Pt纳米颗粒在氮掺杂空心碳微球上的高分散负载及其氧还原性能
低纳米Pt在介孔空心碳半球上的稳定负载及其高效氧还原催化性能

低纳米Pt 在介孔空心碳半球上的稳定负载及其高效氧还原催化性能闫早学*,宗瑟凯,谢吉民(江苏大学化学化工学院,江苏,镇江,212013,E-mail:yanzaoxue@ )低温燃料电池主要使用Pt 、Pd 等贵金属为催化剂。
贵金属价格昂贵,制约了燃料电池的商业化。
尤其在燃料电池阴极发生的氧还原反应,动力学速率缓慢,需要更多的活性位来加速其反应,这就进一步增加了对贵金属的需求。
为解决这一问题,改善贵金属的分散性和物料传输性能,进而提高贵金属利用率,显得至关重要。
碳材料尤其是空心碳材料因其具有良好的导电性、优异的化学稳定性和高比表面积被广泛应用于分散和负载贵金属。
我们开发了一种介孔空心碳半球材料(BLC)[1]:它是具有开口的空心碳球,并且球壳上含有大量的介孔,能够将空心材料内壁充分暴露,如图1所示。
BET 测试结果表明该材料具有1108.3m 2g -1的比表面积,2.7cm 3g -1的孔体积和9.4nm的平均孔直径。
图1介孔空心碳半球(BLC)的SEM 图,内嵌TEM图。
Fig.1SEM and TEM images of mesoporous hollowcarbon hemispheres(BLC).图2Pt 在BLC(a)和Vulcan XC-72carbon (b)上负载的TEM 图。
(c),(d)为相应的P 图粒径分布图。
Fig.2TEM images of Pt/BLC (a)and Pt/C (b).(c)and (d)are the corresponding Pt particledistributions.图3(a)Pt/BLC 和商业Pt/C (TKK)的氧还原曲线图,内嵌质量活性-电位曲线图;(b)Pt/BLC 和Pt/C (TKK)的循环稳定性比较,“阴影”为第1圈至第10,000圈扫过的面积。
Fig.3(a)The ORR on Pt/BLC and Pt/C (TKK)electrodes in O 2saturated 0.1mol L -1HClO 4solution,25o C,scan rate:5mV s -1,1600rpm,inset is the corresponding mass activity -potential plots;(b)the ORRelectrocatalytic stability comparison between Pt/BLC and Pt/C(TKK),the shadows are the cycling difference between the1th cycle and the10,000th cycle.我们采用间歇微波加热法[2]将纳米Pt粒子负载于BLC(记为Pt/BLC)和Vulcan XC-72carbon(记为Pt/C)。
核壳型Co-Pt纳米粒子的氧还原电催化性能

核壳型Co-Pt纳米粒子的氧还原电催化性能梅艳;刘世斌;段东红;张忠林;郝晓刚【期刊名称】《太原理工大学学报》【年(卷),期】2010(41)2【摘要】采用两步化学还原法制备不同壳层厚度的核壳型Co-Pt纳米粒子.采用X 射线衍射光谱(XRD)、X射线光电子能谱(XPS)及透射电镜(TEM)技术表征催化剂的结构和组成,用旋转圆盘电极动电位扫描法测试其对氧还原反应的催化性能.结果表明:核壳型Co-Pt纳米粒子直径约30 nm;相对于Pt/C,Co-Pt/C具有更高的电催化氧还原活性和抗甲醇性,催化剂随着Pt壳层厚度的增加氧还原活性增大,抗甲醇能力逐渐降低.随着甲醇浓度的增加,氧还原起始过电位增大,峰电流密度减小.【总页数】6页(P117-122)【作者】梅艳;刘世斌;段东红;张忠林;郝晓刚【作者单位】太原理工大学洁净化工研究所,太原030024;乐山职业技术学院,四川乐山614000;太原理工大学洁净化工研究所,太原030024;太原理工大学洁净化工研究所,太原030024;太原理工大学洁净化工研究所,太原030024;太原理工大学洁净化工研究所,太原030024【正文语种】中文【中图分类】O646【相关文献】1.氮/硫双掺多孔碳负载Fe9S10纳米粒子的氧还原电催化性能 [J], 王秀利;何兴权2.石墨烯载Pt纳米粒子的原位还原制备及氧还原电催化性能 [J], 何卫;邹亮亮;周毅;卢向军;李媛;张校刚;杨辉3.薄壳层核壳型Ni/Pt纳米粒子的制备及电催化性能 [J], 刘世斌;杨春英;张忠林;段东红;郝晓刚;李一兵4.Cocore Pdshell/C核壳型纳米粒子电催化氧还原性能 [J], 刘世斌;李蓉;张忠林;郝晓刚;段东红;卫国强;马艳华5.核壳型Ni-Pt纳米微粒的氧还原电催化性能 [J], 李大双;刘世斌因版权原因,仅展示原文概要,查看原文内容请购买。
Pt纳米颗粒在氮掺杂空心碳微球上的高分散负载及其氧还原性能

A c t a P . - C h i m. S i n . 2 0 1 3 , 2 9( 6 ) , 1 2 9 7 -1 3 0 4 [ Ar t i c l e ] d o i : 1 0 . 3 8 6 6 / P KU. WHX B 2 0 1 3 0 4 0 1 1 1 2 9 7 www . wh x b . p k u . e d u . c n
We l l — Di s p er s e d PI a t i nu m Na n op ar - t i c I e s Su pp or t e d on Ni t r o ge n - Dop e d Hol l o w Ca r b on Mi c r o s ph e r e s f or Ox y ge n ・ Re du c t i on Re a c t i on
a s s i s t e d r e d u c t i o n p r o c e s s .T h e mor p h ol o g y .s u f r a c e a r e a.a n d p o r e s i z e d i s t r i b u t i o n o f t h e N. HCMS
p o l y ( d o p a mi n e ) . P I a t i n u m( P t )n a n o p a  ̄ i c l e s( NP s )w e r e d e p o s i t e d o n t o t h e N . H CMS v i a a mi c r o wa v e -
No n - F e r r o u s Me t a l R e s e a r c h . X i a n 7 1 0 0 1 R . C h i n a )
pt纳米团簇氧还原催化剂

pt纳米团簇氧还原催化剂纳米科技的快速发展和应用推动了许多领域的创新,特别是在能源领域的氧还原反应中。
PT纳米团簇氧还原催化剂是一种性能卓越的催化剂,具有高效催化氧还原反应的能力。
本文将探讨PT纳米团簇氧还原催化剂的制备方法、催化机理以及应用前景。
一、PT纳米团簇氧还原催化剂的制备方法PT纳米团簇氧还原催化剂的制备具有重要意义,可以影响其催化性能。
目前,研究人员采用多种方法来制备PT纳米团簇氧还原催化剂,如溶剂热法、溶胶凝胶法和电化学沉积法等。
其中,溶剂热法是一种常用的制备方法。
首先,将金属前体与溶剂混合,并在高温下加热反应,使金属前体聚集成纳米尺度的团簇。
然后,通过洗涤、离心和干燥等步骤来获取纯净的PT纳米团簇。
二、PT纳米团簇氧还原催化剂的催化机理PT纳米团簇氧还原催化剂的催化机理是理解其高效催化性能的关键。
根据研究,PT纳米团簇催化剂在氧还原反应中主要通过两步机理实现:吸附和解离。
首先,氧分子在PT纳米团簇表面吸附。
通过强的吸附作用,氧分子被固定在PT纳米团簇上,形成活化态的氧。
随后,氧分子发生解离,产生氧原子并与负电的活性位点相互作用。
这种相互作用可以有效地催化氧还原反应,降低反应能垒,促进电子转移。
三、PT纳米团簇氧还原催化剂的应用前景PT纳米团簇氧还原催化剂在燃料电池、电解水制氢等领域具有广阔的应用前景。
在燃料电池中,PT纳米团簇催化剂可以提供持久且高效的氧还原反应活性,提高燃料电池的效率和稳定性。
这使得燃料电池能够更好地应用于汽车、电子设备和可再生能源等领域。
而在电解水制氢中,PT纳米团簇催化剂也能够促进氧还原反应的进行,降低电解过程中的能耗。
这对于实现清洁能源的制备和利用具有重要意义,有望推动绿色能源的发展。
除此之外,PT纳米团簇氧还原催化剂还可以在其他领域如电化学传感器、环境污染治理和催化有机反应等方面发挥作用。
总结起来,PT纳米团簇氧还原催化剂是一种具有广阔应用前景的新型催化剂。
pt纳米团簇氧还原催化剂

PT纳米团簇氧还原催化剂一、引言随着全球能源需求的增长和环境问题的日益严重,寻找高效、环保的能源转化和储存技术成为当今科研领域的热点之一。
氧还原反应(ORR)作为重要的能源转化过程之一,在燃料电池、金属空气电池等领域具有广泛的应用前景。
然而,传统的贵金属催化剂(如铂)存在价格昂贵、稀缺性和耐久性等问题,因此迫切需要开发替代的高效、低成本的催化剂。
二、PT纳米团簇催化剂简介PT纳米团簇催化剂是一种新型的氧还原催化剂,由铂(Pt)纳米团簇组成。
纳米团簇是一种尺寸在1-2 nm的纳米材料,具有高比表面积和丰富的表面活性位点,能够提供更多的反应活性中心,从而提高催化剂的活性和稳定性。
三、PT纳米团簇催化剂的制备方法3.1 溶剂热法溶剂热法是制备PT纳米团簇催化剂的一种常用方法。
首先,将铂前体(如PtCl4)与溶剂(如乙二醇)混合,在高温下进行热处理,通过还原和聚集作用形成纳米团簇。
该方法具有简单、易操作和高产率的优点。
3.2 水热法水热法也是一种常用的制备PT纳米团簇催化剂的方法。
将铂前体与水混合,在高温高压下进行水热反应,通过还原和聚集作用形成纳米团簇。
该方法具有较高的控制性和可扩展性。
3.3 其他方法除了溶剂热法和水热法,还有许多其他方法可以制备PT纳米团簇催化剂,如微乳液法、溶胶-凝胶法等。
这些方法具有各自的特点和适用范围,可以根据具体需求选择合适的方法。
四、PT纳米团簇催化剂的氧还原性能4.1 活性PT纳米团簇催化剂具有优异的氧还原活性,比传统的铂催化剂更高。
这是因为纳米团簇具有高比表面积和丰富的表面活性位点,能够提供更多的反应活性中心,从而提高催化剂的活性。
4.2 耐久性PT纳米团簇催化剂具有较好的耐久性,能够在长时间的使用过程中保持较高的催化活性。
这是因为纳米团簇具有较高的稳定性和抗中毒性,能够有效地抵抗催化剂的失活。
4.3 选择性PT纳米团簇催化剂具有良好的选择性,能够实现高效的氧还原反应而避免不必要的副反应。
氮掺杂石墨烯负载Pt复合电极催化剂的制备及其电催化性能

文 章 编 号 :1007-9432(2016)03-0284-05
氮掺杂石墨烯负载 Pt复合电极催化剂的 制备及其电催化性能
武宏钰,任丹丹,周 瑞,王晓敏
(太原理工大学 材料科学与工程学院,太原 030024)
摘 要:使用水合肼(HHA)还原 氧 化 石 墨 烯 (GO)制 备 了 N 掺 杂 石 墨 烯 (G-N),并 将 其 作 为 载体材料负载金属 Pt纳米颗粒合成 Pt/G-N 复合催化剂。通过 X 射线衍射(XRD)、X 射线光电子 能谱(XPS)、透射电子显微镜(TEM)以 及 循 环 伏 安 法 (CV)等 测 试 手 段,对 所 制 备 催 化 剂 的 成 分 、 形貌以及电催化性能进行表征 。结果表明,水合肼还原 GO 制 备 出 Pt纳 米 颗 粒 均 匀 负 载 的 Pt/G- N 催化剂,该催化剂具有优良的电催化氧化性能和抗 CO 中毒性。
直 接 乙 醇 燃 料 电 池 (direct ethanol fuel cells, DEFCs)作为清洁、高 效 的 能 源 装 置,在 近 年 来 引 起 了研究者的广泛关注;这是由于 DEFCs具有高的能 量密度、适宜的工 作 温 度、较 高 的 环 境 友 好 度、易 于 装卸等 特 点[1-2]。 石 墨 烯 (graphene)是 一 种 由 sp2 杂化的碳原子构成 的 蜂 窝 状 二 维 网 格 结 构 材 料,由
XU et al[7]使 用 尿 素 作 为 氮 源,通 过 水 热 反 应 制备了 Pt纳 米 颗 粒 负 载 的 氮 掺 杂 Pt/G-N,其 对 甲 醇的电催化性能表现出优良的电催化氧化活性和耐 久性。XIONG et al[8]在 NH3 气氛中对氧化石墨烯 (graphene oxide,GO)和 (NH4)2PtCl6 一 同 进 行 淬 火处理制备了 Pt/G-N 催 化 剂,发 现 N 掺 杂 促ห้องสมุดไป่ตู้进 了 Pt纳米颗粒在载体上的均 匀 分 布,其 本 质 是 由 于 含 N 官能团导致电催化氧化甲醇活性的大幅度提高。 HE et al[9]研 究 了 Pt/G-N 催 化 剂 在 质 子 燃 料 电 池 中的应用,发现 Pt/G-N 具有高的 ORR 和电化学活 性面积。然而,如何 进 一 步 使 催 化 剂 的 乙 醇 电 催 化 性能最大化仍有待研究。
一种紫外光照合成碳材料负载Pt纳米颗粒材料的方法[发明专利]
![一种紫外光照合成碳材料负载Pt纳米颗粒材料的方法[发明专利]](https://img.taocdn.com/s3/m/67754310492fb4daa58da0116c175f0e7cd11932.png)
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202011454368.7(22)申请日 2020.12.10(71)申请人 北京科技大学地址 100083 北京市海淀区学院路30号(72)发明人 王荣明 王晓丹 路瑶 (74)专利代理机构 北京德崇智捷知识产权代理有限公司 11467代理人 王欣(51)Int.Cl.B01J 23/42(2006.01)B01J 35/02(2006.01)(54)发明名称一种紫外光照合成碳材料负载Pt纳米颗粒材料的方法(57)摘要本发明提供一种紫外光照合成碳材料负载Pt纳米颗粒材料的方法,所述方法包含如下步骤:S1、将碳材料分散在由水和乙醇组成的溶剂中得到分散液;S2、向所述分散液中加入氯铂酸溶液得到反应液并进行紫外光照射;S3、将所述反应液离心干燥即可得到所述碳材料负载Pt纳米颗粒材料。
该方法使得铂碳催化剂在负载均匀的情况下,提高了负载量和性能,减低了目前合成类似材料的成本和难度,减少了污染。
权利要求书1页 说明书4页 附图2页CN 112588287 A 2021.04.02C N 112588287A1.一种紫外光照合成碳材料负载Pt纳米颗粒材料的方法,其特征在于,所述方法包含如下步骤:S1、将碳材料分散在由水和乙醇组成的溶剂中得到分散液;S2、向所述分散液中加入氯铂酸溶液得到反应液并进行紫外光照射;S3、将所述反应液离心干燥即可得到所述碳材料负载Pt纳米颗粒材料。
2.根据权利要求1所述的方法,其特征在于,所述水和乙醇的溶液中水和乙醇的体积比为1:1。
3.根据权利要求1或2所述的方法,其特征在于,在磁力搅拌的同时向所述分散液中加入氯铂酸溶液。
4.根据权利要求1或2所述的方法,其特征在于,在常温下进行所述步骤S2。
5.根据权利要求1或2所述的方法,其特征在于,所述氯铂酸的浓度小于1g/L。
一种CoO负载空心碳微球的复合氧还原催化剂及其制法[发明专利]
![一种CoO负载空心碳微球的复合氧还原催化剂及其制法[发明专利]](https://img.taocdn.com/s3/m/194e7c345022aaea988f0fe3.png)
专利名称:一种CoO负载空心碳微球的复合氧还原催化剂及其制法
专利类型:发明专利
发明人:施克勤
申请号:CN202010395745.8
申请日:20200512
公开号:CN111477887A
公开日:
20200731
专利内容由知识产权出版社提供
摘要:本发明涉及氧还原反应催化剂技术领域,且公开了一种CoO负载空心碳微球的复合氧还原催化剂,包括以下配方原料及组分:空心碳纳米微球、硝酸钴、尿素、氟化铵、过氧化氢。
该一种CoO负载空心碳微球的复合氧还原催化剂,空心碳纳米微球具有良好的小尺寸效应和巨大的比表面积,可以加速CoO氧还原反应的氧吸附过程,高温热处理过程中碳纳米微球产生大量的氧空位,氧空位可以优化碳纳米微球的电子结构分布,增强氧还原催化性能,花瓣状的CoO纳米棒结构比表面积更大,均匀分布在空心碳纳米微球的表面,抑制了CoO纳米棒的团聚,暴露出大量的电化学活性中心,导电性优异的碳纳米微球与CoO之间形成多级导电网络,增强了催化剂的导电性能。
申请人:施克勤
地址:315100 浙江省宁波市鄞州区高新区翔云路100号
国籍:CN
更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Pt 纳米颗粒在氮掺杂空心碳微球上的高分散负载及其氧还原性能张小华1,*钟金娣1,§于亚明1,§张云松2刘博3,*陈金华1,*(1湖南大学化学化工学院,化学生物传感与计量学国家重点实验室,长沙410082;2四川农业大学生命科学与理学院,四川雅安625014;3西北有色金属研究院,西安钛金工业电化学技术有限公司,西安710016)摘要:通过热解自聚合多巴胺法制备了氮掺杂空心碳微球(N-HCMS),并采用微波辅助乙二醇还原方法把Pt纳米粒子负载于N-HCMS 上制得了Pt/N-HCMS 催化剂.催化剂的表面形貌、晶体结构及其比表面积和孔径分布等分别采用扫描电子显微镜、透射电子显微镜、X 射线衍射仪及比表面分析仪等进行表征.采用循环伏安法和线性扫描伏安法研究了Pt/N-HCMS 催化剂在酸性条件下的电催化氧还原性能.Pt/N-HCMS 催化剂由于Pt 纳米粒子的均匀分散、N-HCMS 载体的快速电子传递及其独特的微孔和中空结构而具有很高的电催化氧还原活性,其质量比活性是E-TEK Pt/C 催化剂的近两倍.Pt/N-HCMS 催化剂还具有优良的稳定性.本工作对于开发高性能的燃料电池阴极催化剂具有重要意义.关键词:氮掺杂;空心碳微球;Pt 纳米粒子;电催化;氧还原反应中图分类号:O646;O643Well-Dispersed Platinum Nanoparticles Supported on Nitrogen-Doped Hollow Carbon Microspheres for Oxygen-Reduction ReactionZHANG Xiao-Hua 1,*ZHONG Jin-Di 1,§YU Ya-Ming 1,§ZHANG Yun-Song 2LIU Bo 3,*CHEN Jin-Hua 1,*(1State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical Engineering,HunanUniversity,Changsha 410082,P .R.China ;2College of Life and Science,Sichuan Agricultural University,Yaan 625014,Sichuan Province,P .R.China ;3Xi ʹan Taijin Industrial Electrochemical Technology Co.,Ltd.,Northwest Institute forNon-Ferrous Metal Research,Xi ʹan 710016,P .R.China )Abstract:Nitrogen-doped hollow carbon microspheres (N-HCMS)were synthesized by carbonization of poly(dopamine).Platinum (Pt)nanoparticles (NPs)were deposited onto the N-HCMS via a microwave-assisted reduction process.The morphology,surface area,and pore size distribution of the N-HCMS supported Pt catalysts (Pt/N-HCMS)were characterized by scanning electron microscopy,transmission electron microscopy,X-ray diffraction,and surface area and porosimetry measurements.The electrocatalytic properties of the Pt/N-HCMS catalyst towards oxygen-reduction reaction were investigated by cyclic voltammetry and linear sweep voltammetry.The Pt/N-HCMS catalyst showed almost double the specific mass activity of a commercial carbon supported Pt catalyst.This was attributed to a uniform dispersion of the Pt NPs and the unique mesoporous and hollow structure of N-HCMS.In addition,fast electron transfer processes were found to occur on the nitrogen doped N-HCMS and the catalyst exhibited excellent[Article]doi:10.3866/PKU.WHXB201304011物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .2013,29(6),1297-1304June Received:October 25,2012;Revised:April 1,2013;Published on Web:April 1,2013.∗Corresponding authors.ZHANG Xiao-Hua,Email:mickyxie@;Tel:+86-731-88821961.LIU Bo,Email:net lb@;Tel:+86-135********.CHEN Jin-Hua,Email:chenjinhua@;Tel:+86-731-88821961.§These authors contributed equally to this work.The project was supported by the Program for Changjiang Scholars and Innovative Research Team in University,China (PCSIRT),Hunan Provincial Natural Science Foundation,China (12JJ2010),Young Teachers ʹGrowth Plan (2012),and Specialized Research Fund for the Doctoral Program of Higher Education,China (20110161110009).长江学者和创新团队发展计划(PCSIRT),湖南省自然科学基金(12JJ2010)及高等学校年轻教师成长计划(2012)和博士学科点专项科研基金(20110161110009)资助项目ⒸEditorial office of Acta Physico-Chimica Sinica1297Acta Phys.-Chim.Sin.2013Vol.29long-term stability.This work is of significance for the development of high-performance cathodiccatalysts in fuel cells.Key Words:Nitrogen-doping;Hollow carbon microsphere;Pt nanoparticle;Electrocatalysis;Oxygen-reduction reaction1IntroductionProton exchange membrane fuel cells(PEMFCs)have at-tracted great attention as an efficient power generation source with high power density and low emission for portable elec-tronic devices.1However,the problems such as sluggish kinet-ics of the oxygen reduction reaction(ORR),poor catalytic ac-tivity,and low durability of the cathodic catalysts still limit the commercial development of PEMFCs.2So,the development of highly qualified cathodic catalysts for ORR is of great impor-tance for practical application of fuel cells.3After decades of scientific research,highly dispersed Pt nanoparticles(NPs)sup-ported on carbon black(e.g.,Vulcan XC72)are recognized as the state-of-the-art commercial cathodic catalyst.However, due to corrosion of the carbon support and weak link between Pt NPs and carbon black,4the loss or agglomeration of Pt NPs in the carbon black supported Pt catalyst,which results in the degradation of catalytic performance,is still a serious problem to be addressed for promoting the practical application of PEM-FCs.In addition,the carbon black with broad pore size distribu-tion and poor pore connectivity significantly reduces the utili-zation of Pt.5Hence,more and more research efforts in fuel cell technology have focused on the development of better sup-port materials with specific morphologies and properties. Recently,hollow carbon microspheres(HCMS)with a well-defined structure of hollow core and carbon shell have been at-tracting great interest in many technical areas such as drug de-livery,active material encapsulation,lithium-ion batteries,cata-lyst supports,sensing,hydrogen storage6due to the remarkable properties including low density,large specific surface area, and accessible porosity and so on.It was reported that porous carbon spheres with three-dimensionally ordered pore structure would benefit the mass transport of reactants and products, which is crucial for an excellent catalyst support resulting in better ORR performance.7This suggests that HCMS could be potential support materials for cathodic catalysts in PEMFCs.8 On the other hand,to improve the durability and the attach-ment of Pt NPs on carbon support materials,their surfaces have usually been modified by various methods,such as harsh chemical or electrochemical oxidations with concentrated strong acid,9surface functionalization by anchoring or grafting organic groups(e.g.,amino)on the carbon support surface10 and doping with foreign atoms11(e.g.,nitrogen).Compared with the detrimental oxidation processes9and the complex and time-consuming functionalization process,nitrogen doping of the carbon support materials has been reported as a more effec-tive route to improve the deposition of metal nanoparticles.11According to previous researches,11,12nitrogen-doped carbon supports not only facilitate the dispersion of Pt NPs but render Pt NPs a higher durability by introducing more binding sites to the carbon surface for anchoring the Pt precursor or Pt NPs. Moreover,some researches showed that nitrogen-doped carbon itself has a certain activity toward ORR.13Thus,nitrogen-doped hollow carbon microspheres(N-HCMS)should be the promising carbon support materials.Herein,N-HCMS were fabricated by pyrolysis of poly(dopa-mine)(PDA)wrapped SiO2microspheres which were synthe-sized by the spontaneous self-polymerization of dopamine onto the surface of silica microspheres and employed as the support material for Pt NPs.The electrocatalytic performance of the as-prepared N-HCMS supported Pt NPs(Pt/N-HCMS)for ORR was investigated by typical electrochemical methods.2Experimental2.1Reagents and materialsDopamine hydrochloride(DA)and SiO2microspheres(di-ameter,ca360nm)were purchased from Alfa Aesar(USA) and used as received.All other reagents were of analytical grade.All solutions used throughout were prepared with ultra pure water obtained from a Millipore system(>18MΩ·cm). 2.2Synthesis of N-HCMSThe synthesis for N-HCMS was composed of three steps as reported by Xiao et al.,14and a typical procedure is detailed as follows.Firstly,100mg SiO2microspheres were washed thor-oughly with50mmol·L-1tris(hydroxymethyl)-aminomethane (TRIS)buffer(pH=8.5)and centrifuged for three times.The re-sulting precipitate was then suspended in TRIS buffer solution (40mL,50mmol·L-1)containing80mg dopamine hydrochlo-ride,followed by vigorous stirring for24h to form polydopa-mine(PDA)wrapped SiO2(PDA/SiO2)microspheres.After centrifugated,washed with TRIS buffer solution and dried in vacuum at60°C overnight,PDA/SiO2microspheres were ob-tained and then carbonized in a nitrogen atmosphere at850°C for2h.Finally,the product,denoted as N-HCMS,was ob-tained via removing the silica core of the carbonized PDA/SiO2 microspheres in2mol·L-1HF+8mol·L-1NH4F aqueous solu-tion at room temperature for2h,followed by successive cen-trifugation(13000r·min-1),washing with water several times, and drying under vacuum.2.3Preparation of Pt/N-HCMSDeposition of Pt NPs on the N-HCMS was achieved via mi-crowave-assisted reduction process in ethylene glycol.15Typi-cally,20mg of N-HCMS was dispersed in25mL ethylene gly-1298ZHANG Xiao-Hua et al .:Well-Dispersed Platinum Nanoparticles Supported on N-HCMS for ORRNo.6col and then 1.33mL of H 2PtCl 6precursor (19.3mmol ·L -1)was added.After adjusting pH value to 8-9with 1.0mol ·L -1KOH aqueous solution,the suspension was ultra-sonicated for 30min,and then heated by microwave irradiation (800W)for 10min at 120°C.The resulting mixture was filtered and washed with ultra pure water and acetone several times to thoroughly remove physically absorbed ethylene glycol,followed by dry-ing in a vacuum oven for 24h,and then the final product,de-noted as Pt/N-HCMS,was obtained.The loading mass of Pt NPs in Pt/N-HCMS nanohybrids was determined by inductive-ly coupled plasma-atom emission spectroscopy (ICP-AES)and it was about 18.58%(mass fraction).2.4Physical characterizationThe morphology and structure of N-HCMS and Pt/N-HCMS were characterized by transmission electron microscopy (TEM,JEM-3010,Japan)and scanning electron microscopy (SEM,JSM-6700F,Japan).X-ray diffraction (XRD)analyses were carried out on a Philips X ʹPert PROSUPER X-ray diffrac-tometer equipped with graphite monochromatized Cu K αradia-tion.ICP-AES measurement was conducted on an Atomscan Advantage spectrometer (Thermo Ash Jarrell Corporation,USA).Nitrogen sorption isotherms and Brunauer-Emmett-Teller (BET)surface areas of the samples were determined by an ASAP 2020M+C automatic micropore and chemisorption ana-lyzer (USA).Nitrogen content of N-HCMS determined by ele-mental analyzer (TCH-600,USA)was about 6.58%(mass frac-tion).2.5Electrochemical measurementsElectrochemical measurements were performed in a typical three-electrode cell with a platinum wire as the counter elec-trode and a Ag/AgCl/KCl (3mol ·L -1)electrode as the refer-ence electrode under the control of Autolab PGSTAT12.All the potentials reported herein were with respect to Ag/AgCl.For preparing the working electrode,3mg of catalyst (Pt/N-HCMS or E-TEK Pt/C (the commercial catalyst,De Nora Elettrodi Co.Ltd.,20%Pt (mass fraction))was firstly suspended in 1mL water with ultrasonication to achieve uniform catalyst ink,and then a definite volume of catalyst ink was transferred to the surface of the glassy carbon (GC)rotatable disk electrode (RDE,ϕ5mm,Pine Instruments)by a micro-syringe.The loading mass of Pt NPs for the Pt/N-HCMS or E-TEK Pt/C cat-alyst was 30μg ·cm -2.After dried in air,the electrode was coat-ed with 5μL of 0.5%(mass fraction)Nafion ethanol solution (Ion Power Inc.,USA).Prior to each electrochemical measure-ment,the electrode was cycled in Ar-saturated 0.5mol ·L -1H 2SO 4solution until a steady-state cyclic voltammogram was reached.RDE tests were conducted at a scan rate of 10mV ·s -1with a rotation speed of 1600r ·min -1(revolution per minute)in O 2-saturated 0.5mol ·L -1H 2SO 4solution.All of the electrochemi-cal experiments were performed at 25°C.3Results and discussionFig.1SEM (A)and TEM (B)images of N-HCMS,and nitrogen adsorption-desorption isotherms (C)andthe pore size (D )distributions (D)of N-HCMS and Pt/N-HCMSThe inset in Fig.1A is the high-magnification SEM image ofN-HCMS.1299Acta Phys.-Chim.Sin.2013Vol.293.1Characterization of N-HCMS and Pt/N-HCMSFig.1shows the SEM and TEM images of N-HCMS.It is noted that the hollow feature of the microspheres with uniform diameter and shell thickness can be clearly observed,and the average diameter and the shell thickness of N-HCMS is about 372and 12nm,respectively.For further understanding the pore structure,N 2adsorption-desorption isotherms of N-HCMS were measured,and the corresponding N 2adsorption-desorp-tion isotherms are shown in Fig.1C.From Fig.1C,a type IV isotherm with an H 1-type hysteresis loop at high relative pres-sure can be observed,which means that the obtained N-HCMS possesses mesoporous structure.The BET surface areas of N-HCMS and Pt/N-HCMS calculated from the results of nitro-gen adsorption are 745and 501m 2·g -1,respectively,obviously higher than that of Vulcan XC-72(232m 2·g -1),16a kind of car-bon materials which has been widely used as catalyst support in fuel pared with that of N-HCMS,the lower BET surface area of Pt/N-HCMS might be attributed to the introduc-tion of Pt nanoparticles to the N-HCMS mesopore structure.8b The pore size distribution (PSD)(Fig.1D)of N-HCMS is al-so calculated from the nitrogen adsorption isotherm using the Barrett-Joyner-Halenda (BJH)model.N-HCMS have a wide pore size distribution in the range of 2-8nm and the highest PSD peak centers at 4.0nm,revealing that N-HCMS consist mostly of mesopores which plays a significant role in mass transfer in ORR.17Based on the hollow structure,high specific surface area,accessible porosity,and N-doping,N-HCMS can be expected as a satisfactory support material for Pt NPs.Figs.2A and 2B show the TEM images of Pt/N-HCMS.From Figs.2A and 2B,well-dispersed Pt NPs were successfully deposited on the surface N-HCMS via microwave-assisted re-duction process.The size distribution was evaluated statistical-ly through measuring the diameter of 200Pt NPs in the select-ed TEM image (Fig.2B),and the corresponding results are shown in Fig.2C.From Fig.2C,the particle size of Pt distrib-utes mainly between 1.3and 6.0nm with an average diameter of ca (4.1±0.4)nm,which is larger than that of E-TEK Pt/C,ca (2.0±0.3)nm.Noteworthy is that no NPs aggregation is obvi-ously observed on the surface of N-HCMS.The structure and composition of the N-HCMS and Pt/N-HCMS were further in-vestigated by XRD (Fig.2D).From Fig.2D,for N-HCMS and Pt/N-HCMS,one broad diffraction peak at 2θof around 25°corresponding to turbostratic carbon (002)lattice plane can be observed,suggesting poor graphitization of N-HCMS under the carbonization temperature of 850°C.18Besides,the diffrac-tion peaks at around 40°,46°,68°,and 82°indexed to Pt (111),(200),(220),and (311)planes,respectively,the typical char-acter of a crystalline face centered cubic (fcc)phase of Pt,can also be observed on Pt/N-HCMS,demonstrating the suc-cessful preparation of the Pt/N-HCMS nanohybrids.The mean Pt particle size of Pt/N-HCMS catalyst,calculated from the XRD pattern using the Debye-Scherrer equation,19is 4.2nm,which is in good agreement with the result observed from the TEM images.Fig.2(A,B)TEM images of Pt/N-HCMS,(C)size distribution of Pt NPs of Pt/N-HCMS nanohybrids,(D)X-ray diffraction patterns ofN-HCMS and Pt/N-HCMSnanohybrids1300ZHANG Xiao-Hua et al .:Well-Dispersed Platinum Nanoparticles Supported on N-HCMS for ORRNo.63.2Electrocatalytic properties of the Pt/N-HCMS catalyst for oxygen reductionThe electrocatalytic properties of the as-fabricated Pt/N-HCMS nanohybrids toward the ORR were evaluated and com-pared with that of the commercial E-TEK Pt/C.Fig.3A shows typical ORR polarization curves of Pt/N-HCMS and E-TEK Pt/C catalysts in oxygen-saturated 0.5mol ·L -1H 2SO 4by using a glassy carbon RDE at 1600r ·min -1.As expected,the Pt/N-HCMS catalyst shows higher catalytic activity toward the ORR compared to the E-TEK Pt/C catalyst.From Fig.3A,the onset and half-wave potentials of ORR on the Pt/N-HCMS catalyst are about 0.736and 0.605V ,respec-tively,and positively shifted by about 38and 30mV in compar-ison with those on the E-TEK Pt/C catalyst.Moreover,the mass activity of the Pt/N-HCMS catalyst,in term of mass spe-cific current density at 0.65V is 32.21A ·g -1,being 1.9times as high as than that on the E-TEK Pt/C catalyst (16.28A ·g -1).These indicate that the electrocatalytic activity of Pt/N-HCMS for ORR is better than that of E-TEK Pt/C.To clarify the mechanism about the higher electrocatalytic activity of Pt/N-HCMS compared with that of E-TEK Pt/C,the specific electrochemical surface area (ESA)of Pt/N-HCMS (or E-TEK Pt/C)was estimated by cyclic voltammetry (CV)based on the charge associated with the hydrogen adsorption and de-sorption processes 20in Ar-saturated 0.5mol ·L -1H 2SO 4solution at a scan rate of 50mV ·s -1,and the corresponding cyclic voltam-mograms are presented in Fig.3B.The ESA values of the Pt/N-HCMS and E-TEK Pt/C catalysts can be calculated as:2ESA=Q H /(0.21×[Pt])where Q H (mC ·cm -2)represents the mean value between the amounts of charge exchanged during the electro-adsorption and desorption of H 2on Pt sites,[Pt]is the Pt loading (mg ·cm -2)on the electrode and 0.21(mC ·cm -2)represents the charge required to oxidize a monolayer of H 2on a smooth Pt.The ESA value (Fig.3C)of Pt/N-HCMS catalyst is about 39.3m 2·g -1and lower than that of the E-TEK Pt/C catalyst (48.9m 2·g -1).The lower ESA of Pt/N-HCMS compared with that of E-TEK Pt/C is reasonable since Pt/N-HCMS have larger Pt size (about 4nm)compared with that of E-TEK Pt/C (about 2nm).However,it is worthy to investigate why the Pt/N-HCMS catalyst with the smaller ESA value exhibits better electrocata-lytic activity towards ORR.From a more basic chemical point of view,the specific sur-face activity,calculated by normalizing the current density to the ESA,can be used to conclude about the intrinsic activity of the catalyst.Therefore,the specific surface activities of the Pt/N-HCMS and E-TEK Pt/C catalysts were calculated and are about 1.025and 0.371A ·m -2,respectively (Fig.3D),indicating that the Pt/N-HCMS catalyst has not only higher mass specific activity but also higher intrinsic activity for the ORR than theFig.3(A)RDE tests toward ORR on the Pt/N-HCMS and E-TEK Pt/C catalysts at 1600r ·min -1in O 2-saturated 0.5mol ·L -1H 2SO 4with a scan rate of 10mV ·s -1;(B)cyclic voltammograms of the Pt/N-HCMS and E-TEK Pt/C catalysts in Ar-saturated 0.5mol ·L -1H 2SO 4at 50mV ·s -1;(C)ESA values of the Pt/N-HCMS and E-TEK Pt/C catalysts;(D)mass activity and specific activity of the Pt/N-HCMS and E-TEKPt/C catalysts at 0.65V1301Acta Phys.-Chim.Sin.2013Vol.29E-TEK Pt/C catalyst.It is well known that the intrinsic activity of catalyst mainly depends on its nature such as property and structure of material.These suggest that the N-HCMS can im-prove the catalytic activity of Pt due to the following probable reasons:(1)the existence of nitrogen atoms in N-HCMS chang-es the chemical composition of the HCMS and favors to in-crease specific active sites at the metal-support boundary,16thus benefiting the effective attachment and uniform dispersion of Pt NPs onto the surface of N-HCMS;(2)the nitrogen acts as a electron donator and improves the electrical conductivity of the N-HCMS,resulting in a faster electron transfer process of ORR;22(3)it is well known that ORR in fuel cells involves O 2-ions,electrons and O 2molecules,in which O 2molecules react with electrons at the cathode to form O 2-ions which are trans-ported from the reaction site by diffusion.For an ideal catalyst toward ORR in fuel cells,the structure with high electrical con-ductivity,ion conductivity,and gas permeability is necessary.23The mesoporous and hollow structure of N-HCMS provides the ideal channels of electron and mass transport,thus facilitat-ing the process of oxygen reduction.In addition,nitrogen-doped carbon itself has a certain activity toward ORR.13a In or-der to further clarify the effect of nitrogen doping on the disper-sion of Pt NPs and the electrocatalytic properties of the cata-lysts,the un-doped HCMS supported Pt NPs (Pt/HCMS)were prepared,the more detailed procedure for the preparation of Pt/HCMS,and the related structure characterization and electro-catalytic properties were provided in Supporting Information.As showed in Fig.S1A,Pt NPs are obviously aggregated on the surface of paring Pt/HCMS (0.624V ,2.88mA ·cm -2),Pt/N-HCMS (0.736V ,4.81mA ·cm -2)catalyst exhibits more positive onset potential and higher steady-state diffusion current density for oxygen reduction (Fig.S2).These further confirm that nitrogen doping is helpful for the uniform disper-sion of Pt NPs onto the surface of the carbon spheres and the enhancement of the electrocatalytic activity of the Pt catalysts.3.3Durability of the Pt/N-HCMS catalystThe durability of the electrocatalyst is very important from a practical viewpoint.The long term electrochemical stability of the catalyst was evaluated by accelerated degradation test (ADT).The ADT was performed by CV cycling between 0.4and 0.8V in O 2-saturated 0.5mol ·L -1H 2SO 4solution with a scan rate of 100mV ·s -1.Before and after ADT,the ESA values of the Pt/N-HCMS catalyst were evaluated by the CV tests in Ar-saturated 0.5mol ·L -1H 2SO 4solutions with a scan rate of 50mV ·s -1and the related RDE tests toward ORR were carried out at 1600r ·min -1in O 2-saturated 0.5mol ·L -1H 2SO 4with a scan rate of 10mV ·s -1.For comparison,the commercial E-TEK Pt/C catalyst was al-so studied under the same conditions.Figs.4A and 4B show the CV curves of the Pt/N-HCMS and E-TEK Pt/C catalysts before and after 2000CV cycles.The loss of the ESA with the number of CV cycle is plotted in Fig.4C.As shown in Fig.4C,the ESA value of the Pt/N-HCMS catalyst after 2000CV cycles only decreases about 18%,while E-TEK Pt/C loses 79%of the initial ESA.On the other hand,a larger decrease of 116mV (Fig.4E)in the half-wave potential can be observed for the E-TEK Pt/C catalyst after 2000CV cy-cles compared with that of the Pt/N-HCMS catalyst (14mV ,Fig.4D).Fig.5(A -D)shows the TEM images of the Pt/N-HCMS and E-TEK Pt/C catalysts before and after CV cycling.For the E-TEK Pt/C catalyst (Figs.5B and 5D),substantial growth of Pt NPs and a decrease of the distribution density of Pt NPs on the carbon supports can be observed after the durability test.Fig.4CV curves for the Pt/N-HCMS (A)and E-TEK Pt/C (B)catalysts before and after ADT;loss of ESA of Pt/N-HCMS and E-TEK Pt/Cwith the number of CV cycles (C);RDE tests of Pt/N-HCMS (D)and E-TEK Pt/C (E)before and afterADT1302ZHANG Xiao-Hua et al .:Well-Dispersed Platinum Nanoparticles Supported on N-HCMS for ORRNo.6The average size of Pt NPs of E-TEK Pt/C (Fig.5F)is ca (5.1±1.3)nm,increases about 155.0%compared with that before CV tests.This implies that the loss of ESA for the E-TEK Pt/C was ascribed to the Ostwald ripening,aggregation,and falling-off of the Pt NPs on the carbon support.24By contrast,in addi-tion to slight aggregation,there were no obvious morphologi-cal changes (see Figs.5A and 5C)for the Pt/N-HCMS catalyst after CV cycling,and the average size of Pt NPs of Pt/N-HCMS (see Fig.5E)is ca (5.0±1.3)nm,only increases about 21.9%than that before CV tests.The above ESA data,TEM and size distribution results indicate that Pt/N-HCMS is much more sta-ble than the commercial E-TEK Pt/C catalyst.On the other hand,a larger decrease of the half-wave potential and ESA (32.5mV and 23%,respectively,Fig.S3)can also be observed for the Pt/HCMS catalysts after 2000CV cycles compared with that of the Pt/N-HCMS catalyst.These imply that nitro-gen doping is beneficial to the improvement of the stability of the Pt/N-HCMS catalyst.11a,12a,12c,12d,254ConclusionsN-HCMS were synthesized by carbonization of poly(dopa-mine)and then employed as the support for Pt NPs.Due to the high specific surface area and homogeneous N-doping sites of N-HCMS,Pt NPs are highly dispersed on the surface of paring the E-TEK Pt/C catalyst,the Pt/N-HCMS cata-lyst exhibits significantly enhanced electrocatalytic activity to-ward ORR and improved long-term electrochemical stability due to the excellent support effect of N-HCMS for Pt NPs.The N-HCMS should be a promising catalyst support for noble metal NPs in fuel cells.Supporting Information:available free of charge via the in-ternet at .References(1)Borup,R.;Meyers,J.;Pivovar,B.;Kim,Y .S.;Mukundan,R.;Garland,N.;Myers,D.;Wilson,M.;Garzon,F.;Wood,D.;Zelenay,P.;More,K.;Stroh,K.;Zawodzinski,T.;Boncella,J.;McGrath,J.E.;Inaba,M.;Miyatake,K.;Hori,M.;Ota,K.;Ogumi,Z.;Miyata,S.;Nishikata,A.;Siroma,Z.;Uchimoto,Y .;Yasuda,K.;Kimijima,K.I.;Iwashita,N.Chem.Rev.2007,107(10),3904.doi:10.1021/cr050182l (2)(a)Lim,B.;Jiang,M.;Camargo,P.H.C.;Cho,E.C.;Tao,J.;Lu,X.;Zhu,Y .;Xia,Y .Science 2009,324(5932),1302.doi:10.1126/science.1170377(b)Bing,Y .;Liu,H.;Zhang,L.;Ghosh,D.;Zhang,J.Chem.Soc.Rev.2010,39(6),2184.(3)Wang,C.;Daimon,H.;Onodera,T.;Koda,T.;Sun,S.Angew.Chem.Int.Edit.2008,47(19),3588.(4)Yu,X.;Ye,S.J.Power Sources 2007,172(1),145.doi:10.1016/j.jpowsour.2007.07.048(5)Thompson,S.D.;Jordan,L.R.;Forsyth,M.Electrochim.Acta2001,46(10-11),1657.(6)(a)Wen,Z.;Wang,Q.;Zhang,Q.;Li,mun.2007,9(8),1867.doi:10.1016/j.elecom.2007.04.016(b)Sun,X.;Li,Y .Angew.Chem.Int.Edit.2004,43(29),3827.(c)Su,F.;Zhao,X.S.;Wang,Y .;Wang,L.;Lee,J.Y .J.Mater.Chem.2006,16(45),4413.(d)Huang,H.;Remsen,E.E.;Kowalewski,T.;Wooley,K.L.J.Am.Chem.Soc.1999,121(15),3805.Fig.5TEM images of Pt/N-HCMS (A,C)and E-TEK Pt/C (B,D)before (A,B)and after (C,D)2000CV cycle tests;size distribution of PtNPs of Pt/N-HCMS (E)and E-TEK Pt/C (F)after 2000CV cycling testsInset in figure F:size distribution of Pt NPs of E-TEK Pt/C before 2000CV cyclingtests1303Acta Phys.-Chim.Sin.2013Vol.29(e)Han,S.;Yun,Y.;Park,K.W.;Sung,Y.E.;Hyeon,T.Adv.Mater.2003,15(22),1922.(f)Gill,I.;Ballesteros,A.J.Am.Chem.Soc.1998,120(34),8587.(g)Du,H.;Li,B.;Kang,F.;Fu,R.;Zeng,Y.Carbon2007,45(2),429.(7)Bang,J.H.Electrochim.Acta2011,56(24),8674.doi:10.1016/j.electacta.2011.07.066(8)(a)Fang,B.;Kim,J.H.;Lee,C.;Yu,J.S.J.Phys.Chem.C2007,112(2),639.(b)Fıçıcılar,B.;Bayrakçeken,A.;Eroǧlu,İ.Int.J.Hydrog.Energy2010,35(18),9924.(9)(a)Jun,S.;Choi,M.;Ryu,S.;Lee,H.Y.;Ryoo,R.OrderedMesoporous Carbon Molecular Sieves with FunctionalizedSurfaces.In Studies in Surface Science and Catalysis;Sang-Eon Park,R.R.W.S.A.C.W.L.,Jong-San,C.,Eds.;Elsevier:2003;V ol.146,p37.(b)Tang,H.;Chen,J.H.;Huang,Z.P.;Wang,D.Z.;Ren,Z.F.;Nie,L.H.;Kuang,Y.F.;Yao,S.Z.Carbon2004,42(1),191.(10)(a)Besson,E.;Mehdi,A.;Reye,C.;Corriu,R.J.P.J.Mater.Chem.2009,19(27),4746.doi:10.1039/b902568e(b)Yang,C.M.;Liu,P.H.;Ho,Y.F.;Chiu,C.Y.;Chao,K.J.Chem.Mater.2002,15(1),275.(11)(a)Chen,Y.;Wang,J.;Liu,H.;Li,R.;Sun,X.;Ye,S.;Knights,mun.2009,11(10),2071.doi:10.1016/j.elecom.2009.09.008(b)Saha,M.S.;Li,R.;Sun,X.;Ye,mun.2009,11(2),438.(12)(a)Higgins,D.C.;Meza,D.;Chen,Z.J.Phys.Chem.C2010,114(50),21982.doi:10.1021/jp106814j(b)Chen,Y.;Wang,J.;Liu,H.;Banis,M.N.;Li,R.;Sun,X.;Sham,T.K.;Ye,S.;Knights,S.J.Phys.Chem.C2011,115(9),3769.(c)Li,X.;Park,S.;Popov,B.N.J.Power Sources2010,195(2),445.(d)Liu,Z.;Su,F.;Zhang,X.;Tay,S.W.ACS Applied Materials&Interfaces2011,3(10),3824.(13)(a)Lefèvre,M.;Proietti,E.;Jaouen,F.;Dodelet,J.P.Science2009,324(5923),71.doi:10.1126/science.1170051(b)Shao,Y.;Sui,J.;Yin,G.;Gao,Y.Applied Catalysis B:Environmental2008,79(1),89.(c)Wang,X.;Dai,S.Angew.Chem.Int.Edit.2010,49(37),6664.(d)Ma,G.;Jia,R.;Zhao,J.;Wang,Z.;Song,C.;Jia,S.;Zhu,Z.J.Phys.Chem.C2011,115(50),25148.(e)Shanmugam,S.;Osaka,mun.2011,47(15),4463.(f)Yang,W.;Fellinger,T.P.;Antonietti,M.J.Am.Chem.Soc.2010,133(2),206.(g)Bezerra,C.W.B.;Zhang,L.;Lee,K.;Liu,H.;Marques,A.L.B.;Marques,E.P.;Wang,H.;Zhang,J.Electrochim.Acta2008,53(15),4937.(14)Xiao,C.;Chu,X.;Yang,Y.;Li,X.;Zhang,X.;Chen,J.Biosens.Bioelectron.2011,26(6),2934.doi:10.1016/j.bios.2010.11.041 (15)Wu,B.;Hu,D.;Kuang,Y.;Liu,B.;Zhang,X.;Chen,J.Angew.Chem.Int.Edit.2009,48(26),4751.doi:10.1002/anie.v48:26 (16)Maiyalagan,T.;Viswanathan,B.;Varadaraju,U.V.mun.2005,7(9),905.doi:10.1016/j.elecom.2005.07.007(17)(a)Su,F.;Poh,C.K.;Tian,Z.;Xu,G.;Koh,G.;Wang,Z.;Liu,Z.;Lin,J.Energ.Fuel2010,24(7),3727.doi:10.1021/ef901275q(b)Stein,A.;Wang,Z.;Fierke,M.A.Adv.Mater.2009,21(3),265.(18)Kyotani,T.;Nagai,T.;Inoue,S.;Tomita,A.Chem.Mater.1997,9(2),609.doi:10.1021/cm960430h(19)Ramgir,N.S.;Hwang,Y.K.;Mulla,I.S.;Chang,J.S.SolidState Sci.2006,8(3-4),359.(20)Pozio,A.;De Francesco,M.;Cemmi,A.;Cardellini,F.;Giorgi,L.J.Power Sources2002,105(1),13.doi:10.1016/S0378-7753(01)00921-1(21)Xu,Y.;Lin,X.Electrochim.Acta2007,52(16),5140.doi:10.1016/j.electacta.2007.02.037(22)Kong,J.;Dai,H.J.Phys.Chem.B2001,105(15),2890.doi:10.1021/jp0101312(23)Hayashi,A.;Notsu,H.;Kimijima,K.I.;Miyamoto,J.;Yagi,I.Electrochim.Acta2008,53(21),6117.doi:10.1016/j.electacta.2008.01.110(24)Liu,L.;Huang,Z.;Wang,D.;Scholz,R.;Pippel,E.Nanotechnology2011,22(10),105604.doi:10.1088/0957-4484/22/10/105604(25)Li,Y.H.;Hung,T.H.;Chen,C.W.Carbon2009,47(3),850.doi:10.1016/j.carbon.2008.11.0481304。