反比例函数经典习题及答案

合集下载

(完整版)反比例函数经典习题及答案

(完整版)反比例函数经典习题及答案

(完整版)反比例函数经典习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN反比例函数练习题一、精心选一选!(30分)1.下列 函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1y x=B .1y x-=C .2y x=D .2y x-=2. 反 比例函数2k y x=-(k 为常数,0k ≠)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限3.已知 反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <24.反 比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-45.对于反比 例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小6.反比 例函数22)12(--=m xm y ,当x >0时,y 随x 的增大而增大,则m 的值时( )A 、±1B 、小于21的实数 C 、-1 D 、1 7.如 图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )。

A 、S 1<S 2<S 3B 、S 2<S 1<S 3C 、S 3<S 1<S 2D 、S 1=S 2=S 3 8.在同 一直角坐标系中,函数xy 2-=与x y 2=图象的交点个数为( ) A .3 B .2 C .1 D .09.已知 甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )OA 1 A 2 A 3 P 1 P 2 P 3xy10.如图,直线y=mx 与双曲线y=xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、4 11.在反比例函数xky =(k <0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且1x >2x >0,则12y y -的值为( ) (A)正数 (B)负数 (C)非正数 (D)非负数 二、细心填一填!(30分)11.写出一个图象在第一、三象限的反比例函数的解析式 .12.已知反比例函数8y x =-的图象经过点P (a+1,4),则a=_____.13.反比例函数6y x=-图象上一个点的坐标是 .14.一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 . 15.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .15.3-; 16.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 . 17.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.18.已知点P 在函数2y x = (x >0)的图象上,PA⊥x 轴、PB⊥y 轴,垂足分别为A 、B ,则矩形OAPB 的面积为__________. 19.已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.20.如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是___________. 三、用心解一解!(60分)21.在平面直角坐标系xOy 中,直线y x =-绕点O 顺时针旋转90得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(3)A a ,,试确定反比例函数的解析式.(5分)O y MNl22.如图,点A 是反比例函数图象上的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT =4,求此函数的表达式. (5分)23.已知点P (2,2)在反比例函数xk y =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值;(Ⅱ)当31<<x 时,求y 的取值范围.(7分)24.如图,已知双曲线ky x=(0x >)经过矩形OABC 的边AB BC ,的中点F E ,,且四边形OEBF 的面积为2,求k 的值.(7分)25.若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1).(1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(8分)26.已知点A (2,6)、B (3,4)在某个反比例函数的图象上. (1)求此反比例函数的解析式;(2)若直线mx y =与线段AB 相交,求m 的取值范围. (8分)y x O F AB E C27.如图正方形OABC 的面积为4,点O 为坐标原点,点B 在函数ky x=(0,0)k x << 的图象上,点P(m ,n)是函数ky x=(0,0)k x <<的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .(1)设矩形OEPF 的面积为S l ,判断S l 与点P 的位置是否有关(不必说理由).(2)从矩形OEPF 的面积中减去其与正方形OABC 重合的面积,剩余面积记为S 2,写出S 2与m 的函数关系,并标明m 的取值范围.(8分)参考答案:一、1.B 2.C 3.A 4.D 5.C 6.C 7.D 8.D 9.C 10.A ;三、21.解:依题意得,直线l 的解析式为y x =.因为(3)A a ,在直线y x =上,则3a =. 即(33)A ,.又因为(33)A ,在k y x =的图象上,可求得9k =.所以反比例函数的解析式为9y x=. 22.解:设所求反比例函数的表达式为x ky =,因为S △AOT =k 21,所以k 21=4,即8±=k ,又因为图象在第二、四象限,因此8-=k ,故此函数的表达式为8y x=-;又反比例函数x y 4=在0>x 时y 值随x 值的增大而减小, ∴当31<<x 时,y 的取值范围为434<<y .24.设B 点的坐标为(2a ,2b ),则E 点的坐标为(a ,2b ),F 点的坐标为(2a ,b ),所以k =2ab .因为4ab -21×2ab ×2=2,所以2ab =2.25.(1) ∵反比例函数y =2k x 的图象经过点(1,1),∴1=2k解得k=2, ∴反比例函数的解析式为y=1x.∵点A 在第三象限,且同时在两个函数图象上, ∴A(12-,–2). 26.解:(1)设所求的反比例函数为x k y =,依题意得: 6 =2k,∴k=12. ∴反比例函数为xy 12=. (2) 设P (x ,y )是线段AB 上任一点,则有2≤x≤3,4≤y ≤6.∵m =xy, ∴34≤m ≤26.所以m 的取值范围是34≤m ≤3.27.(1) 没有关系;(2) 当P 在B 点上方时,242(20)S m m =+-<<;当P 在B 点下方时,284(2)S m m=+<-。

(完整版)反比例函数基础练习题及答案

(完整版)反比例函数基础练习题及答案

反比例函数练习一一.选择题(共22小题)1.(2015春•泉州校级期中)下列函数中,y是x的反比例函数的为()A.y=2x+1 B.C.D.2y=x2.(2015春•兴化市校级期中)函数y=k是反比例函数,则k的值是()A.﹣1 B.2 C.±2 D.±3.(2015春•衡阳县期中)若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A.m=2 B.m=﹣1 C.m=1 D.m=04.(2014•汕尾校级模拟)若y与x成反比例,x与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定5.(2014春•常州期末)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.(2015•贺州)已知k1<0<k2,则函数y=和y=k2x﹣1的图象大致是()A.B. C.D.7.(2015•滦平县二模)在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A.B.C.D.8.(2015•上海模拟)下列函数的图象中,与坐标轴没有公共点的是()A.B.y=2x+1 C.y=﹣x D.y=﹣x2+19.(2015•宝安区二模)若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.(2015•鱼峰区二模)若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.611.(2012•颍泉区模拟)如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()第11题图第12题图A.πB.2πC.4πD.条件不足,无法求12.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=13.(2014•随州)关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小14.(2014•昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k 的图象大致是()A.B.C.D.15.(2014•天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个16.(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=17.(2014•阜新)反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣118.(2015•凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()第18题图第19题图A.10 B.11 C.12 D.1319.(2015•眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D 点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.420.(2014•绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()第20题图第21题图A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2 21.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小22.(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24二.填空题(共4小题)23.(2015•锦江区一模)已知y=(a﹣1)是反比例函数,则a=.24.(2014•江西模拟)已知反比例函数的解析式为y=,则最小整数k=.25.(2013•路北区二模)函数y=,当y≥﹣2时,x的取值范围是(可结合图象求解).26.(2014•贵阳)若反比例函数的图象在其每个象限内,y随x的增大而增大,则k的值可以是.(写出一个符合条件的值即可)三.解答题(共4小题)27.(2014春•东城区校级期中)已知反比例函数y=﹣(1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.28.(2013春•汉阳区校级期中)已知函数y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?29.(2013•德宏州)如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?30.(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.答案:一.选择题(共22小题)1.C 2.D 3.B 4.A 5.C 6.C 7.B 8.A 9.C 10.C 11.B 12.D 13.D 14.B 15.B 16.A 17.D 18.C 19.B20.B 21.C 22.C二.填空题(共4小题)23.-1 24.1 25.x≤-2或x>0 26.-1(答案不唯一)三.解答题(共4小题)27.28.29.30.。

反比例函数经典例题(有答案)

反比例函数经典例题(有答案)

一、反比例函数的对称性1、直线y=ax (a>0)与双曲线y= 3/x 交于A (x i, y〔)、B (X2, y2)两点,贝U 4x i y2-3x2y i=2、如图1,直线y=kx (k>0)与双曲线y= 2/x交于A, B两点,若A B两点的坐标分别为A (x i, y i),B (x2, y2),贝U x i y2+x2y i 的值为( )A 、-8B 、4C 、-4D 、0解析:直线Y=KX和双曲线Y=2/X图象都关于原点对称因此两交点A、B也关于原点对称X2=-Xi, Y2=-Yi双曲线形式可变化为XY=2即双曲线上点的横纵坐标乘积为 2因此XiYi=2XiY2+X2Yi=Xi(-Yi) + (-Xi) Yi=-XiYi-XiYi=-4图i 图2 图3 图4二、反比例函数中“ K”的求法1、如图2,直线l是经过点(i, 0)且与y轴平行的直线.Rt△ ABC中直角边AC=4, BC=3将BC边在直线l上滑动,使A, B在函数y=k/x的图象上.那么k的值是( )A、3 B 、6 C 、i2 D 、i5/4解析:BC 在直线X=i 上,设B(i , M),贝U C(i, M-3), .••A(5, M-3), 又A B都在双曲线上,二i*M=5*(M-3) , M=i5/4 即K=i5/4 2、如图3,已知点A、B在双曲线y= k/x (x>0)上,Adx轴于点C, Bdy轴于点D, AC与BD交于点P, P是AC的中点,若△ ABP的面积为3,则k=解析:A(xi,k/xi),B(x2,k/x2)AC:x=xi BD:y=k/x2P(xi,k/x2)k/x2=k/2xi 2xi=x2BP=x2-xi=xiAP=k/xi-k/x2=k/2xiS=xi*k/(2xi)*i/2)=k/4=3 k=i23、如图4,双曲线y= k/x (k > 0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为( )A、y=i/xB、y=2/xC、y=3/xD、=6/解析:设E(x0,k/x0)E 是BC中点,二B(x0,2k/x0)B、D两点纵坐标相同,二D(x0/2,2k/x0)BD=x0/2,OC=x0,BC=2k/x0梯形面积=(BD+OC/ BC/2=3k/2=3•,- k=2 .•.双曲线的解析式为:y=2/x三、反比例函数“ K”与面积的关系1、如图5,已知双曲线y i=1/x(x >0) , y2=4/x(x >0),点P为双曲线y2=4/x上的一点,且PAlx 轴于点A, PBLy轴于点B, PA PB分别次双曲线y=/x于D C两点,则^ PCD的面积为( ) 图5 图6 图7解析:假设P的坐标为(a,b ),则C (a/4,b), D(a,b/4),PC=3/4*a PD=3/4*bS=1/2*3/4*a*3/4*b因为点P为双曲线y2=4/x上的一点所以a*b=4所以S=9/82、如图6,直线l和双曲线y=k/x(k >0)交于A B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为G D、E,连接OA OB 0P,设AAOC勺面积为S、△ BOD的面积为&、APOE的面积为S3,则( )A S I<S3B 、S I>S2>S3C 、S I=S2>&D 、S=S< S3解析:结合题意可得:AB者S在双曲线y=kx上,则有S1=S2而AB之间,直线在双曲线上方;故S1=SK S3.3、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线y=k/x交于G D两点,且S3O C=&CO D=S\BOD 贝1J k=。

反比例函数试题及答案

反比例函数试题及答案

反比例函数测试题一、选择题1.下列函数,①y=2x,②y=x,③y=x-1,④y=11x是反比例函数的个数有()A.0个B.1个C.2个D.3个2.反比例函数y=2x的图象位于()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限3.已知矩形的面积为10,则它的长y与宽x之间的关系用图象表示大致为()4.已知关于x的函数y=k(x+1)和y=-kx(k≠0)它们在同一坐标系中的大致图象是(• )5.已知点(3,1)是双曲线y=kx(k≠0)上一点,则下列各点中在该图象上的点是()A.(13,-9)B.(3,1)C.(-1,3)D.(6,-12)6.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa时,•气球将爆炸,为了安全起见,气体体积应()A.不大于2435m3B.不小于2435m3C.不大于2437m3D.不小于2437m3第6题图第7题图7.某闭合电路中,电源电压为定值,电流I A.与电阻R(Ω)成反比例,如右图所表示的是该电路中电流I与电阻R之间的函数关系的图象,则用电阻R表示电流I•的函数解析式为().A .I =6R B .I =-6R C .I =3R D .I =2R 8.函数y =1x与函数y =x 的图象在同一平面直角坐标系内的交点个数是( ).A .1个B .2个C .3个D .0个 9.若函数y =(m +2)|m |-3是反比例函数,则m 的值是( ).A .2B .-2C .±2D .×210.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y =4x的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3 二、填空题11.一个反比例函数y =kx(k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是________. 12.已知关于x 的一次函数y =kx +1和反比例函数y =6x的图象都经过点(2,m ),则一次函数的解析式是________.13.一批零件300个,一个工人每小时做15个,用关系式表示人数x •与完成任务所需的时间y 之间的函数关系式为________.14.正比例函数y =x 与反比例函数y =1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD •⊥x 轴于D ,如图所示,则四边形ABCD 的为_______.第14题图 第15题图 第19题图15.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________. 16.反比例函数y =21039n n x--的图象每一象限内,y 随x 的增大而增大,则n =_______.17.已知一次函数y =3x +m 与反比例函数y =3m x-的图象有两个交点,当m =_____时,有一个交点的纵坐标为6.18.若一次函数y =x +b 与反比例函数y =kx图象,在第二象限内有两个交点,•则k ______0,b _______0,(用“>”、“<”、“=”填空)19.两个反比例函数y=3x,y=6x在第一象限内的图象如图所示,点P1,P2,P3……P2005,在反比例函数y=6x的图象上,它们的横坐标分别是x1,x2,x3,…x2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P1,P2,P3,…,P2005分别作y轴的平行线与y=3x的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2005(x2005,y2005),则y2005=________.20.当>0时,两个函数值y,一个随x增大而增大,另一个随x的增大而减小的是( •).A.y=3x与y=1xB.y=-3x与y=1xC.y=-2x+6与y=1xD.y=3x-15与y=-1x21.在y=1x的图象中,阴影部分面积为1的有()22.如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B•两点,且与反比例函数y=mx(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,•若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.第22题图23.如图,已知点A(4,m),B(-1,n)在反比例函数y=8x的图象上,直线AB•分别与x轴,y轴相交于C、D两点,(1)求直线AB的解析式.(2)C、D两点坐标.(3)S△AOC:S△BOD是多少?第23题图24.已知y=y1-y2,y1与x成正比例,y与x成反比例,且当x=1时,y=-14,x=4时,y=3.求(1)y与x之间的函数关系式.(2)自变量x的取值范围.(3)当x=14时,y的值.25.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.第25题图26.如图,双曲线y=5x在第一象限的一支上有一点C(1,5),•过点C•的直线y=kx+b(k>0)与x轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA•的面积.第26题图反比例函数测试题(一)答案1.B.;2.D.;3.A.;4.A.;5.B.;6.B.;7.A.;8.B.;9.A.;10.D.;11.y=2x;12.y=x+1;13.y=20x;14.2;15.y=-8x;16.n=-3;17.m=5;18.<,>;19.2004.5;20.A.;B.;;21.A.;C.;D.;22.解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0).(2)∵点AB在一次函数y=kx+b(k≠0)的图象上,∴1k bb-+=⎧⎨=⎩解得11kb=⎧⎨=⎩∴一次函数的解析式为y =x +1,∵点C 在一次函数y =x +1的图象上,•且CD ⊥x 轴, ∴C 点的坐标为(1,2),又∵点C 在反比例函数y =mx(m ≠0)的图象上, ∴m =2,•∴反比例函数的解析式为y =2x.;23.(1)y =2x -6;(2)C (3,0),D (0,-6);(3)S △AOC :S △BOD =1:1.; 24.(1)y =216x 提示:设y =k-22k x,再代入求k 1,k 2的值. (2)自变量x 取值范围是x >0. (3)当x =14时,y =162=255.;25.解:(1)由图中条件可知,双曲线经过点A (2,1)∴1=2m ,∴m =2,∴反比例函数的解析式为y =2x. 又点B 也在双曲线上,∴n =21-=-2,∴点B 的坐标为(-1,-2).∵直线y =kx +b 经过点A 、B .∴122k b k b =+⎧⎨-=-+⎩ 解得11k b =⎧⎨=-⎩∴一次函数的解析式为y =x -1.(2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x >2或-1<x <0.;26.解:(1)∵点C (1,5)在直线y =-kx +b 上,∴5=-k +b , 又∵点A (a ,0)也在直线y =-kx +b 上,∴-ak +b =0,∴b =ak 将b =ak 代入5=-k +a 中得5=-k +ak ,∴a =5k+1. (2)由于D 点是反比例函数的图象与直线的交点∴599y y k ak⎧=⎪⎨⎪=-+⎩ ∵ak =5+k ,∴y =-8k +5 ③ 将①代入③得:59=-8k +5,∴k =59,a =10. ∴A (10,0),又知(1,5),∴S △COA =12×10×5=25.;。

反比例函数》测试题(含答案)

反比例函数》测试题(含答案)

反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。

0B。

1C。

2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。

4,12B。

4,6C。

8,12D。

8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。

二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。

反比例函数练习题(超经典含答案)

反比例函数练习题(超经典含答案)

1.函数ky x=的图象经过点(23),,那么k 等于 A .6 B .16 C .23 D .322.已知反比例函数2k y x-=,其图象在第二、四象限内,则k 的值可为A .0B .2C .3D .53.已知反比例函数y =2x,则下列点中在这个反比例函数图象上的是 A .(1,2)B .(1,-2)C .(-2,-2)D .(-2,1)4.如果x 、y 之间的关系是10(0)ax y a -+=≠,那么y 是x 的 A .正比例函数 B .反比例函数 C .一次函数D .二次函数5.已知反比例函数y =-4x,则下列有关该函数的说法正确的是 A .该函数的图象经过点(2,2)B .该函数的图象位于第一、三象限C .当x >0时,y 的值随x 的增大而增大D .当x >-1时,y >46.如图,反比例函数ky x =(k >0)与一次函数12y x b =+的图象相交于两点A(1x ,1y ),B (2x ,2y ),线段AB 交y 轴与C ,当|1x -2x |=2且AC =2BC 时,k 、b 的值分别为A .k =12,b =2 B .k =49,b =1C.k=13,b=13D.k=49,b=137.如图,四边形QABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为A.2 B.3 C.4 D.58.如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点,OA边在y轴正半轴上,OB边在x轴正半轴上,且OA∥BC,双曲线y=kx(x>0)经过AC边的中点,若S梯形OACB=4,则双曲线y=kx的k值为A.5 B.4 C.3 D.29.如图,△AOB与△ACD均为正三角形,且顶点B、D均在双曲线y=4x(x>0)上,点A、C在x轴上,连接BC交AD于点P,则△OBP的面积是A.2 B.C.4 D.6 10.若y=(5+m)x2+n是反比例函数,则m、n的取值是__________.11.如果函数y=kx-2(k≠0)的图象不经过第一象限,那么函数kyx的图象一定在__________.12.反比例函数y =1k x与正比例函数y =k 2x 的图象的一个交点为(2,m ),则12k k =__________.13.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,反比例函数y =kx(k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为16,则k 的值为__________.14.已知函数2212mm y m m x --=+().(1)如果y 是x 的正比例函数,求m 的值;(2)如果y 是x 的反比例函数,求出m 的值,并写出此时y 与x 的函数关系式.15.已知121y y y y =+,与2x 在正比例关系,2y 与x 成反比例函数关系,且1x =时,31y x ==-,时,1y =.(1)求y 与x 的关系式; (2)求当2x =-时,y 的值.16.已知A(-4,2)、B(n,-4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b-mx>0的解集.17.如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,12),反比例函数y=nx(x>0)的图象经过点E,F.(1)求反比例函数及一次函数解析式;(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.18.如图,点A 、B 为直线y x =上的两点,过A 、B 两点分别作y 轴的平行线交双曲线1y x=(x >0)于点C 、D 两点.若2BD AC =,则224OC OD -的值为A .5B .6C .7D .819.如图,Rt OAB △的顶点与坐标原点重合,903AOB AO BO ∠=︒=,,当A 点在反比例函数9(0)y x x=>图象上移动时,B 点坐标满足的函数解析式是A .1(0)y x x =-< B .3(0)y x x =-< C .1(0)3y x x=-<D .1(0)9y x x=-<20.如图,点A 在反比例函数y =kx(k ≠0)的图象上,且点A 是线段OB 的中点,点D 为x 轴上一点,连接BD 交反比例函数图象于点C ,连接AC ,若BC ∶CD =2∶1,S △ADC =103.则k 的值为A .203 B .16 C .283D .1021.如图,直线y =x +m 与双曲线y =2x相交于A ,B 两点,BC ∥x 轴,AC ∥y 轴,则△ABC 面积的最小值为__________.22.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数y =kx的图象经过点B ,则k 的值是__________.23.如图,在函数y 1=1k x (x <0)和y 2=2kx(x >0)的图象上,分别有A 、B 两点,若AB ∥x 轴,交y 轴于点C ,且OA ⊥OB ,S △AOC =12,S △BOC =92,则线段AB 的长度为__________.24.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点(4)E n ,在边AB 上,反比例函数(0)ky k x=≠在第一象限内的图象经过点D 、E ,且D 点的横坐标是它的纵坐标的2倍. (1)求边AB 的长;(2)求反比例函数的解析式和n 的值;(3)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长.25.如图,直线2(0)y kx k =->与双曲线ky x=在第一象限内的交点为R ,与x 轴的交点为P ,与y 轴的交点为Q ,作RM x ⊥轴于点M ,若OPQ △与PRM △的面积是41∶,求k .26.(2018·辽宁本溪)反比例函数(0)ky k x=≠的图象经过点(-2,3),则该反比例函数图象在A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限27.(2018·青海)若111()P x y ,,222()P x y ,是函数5y x=图象上的两点,当120x x >>时,下列结论正确的是 A .120y y <<B .210y y <<C .120y y <<D .210y y <<28.(2018·山东莱芜)在平面直角坐标系中,已知△ABC 为等腰直角三角形,CB =CA =5,点C (0,3),点B 在x 轴正半轴上,点A 在第三象限,且在反比例函数y =kx的图象上,则k = A .3B .4C .6D .1229.(2018·山东日照)已知反比例函数y =-8x,下列结论:①图象必经过(-2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >-1时,则y >8.其中错误的结论有 A .3个B .2个C .1个D .0个30.(2018·甘肃天水)函数y 1=x 和y 2=1x的图象如图所示,则y 1>y 2时,x 的取值范围是A .x <-1或x >1B .x <-1或0<x <1C .-1<x <0或x >1D .-1<x <0或0<x <131.(2018·湖南益阳)若反比例函数2ky x-=的图象位于第二、四象限,则k 的取值范围是__________.32.(2018·江苏镇江)反比例函数y =kx(k ≠0)的图象经过点A (-2,4),则在每一个象限内,y 随x 的增大而__________.(填“增大”或“减小”) 33.(2018·广西壮族自治区)已知直线y =ax (a ≠0)与反比例函数y =kx(k ≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是__________. 34.(2018·山东济宁)如图,点A 是反比例函数y =4x(x >0)图象上一点,直线y =kx +b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是__________.35.(2018·甘肃兰州)如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2ky x=的图象交于点(12)A ,和(2)B m -,. (1)求一次函数和反比例函数的表达式; (2)请直接写出12y y >时,x 的取值范围;(3)过点B 作BE x ∥轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若2AC CD =,求点C 的坐标.4.【答案】B【解析】∵1ax-+y=0,∴y=-1ax-.即y=-ax,∵a≠0,∴y是x的反比例函数.故选B.5.【答案】C【解析】∵当x=2时,y=-2,故不正确;∵-4<0,∴该函数的图象位于第二、四象限,故不正确;∵该函数的图象位于第二、四象限,∴当x>0时,y的值随x的增大而增大,故正确;∵当x>-1时,y<4,故不正确.故选C.6.【答案】D7.【答案】A【解析】∵OA=1,OC=6,∴B点坐标为(1,6),∴k=1×6=6,∴反比例函数解析式为y=6x,设AD =t ,则OD =1+t ,∴E 点坐标为(1+t ,t ),∴(1+t )·t =6,整理为t 2+t -6=0, 解得t 1=-3(舍去),t 2=2,∴正方形ADEF 的边长为2.故选A . 8.【答案】D【解析】过AC 的中点P 作DE x ∥轴交y 轴于D ,交BC 于E ,作PF x ⊥轴于F ,如图,在PAD △和PCE △中,APD CPE ADP PEC PA PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PAD PCE △≌△,∴PAD PCE S S =△△, ∴BODEAOBC S S =矩形梯形,∵12DOFP BODES S=矩形矩形,∴114222DOFP AOBC S S ==⨯=矩形梯形, ∴||2k =,而0k >,∴2k =.故选D . 9.【答案】C【解析】因为△OAB 与△ADC 均为正三角形,所以OB 与AD 平行,所以△OBP 与△OAB 的高相等,又因为有共同底边OB ,所以S △OBP =S △OAB .且顶点B 在双曲线y =4x(x >0)上,所以△OBP 的面积为4.故选C . 10.【答案】m ≠-5,n =-3【解析】∵y =(5+m )x 2+n是反比例函数,∴2150n m +=-⎧⎨+≠⎩,解得:m ≠-5,n =-3,故答案为:m ≠-5,n =-3.又因为矩形OABC 的面积为16,所以OA ⋅OC =ab =8,所以k =1644ab ==4,故答案为:4.14.【解析】(1)由221(2)mm y m m x --=+是正比例函数,得m 2-m -1=1且m 2+2m ≠0,解得m =2或m =-1. (2)由221(2)m m y m m x --=+是反比例函数,得m 2-m -1=-1且m 2+2m ≠0,解得m =1.故y 与x 的函数关系式y =3x -1.15.【解析】(1)∵1y 与2x 在正比例关系,2y 与x 成反比例函数关系,∴211y k x =,16.【解析】(1)把A (-4,2)代入my x=,得m =2×(-4)=-8, 所以反比例函数解析式为8y x=-, 把B (n ,-4)代入8y x=-,得-4n =-8,解得n =2, 把A (-4,2)和B (2,-4)代入y =kx +b ,得4224k b k b -+=⎧⎨+=-⎩ ,解得12k b =-⎧⎨=-⎩ ,所以一次函数的解析式为y =-x -2.(2)y =-x -2中,令y =0,则x =-2,即直线y =-x -2与x 轴交于点C (-2,0),∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6. (3)由图可得,不等式0mkx b x +->的解集为:x <-4或0<x <2.17.【解析】(1)∵反比例函数(0)n y x x =>经过点1(4)2F ,,∴n =2,反比例函数解析式为2y x=. ∵2y x=的图象经过点E (1,m ), ∴m =2,点E 坐标为(1,2).18.【答案】B【解析】如图,延长AC交x轴于E,延长BD交x轴于F.设A,B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b),则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=1x(x>0)上,则CE=1a,DF=1b,∴BD=BF−DF=b−1b,AC=a−1a.又∵BD =2AC ,∴b −1b =2(a −1a ),两边平方得:b 2+21b −2=4(a 2+21a−2), 即b 2+21b =4(a 2+21a )−6.在直角△OCE 中,OC 2=OE 2+CE 2=a 2+21a,同理OD 2=b 2+21b ,∴4OC 2−0D 2=4(a 2+21a )−(b 2+21b)=6,故选B .19.【答案】A20.【答案】B【解析】如图,作AE ⊥OD 于E ,CF ⊥OD 于F .∵BC ∶CD =2∶1,S △ADC =103,∴S △ACB =203,∵OA=OB ,∴B (2m ,2n ),S △AOC =S △ACB =203,∵A、C在y=kx上,BC=2CD,∴C(32m,23n),∵S△AOC=S△AOE+S梯形AEFC-S△OCF=S梯形AEFC,∴12·(n+23n)×12m=203,∴mn=16,故选B.21.【答案】6【解析】设A(a,3a),B(b,3b),则C(a,3b).将y=x+m代入y=3x,得x+m=3x,整理,得x2+mx-3=0,则a+b=-m,ab=-3,∴(a-b)2=(a+b)2-4ab=m2+12.∵S△ABC=12AC·BC=1332ba-()(a-b)=12·3b aab-()·(a-b)=12(a-b)2=12(m2+12)=12m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为:6.2223【解析】∵S△AOC=12,S△BOC=92,∴12|k1|=1122,|k2|=92,∴k1=-1,k2=9,∴两反比例解析式为y=-1x,y=9x,设B点坐标为(9t,t)(t>0),∵AB∥x轴,∴A点的纵坐标为t,把y =t 代入y =-1x 得x =-1t ,∴A 点坐标为(-1t,t ),∵OA ⊥OB ,∴∠AOC =∠OBC ,∴Rt △AOC ∽Rt △OBC ,∴OC ∶BC =AC ∶OC ,即t ∶91t t=∶t ,∴t ,∴A 点坐标为(B 点坐标为(AB 的长度(-..24.【解析】(1)如图,过D 作DM x ⊥轴,交x 轴于点M ,(3)由(12)F ,,得到1CF =, 由折叠得:OGH △≌FGH △, ∴OG FG =, ∵2OC AB ==,设OG FG x ==,得到2CG x =-,在Rt CFG △中,由勾股定理得:222FG CG CF =+,即22(2)1x x =-+, 整理得:45x =, 解得:54x =, 则54OG =. 25.【解析】设()R m n ,,则mn k =, 如图,连接OR ,26.【答案】B【解析】∵反比例函数y =kx(k ≠0)的图象经过点(−2,3),∴k =−2×3=−6,∴k <0,∴反比例函数y =kx(k ≠0)的图象在第二、四象限.故选B .27.【答案】A【解析】反比例函数5y x=中,k =5>0,图象位于一、三象限,在每一象限内,y 随着x 的增大而减小,∵111()P x y ,,222()P x y ,是函数5y x=图象上的两点,120x x >>,∴120y y <<,故选A . 28.【答案】A【解析】如图,作AH ⊥y 轴于H .∵CA =CB ,∠AHC =∠BOC ,∠ACH =∠CBO ,∴△ACH ≌△CBO ,∴AH =OC ,CH =OB ,∵C (0,3),BC =5,∴OC =3,OB ,∴CH =OB =4,AH =OC =3,∴OH =1, ∴A (-3,-1),∵点A 在y =kx上,∴k =3,故选A . 29.【答案】B30.【答案】C【解析】观察图象可知当-1<x <0或x >1时,直线在双曲线的上方,所以y 1>y 2的x 取值范围是-1<x <0或x >1,故选C . 31.【答案】k >2【解析】∵反比例函数y =2kx-的图象在第二、四象限,∴2-k <0,∴k >2.故答案为:k >2.32.【答案】增大【解析】把(-2,4)代入反比例函数y =k x ,得42k =-,∴k =-12, ∵k <0,∴在每一个象限内y 随x 的增大而增大,故答案为:增大.33.【答案】(-2,-4)【解析】∵正比例函数和反比例函数均关于原点对称,∴两函数的交点关于原点对称, ∵一个交点的坐标是(2,4),∴另一个交点的坐标是(-2,-4),故答案为:(-2,-4).34.【答案】2【解析】设A (a ,4a )(a >0),∴AD =4a,OD =a , ∵直线y =kx +b 过点A 并且与两坐标轴分别交于点B ,C ,∴C (0,b ),B (-bk,0), ∵△BOC 的面积是4,∴S △BOC =12OB ×OC =12×b k ×b =4,∴b 2=8k ,∴k =28b ,①∴AD ⊥x 轴,∴OC ∥AD ,∴△BOC ∽△BDA ,∴OB OC BD AD =,∴4bb kb a k a=+,∴a 2k +ab =4,②联立①②得,ab =-4-或ab-4,∴S △DOC =12OD ·OC =12ab2.故答案为:2.35.【解析】(1)∵点(12)A ,在反比例函数2ky x=的图象上,∴30DAC ∠=︒,由题意得,213AD =+=,在Rt ADC △中,tan CD DAC AD ∠=,即3CD =解得,CD =当点C 在点D 的左侧时,点C 的坐标为(11)-,当点C 在点D 的右侧时,点C 的坐标为11)-,,∴当点C 的坐标为(11)--或11)-,时,2AC CD =.。

反比例函数练习题及答案

反比例函数练习题及答案

反比例函数练习题一、填空题(每空3分,共42分) 1.已知反比例函数()0≠=k xky 的图象经过点(2,-3),则k 的值是_______,图象在__________象限,当x>0时,y 随x 的减小而__________.2.已知变量y 与x 成反比,当x =1时,y =-6,则当y = 3时,x=________。

3.若反比例函数y=(2m-1)22m x - 的图象在第一、三象限,则函数的解析式为___________.4.已知反比例函数xm y )23(1-=,当m 时,其图象的两个分支在第一、三象限内;当m 时,其图象在每个象限内y 随x 的增大而增大;5.在函数(为常数)的图象上有三个点(-2,),(-1,),(,),函数值,,的大小为 ; 6.已知111222(,),(,)P x y P x y 是反比例函数xky =(k≠0)图象上的两点,且12x x <<0时,12y y < ,则k________。

7.已知正比例函数y=kx(k≠0),y 随x 的增大而减小,那么反比例函数y=kx,当x< 0时,y 随x 的增大而_______.8.已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,12),则8k 1+5k 2的值为________. 9. 若m <-1,则下列函数:①()0 x xmy =;② y =-mx+1; ③ y = mx; ④ y =(m + 1)x 中,y 随x 增大而增大的是___________。

10.当>0,<0时,反比例函数的图象在__________象限。

11.老师给出一个函数,甲、乙、丙、丁四人各指出这个函数的一个性质,甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:y 随x 的增大而减小;丁:当2<x 时,0>y 。

中考数学总复习《反比例函数》练习题(附答案)

中考数学总复习《反比例函数》练习题(附答案)

中考数学总复习《反比例函数》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.一次函数y1=k1x+b(k1≠0)与反比例函数y2=k2x(k2≠0)的图象交于点A(−1,−2),点B(2,1).当y1<y2时,x的取值范围是()A.x<−1B.−1<x<0或x>2 C.0<x<2D.0<x<2或x<−12.关于函数y=−2x,下列说法中正确的是()A.图像位于第一、三象限B.图像与坐标轴没有交点C.图像是一条直线D.y的值随x的值增大而减小3.如图,在直角坐标系中,点A是双曲线y= 3x(x>0)上的一个动点,点B是x轴正半轴上的一个定点,当点A的横坐标逐渐增大时,△OAB的面积将会()A.逐渐减小B.不变C.逐渐增大D.先减小后增大4.在同一平面直角坐标系中,反比例函数y=-8x与一次函数y=-x+2交于A,B两点,O为坐标原点,则△AOB的面积为()A.2B.6C.10D.85.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y= k x在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤166.如图,过反比例函数y= 1x(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2B.S1=S2C.S l<S2D.大小关系不能确定7.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷8.在同一直角坐标系中,函数y=kx+1与y=−k x(k≠0)的图象大致是()A.B.C.D.9.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y= mx(m≠0)的图象相交于点A(-2,3),B(6,-1),则不等式kx+b>mx的解集为()A.x<−2B.−2<x<0或x>6 C.x<6D.0<x<6或x<−210.已知两个函数y1=k1x+b与y2= k2x的图象如图所示,其中A(-1,2),B(2,-1),则不等式k1x+b>k2x的解集为()A.x<−1或x>2B.x<−1或0<x<2 C.−1<x<2D.−1<x<0或0<x<211.在反比例函数y=−3x图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2 12.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数练习题
一、精心选一选!(30分)
1.下列 函数中,图象经过点(11)-,的反比例函数解析式是( ) A .
1
y x
=
B .1y x
-=
C .2
y x
=
D .2y x
-=
2. 反 比例函数2
k y x
=-(k 为常数,0k ≠)的图象位于( )
A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限
3.已知 反比例函数y =x
2
k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <2
4.反 比例函数x
k
y =
的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-4 5.对于反比 例函数2
y x
=
,下列说法不正确...的是( ) A .点(21)--,在它的图象上
B .它的图象在第一、三象限
C .当0x >时,y 随x 的增大而增大
D .当0x <时,y 随x 的增大而减小
6.反比 例函数
2
2)12(--=m x
m y ,当x >0时,y 随x 的增大而增大,则m 的值时( )
A 、±1
B 、小于
2
1
的实数 C 、-1 D 、1 7.如 图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )。

A 、S 1<S 2<S 3
B 、S 2<S 1<S 3
C 、S 3<S 1<S 2
D 、S 1=S 2=S 3
8.在同 一直角坐标系中,函数x
y 2
-
=与x y 2=图象的交点个数为( ) A .3 B .2 C .1 D .0 9.已知 甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )
O
A 1 A 2 A 3 P 1 P 2 P 3
x
y
10.如图,直线y=mx 与双曲线y=x
k
交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S =2,则k 的值是( )
. A .2 B 、m-2 C 、m
D 、4
11.在反比例函数x
k
y =
(k <0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且1x >2x >0,则12y y -的值为( ) (A)正数 (B)负数 (C)非正数 (D)非负数 二、细心填一填!(30分)
11.写出一个图象在第一、三象限的反比例函数的解析式 . 12.已知反比例函数8
y x
=-的图象经过点P (a+1,4),则a=_____. 13.反比例函数6
y x
=-
图象上一个点的坐标是 . 14.一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 . 15.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .15.3-;
16.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)k
y k x
=
>的图象上的点是 . 17.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米. 18.已知点P 在函数2
y x
=
(x >0)的图象上,PA⊥x 轴、PB⊥y 轴,垂足分别为A 、B ,则矩形OAPB 的面积为__________. 19.已知直线mx y =与双曲线x
k
y =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.
20.如图,过原点的直线l 与反比例函数1
y x
=-的图象交于M ,N 两点,根据图象猜
想线段MN 的长的最小值是___________. 三、用心解一解!(60分)
21.在平面直角坐标系xOy 中,直线y x =-绕点O 顺时针旋转90得到直线l .直线l 与反比例函数k
y x
=
的图象的一个交点为(3)A a ,,试确定反比例函数的解析式.(5分)
22.如图,点A 是反比例函数图象上的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT =4,求此函数的表达式. (5分)
O
y
M
N
l
23.已知点P (2,2)在反比例函数x
k
y =
(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值;
(Ⅱ)当31<<x 时,求y 的取值范围.(7分)
24.如图,已知双曲线k
y x
=(0x >)经过矩形OABC 的边AB BC ,的中点F E ,,且四边形OEBF 的面积为2,求k 的值.(7分)
25.若一次函数y =2x -1和反比例函数y =2k
x
的图象都经过点(1,1).
(1)求反比例函数的解析式;
(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(8分)
26.已知点A (2,6)、B (3,4)在某个反比例函数的图象上. (1)求此反比例函数的解析式;
(2)若直线mx y =与线段AB 相交,求m 的取值范围. (8分)
27.如图正方形OABC 的面积为4,点O 为坐标原点,点B 在函数k
y x
=
(0,0)k x << 的图象上,点P(m ,n)是函数k
y x
=
(0,0)k x <<的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F . (1)设矩形OEPF 的面积为S l ,判断S l 与点P 的位置是否有关(不必说理由).
(2)从矩形OEPF 的面积中减去其与正方形OABC 重合的面积,剩余面积记为S 2,写出S 2与m 的函数关系,并标明m 的取值范围.(8分)
y
y x
O
F
A
B E
C
参考答案:一、1.B 2.C 3.A 4.D 5.C 6.C 7.D 8.D 9.C 10.A ;
三、21.解:依题意
得,直线l 的解析式为y x =.因为(3)A a ,在直线y x =上,则3a =. 即(33)A ,.又因为(33)A ,在
k y x =
的图象上,可求得9k =.所以反比例函数的解析式为9
y x
=. 22.解:设所求反比例函数的表达式为x k
y =,因为S △AOT =k 21,所以k 2
1=4,即8±=k ,又因为图象在第二、
四象限,因此8-=k ,故此函数的表达式为8
y x =-;
又反比例函数x y 4=
在0>x 时y 值随x 值的增大而减小, ∴当31<<x 时,y 的取值范围为43
4
<<y . 24.设B 点的坐标为(2a ,2b ),则E 点的坐标为(a ,2b ),F 点的坐标为(2a ,b ),所以k =2ab .因为4ab -2
1
×2ab ×2=2,所以2ab =2. 25.(1) ∵反比例函数y =
2k x 的图象经过点(1,1),∴1=2k
解得k=2, ∴反比例函数的解析式为y=
1
x

∵点A 在第三象限,且同时在两个函数图象上, ∴A(1
2-,–2).
26.解:(1)设所求的反比例函数为x k y =
,依题意得: 6 =2k ,∴k=12. ∴反比例函数为x
y 12
=. (2) 设P (x ,y )是线段AB 上任一点,则有2≤x≤3,4≤y ≤6.∵m =x
y
, ∴34≤m ≤26.
所以m 的取值范围是
3
4
≤m ≤3. 27.(1) 没有关系;(2) 当P 在B 点上方时,242(20)S m m =+-<<;当P
在B 点下方时,28
4(2)S m m
=+<-
如有侵权请联系告知删除,感谢你们的配合!
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档