 信号的描述、分类和典型示例
系统设计:信号处理 (去噪增强、畸变恢复…)
有关细节(如波形、特征等)自学 P9
时间轴连续/离散 2 信号的描述、分类和典型示例
这一运算非常重要,在今后的章节(如第二、三、四章)中着重讲
信号与系统:
信号
系统
信号/行为
举例:
① 电流、电压作为电子线路中的时间之函数 信号
电路本身 系统 ② 汽车驾驶员踩油门发动机提速
清华大学电子工程系
发动机 系统
油门压力
信号
3
陆建华
§1.1 信号与系统
NOTE: ① 消息:信号的具体内容 ② 信息:抽象的、本质的内容,信号的内涵 ③ 信号与系统的概念广泛存在于许多领域,如:通信系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Relation between Fourier and Laplace Transforms
There are also important differences. Compare Fourier and Laplace transforms of x(t) = e−t u(t). x(t)
t Laplace transform � ∞ � ∞ X (s) = e−t u(t)e−st dt = e−(s+1)t dt =
April 6, not collected or graded. Solutions are posted. Closed book: 2 pages of notes (8 1 2 × 11 inches; front and back). Designed as 1-hour exam; two hours to complete.
Relation between Fourier and Laplace Transforms
Fourier transform “inherits” properties of Laplace transform. Property Linearity Time shift Time scale Differentiation Multiply by t Convolution x(t) ax1 (t) + bx2 (t) x(t − t0 ) x(at) dx(t) dt tx(t) x1 (t) ∗ x2 (t) X (s) aX1 (s) + bX2 (s) e−st0 X (s) 1 �s� X |a| a sX (s) − d X (s) ds − X (jω ) aX1 (jω ) + bX2 (jω ) e−jωt0 X (jω ) � � 1 jω X |a| a jωX (jω ) 1 d X (jω ) j dω
Lecture 16
Fourier Transforms
Find a general scaling rule. Let x2 (t) = x1 (at). � ∞ � ∞ X2 (jω ) = x2 (t)e−jωt dt = x1 (at)e−jωt dt
−∞ −∞
April 6, 2010
Let τ = at (a > 0). � � � ∞ 1 jω 1 X2 (jω ) = x1 (τ )e−jωτ /a dτ = X1 a a a −∞ If a < 0 the sign of dτ would change along with the limits of integra­ tion. In general, � � jω 1 . x1 (at) ↔ X1 |a| a If time is stretched (a < 1) then frequency is compressed and ampli­ tude increases (preserving area).
X1 (jω ) 2 π ω
1. 2. 3. 4. 5.
b = 2 and ω0 b = 2 and ω0 b = 4 and ω0 b = 4 and ω0 none of the
= π/2 = 2π = π/2 = 2π above
3
6.003: Signals and Systems
Check Yourself
6.003: Signals and Systems
6.003: Signals and Systems
Fourier Transform
Lecture 16
Mid-term Examination #2
Tomorrow, April 7, 7:30-9:30pm. No recitations tomorrow. Coverage: Lectures 1–15 Recitations 1–15 Homeworks 1–8
T →∞ −T /2
� T /2
ω0 = 2π/T x(t)e−jωt dt =
T →∞
lim T ak = lim
� T /2
ω0 = 2π/T x(t)e−jωt dt = 2
sin ωS = E (ω )
ω
T →∞ −T /2
k=−∞
ak
k=−∞
Fourier Transform
Replacing E (ω ) by X (jω ) yields the Fourier transform relations. E (ω ) = X (s)|s=jω ≡ X (jω ) Fourier transform � ∞ x(t)e−jωt dt X (jω )= � ∞ 1 x(t)= X (jω )ejωt dω 2π −∞
t � � � � � � �X (jω)� = � 1 � � 1 + jω �
t
10
Magnitude
0
Ima 1 0 gin -1 ary (s)
1 -1 0 s) Real(
0
1
ω
Frequency plots provide intuition that is difficult to otherwise obtain.
30 20 10 0 5
x1 (t) 1 −1 1 t
� � �1 s � −s � |X (s)| = � � s (e − e )�
2. X1 (jω ) =
2 4. X1 (jω ) = sin ω ω
5. none of the above
5 0 -5 -5 0
Fourier Transform
Stretching time compresses frequency. Find a general scaling rule. Let x2 (t) = x1 (at). If time is stretched in going from x1 to x2 , is a > 1 or a < 1?
The Fourier transform is a function of real domain: frequency ω . Time representation: x1 (t) 1 −1 Frequency representation: 1 t
Check Yourself
Signal x2 (t) and its Fourier transform X2 (jω ) are shown below. x2 (t) 1 −2 Which is true? 2 t X2 (jω ) b ω0 ω
S
T
S
T
ak =
� � 2π sin 2πkS 2 sin ωS 1 T /2 1 S −j 2π kt T = xT (t)e−j T kt dt = e T dt = T −T /2 T −S πk T ω T ak 2 sin ωS
ω
ak =
� � 2π sin 2πkS 2 sin ωS 1 T /2 1 S −j 2π kt T = xT (t)e−j T kt dt = e T dt = T −T /2 T −S πk T ω T ak 2 sin ωS
X1 (jω ) × X2 (jω )
1 1 + jω
a complex-valued function of real domain.
2
6.003: Signals and Systems
Laplace Transform
The Laplace transform maps a function of time t to a complex-valued function of complex-valued domain s. x(t)
∞ � k=−∞
S x(t + kT )
t
xT (t) −S Then x(t) = lim xT (t).
T →∞
S
T
t
Fourier Transform
Represent xT (t) by its Fourier series. xT (t) −S t
Fourier Transform
Doubling period doubles # of harmonics in given frequency interval. xT (t) −S t
−∞
(“analysis” equation)
(“synthesis” equation)
Fourier transform: � ∞ x(t)e−jωt dt = H (s)|s=jω X (jω ) =
−∞
Form is similar to that of Fourier series → provides alternate view of signal.
Lecture 16
Fourier Transform
As T → ∞, synthesis sum → integral. xT (t) −S
April 6, 2010
S
T
S 2 sin ωS
ω
T ω = kω0 = k 2π T
t
ak =
� � 2π sin 2πkS 1 T /2 1 S −j 2π kt 2 sin ωS T xT (t)e−j T kt dt = e T dt = = T −T /2 T −S πk T ω T ak 2 sin ωS
−∞ 0
1 ; Re(s) > −1 1+s
a complex-valued function of complex domain. Fourier transform � ∞ � ∞ e−t u(t)e−jωt dt = e−(jω +1)t dt = X (jω ) =
相关文档
最新文档