反比例函数经典例题(含详细解答)

合集下载

反比例函数(含答案)

反比例函数(含答案)

例1 已知一次函数2y x k =-的图象与反比例函数5k y x+=的图象相交,其中有一个交点的纵坐标为-4,求这两个函数的解析式. 解: 依题意,由两个函数解析式得所以一次函数和反比例函数的解析式分别为例注意: 解本题的关键是正确理解什么叫y 1与x+1成正比例,y 2与x 2成反比例,即把x+1与x 2看成两个新的变量.典型例题四例 (上海试题,2002)如图,直线221+=x y 分别交x 、y 轴于点A 、C ,P 是该直线上在第一象限内的一点,x PB ⊥轴,B 为垂足,9=ABP S ∆(1)求点P 的坐标;(2)设点R 与点P 在同一个反比例函数的图象上,且点R 在直线PB 的右侧.作x RT ⊥轴,T 为垂足,当BRT ∆与AOC ∆相似时,求点R 的坐标.那么2-=b BT ,b RT 6=. ①当RTB ∆∽AOC ∆时,CO BT AO RT =,即2==COAOBT RT , ∴226=-b b ,解得3=b 或1-=b (舍去). ∴ 点R 的坐标为()2,3.②RTB ∆∽ COA ∆时,AO BT CO RT =,即21==AO CO BT RT , ∴2126=-b b ,解得131+=b 或131-=b (舍去). ∴点R 的坐标为⎪⎪⎭⎫ ⎝⎛-+2113,131. 综上所述,点R 的坐标为()2,3或⎪⎫⎛-+113,131.y例 B.((解 :(1)设点A 的坐标为(m,n),那么n AB m OB =-=,.∵ AB OB S ABO ⋅=∆21,∴.4,2)(21-==⋅-mn n m 又mk n =,∴4-==mn k .∴ 双曲线:x y 4-=,直线:4+-=x y .(2)解由xy 4-=,4+-=x y 组成的方程组,得2221+=x ,2221-=y ;例 A 、B 求B 两点的抛物线在x 轴上截得的线段长能否等于3.如果能,求此时抛物线的解析式;如果不能,请说明理由. 解:(1)过点B 作x BH ⊥轴于点H . 在OHB ∆Rt 中,.3,31tan BH HO HO BH HOB =∴==∠由勾股定理,得222OB HO BH =+. 又10=OB ,.3,1,0.)10()3(222==∴>=+∴HO BH BH BH BH ∴ 点B (-3,-1).∵ ∴ ∴ (∵ ∴ ∴ 令 ).31(321)(2122m m GA BH DO GA DO BH DO S +-=+=⋅+⋅=由已知,直线经过第一、二、三象限, ∴ 0>b ,即03>-mm..03,0>-∴>m m由此得 .30<<m ∴ ).31)(3(21mm S +-=即 ).30(292<<-=m mm S (3)过A 、B 两点的抛物线在x 轴上截得的线段长不能等于3.证明如下:S ∆由得 ∵ ∴ ∴ ∴ 即 则 aa 2121令 .321=-x x 则 .9324)21(2=-⋅-+-aa a a 整理,得 01472=+-a a . ∵ ,012174)4(2<-=⨯⨯--=∆∴ 方程01472=+-a a 无实数根.因此过A 、B 两点的抛物线在x 轴上截得的线段长不能等于3.典型例题八例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非).(1)周长为定值的长方形的长与宽的关系 [ ]; (2)面积为定值时长方形的长与宽的关系 [ ]; (3)圆面积与半径的关系 [ ]; (4)圆面积与半径平方的关系 [ ];(5)三角形底边一定时,面积与高的关系 [ ]; (6)三角形面积一定时,底边与高的关系 [ ];(7)三角形面积一定且一条边长一定,另两边的关系 [ ]; (8)在圆中弦长与弦心距的关系 [ ];(9)x 越来越大时,y 越来越小,y 与x 的关系 [ ]; (10)在圆中弧长与此弧所对的圆心角的关系 [ ].说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义。

反比例函数经典例题(含详细解答)

反比例函数经典例题(含详细解答)

反比例函数难题1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=(1)求AB的长;(2)当矩形ABCD是正方形时,将反比例函数y=kx的图象沿y轴翻折,得到反比例函数y=1kx的图象(如图2),求k1的值;(3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线y=kx于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.1.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式2kx>2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =45.(1)求该反比例函数和一次函数; (2)求△AOC 的面积.(1)过A 点作AD⊥x 轴于点D ,∵sin ∠AOE = 45,OA =5,∴在Rt△ADO 中,∵sin∠AOE=AD AO =AD 5= 45,xm∴AD=4,DO =OA2-DA2=3,又点A 在第二象限∴点A 的坐标为(-3,4),将A 的坐标为(-3,4)代入y = m x ,得4=m -3∴m=-12,∴该反比例函数的解析式为y =-12x ,∵点B 在反比例函数y =-12x 的图象上,∴n=-126=-2,点B 的坐标为(6,-2), ∵一次函数y =kx +b(k≠0)的图象过A 、B 两点,∴⎩⎨⎧-3k +b=4,6k +b =-2,∴⎩⎨⎧k =-23, b =2∴ 该一次函数解析式为y =-23x +2.(2)在y =-23x +2中,令y =0,即-23x +2=0,∴x=3,∴点C 的坐标是(3,0),∴OC =3, 又DA=4, ∴S△AOC=12×OC×AD=12×3×4=6,所以△AOC 的面积为6.练习1.已知Rt△ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x的图象上,且sin∠BAC = 35.(1)求k 的值和边AC 的长; (2)求点B 的坐标.(1)把C (1,3)代入y = kx得k =3设斜边AB 上的高为CD ,则sin∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,当点B 在点A 右侧时,如图1有:AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD ·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134 图1此时B 点坐标为(134,0)图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(-54,0)所以点B 的坐标为(134,0)或(-54,0).1.如图,矩形ABOD 的顶点A 是函数与函数在第二象限的交点,轴于B ,轴于D ,且矩形ABOD 的面积为3.(1)求两函数的解析式.(2)求两函数的交点A 、C 的坐标. (3)若点P 是y 轴上一动点,且,求点P 的坐标.解:(1)由图象知k<0,由结论及已知条件得-k=3 ∴∴反比例函数的解析式为,一次函数的解析式为(2)由,解得,∴点A 、C 的坐标分别为(,3),(3,)(3)设点P 的坐标为(0,m ) 直线与y 轴的交点坐标为M (0,2)∵O xyB A CD∴∣PM∣=,即∣m-2∣=,∴或,∴点P的坐标为(0,)或(0,)1.如图,已知,是一次函数的图像和反比例函数的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及三角形的面积.解:(1)在上.反比例函数的解析式为:.点在上经过,,解之得一次函数的解析式为:(2)是直线与轴的交点当时,点1.(1)探究新知如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行。

反比例函数考试题(含答案)

反比例函数考试题(含答案)

反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。

解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。

2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。

解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。

反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。

同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。

将其化简可得反比例函数的图像方程为 $xy=6$。

因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。

3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。

解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。

由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。

点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。

点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。

完整版)反比例函数经典习题及答案

完整版)反比例函数经典习题及答案

完整版)反比例函数经典习题及答案反比例函数练题1.下列函数中,经过点(1.-1)的反比例函数解析式是()A。

y = 1/xB。

y = -1/xC。

y = 2/xD。

y = -2/x2.反比例函数y = -(k/ x)(k为常数,k ≠ 0)的图象位于()A。

第一、二象限B。

第一、三象限C。

第二、四象限D。

第三、四象限3.已知反比例函数y = (k - 2)/x的图象位于第一、第三象限,则k的取值范围是()A。

k。

2B。

k ≥ 2C。

k ≤ 2D。

k < 24.反比例函数y = k/x的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果三角形MON 的面积是2,则k的值为()A。

2B。

-2C。

4D。

-45.对于反比例函数y = 2/x,下列说法不正确的是()A。

点(-2.-1)在它的图象上B。

它的图象在第一、三象限C。

当x。

0时,y随x的增大而增大D。

当x < 0时,y随x的增大而减小6.反比例函数y = (2m - 1)x/(m^2 - 2),当x。

0时,y随x 的增大而增大,则m的值是()A。

±1B。

小于1的实数C。

-1D。

1/27.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()。

A。

S1 < S2 < S3B。

S2 < S1 < S3C。

S3 < S1 < S2D。

S1 = S2 = S38.在同一直角坐标系中,函数y = -2与y = 2x的图象的交点个数为()A。

3B。

2C。

1D。

09.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()10.如图,直线y = mx与双曲线y = k/(x-2)交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若三角形ABM的面积为2,则k的值是()A。

反比例函数经典例题(有答案)

反比例函数经典例题(有答案)

一、反比例函数的对称性1、直线y=ax (a>0)与双曲线y= 3/x 交于A (x i, y〔)、B (X2, y2)两点,贝U 4x i y2-3x2y i=2、如图1,直线y=kx (k>0)与双曲线y= 2/x交于A, B两点,若A B两点的坐标分别为A (x i, y i),B (x2, y2),贝U x i y2+x2y i 的值为( )A 、-8B 、4C 、-4D 、0解析:直线Y=KX和双曲线Y=2/X图象都关于原点对称因此两交点A、B也关于原点对称X2=-Xi, Y2=-Yi双曲线形式可变化为XY=2即双曲线上点的横纵坐标乘积为 2因此XiYi=2XiY2+X2Yi=Xi(-Yi) + (-Xi) Yi=-XiYi-XiYi=-4图i 图2 图3 图4二、反比例函数中“ K”的求法1、如图2,直线l是经过点(i, 0)且与y轴平行的直线.Rt△ ABC中直角边AC=4, BC=3将BC边在直线l上滑动,使A, B在函数y=k/x的图象上.那么k的值是( )A、3 B 、6 C 、i2 D 、i5/4解析:BC 在直线X=i 上,设B(i , M),贝U C(i, M-3), .••A(5, M-3), 又A B都在双曲线上,二i*M=5*(M-3) , M=i5/4 即K=i5/4 2、如图3,已知点A、B在双曲线y= k/x (x>0)上,Adx轴于点C, Bdy轴于点D, AC与BD交于点P, P是AC的中点,若△ ABP的面积为3,则k=解析:A(xi,k/xi),B(x2,k/x2)AC:x=xi BD:y=k/x2P(xi,k/x2)k/x2=k/2xi 2xi=x2BP=x2-xi=xiAP=k/xi-k/x2=k/2xiS=xi*k/(2xi)*i/2)=k/4=3 k=i23、如图4,双曲线y= k/x (k > 0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为( )A、y=i/xB、y=2/xC、y=3/xD、=6/解析:设E(x0,k/x0)E 是BC中点,二B(x0,2k/x0)B、D两点纵坐标相同,二D(x0/2,2k/x0)BD=x0/2,OC=x0,BC=2k/x0梯形面积=(BD+OC/ BC/2=3k/2=3•,- k=2 .•.双曲线的解析式为:y=2/x三、反比例函数“ K”与面积的关系1、如图5,已知双曲线y i=1/x(x >0) , y2=4/x(x >0),点P为双曲线y2=4/x上的一点,且PAlx 轴于点A, PBLy轴于点B, PA PB分别次双曲线y=/x于D C两点,则^ PCD的面积为( ) 图5 图6 图7解析:假设P的坐标为(a,b ),则C (a/4,b), D(a,b/4),PC=3/4*a PD=3/4*bS=1/2*3/4*a*3/4*b因为点P为双曲线y2=4/x上的一点所以a*b=4所以S=9/82、如图6,直线l和双曲线y=k/x(k >0)交于A B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为G D、E,连接OA OB 0P,设AAOC勺面积为S、△ BOD的面积为&、APOE的面积为S3,则( )A S I<S3B 、S I>S2>S3C 、S I=S2>&D 、S=S< S3解析:结合题意可得:AB者S在双曲线y=kx上,则有S1=S2而AB之间,直线在双曲线上方;故S1=SK S3.3、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线y=k/x交于G D两点,且S3O C=&CO D=S\BOD 贝1J k=。

(完整版)反比例函数经典大题(有详细答案)

(完整版)反比例函数经典大题(有详细答案)

反比例函数1. 如图,函数b x k y +=11的图象与函数xk y 22=(0>x )的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点的坐标;(2)观察图象,比较当0>x 时,1y 与2y 的大小。

2、如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.3、若反比例函数xky =与一次函数42-=x y 的图象都经过点A(a ,2) (1)求反比例函数x ky =的解析式;(2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.ABOCxyOMxA(第5题)4、如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y= (k 〉0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为 . (1)求k 和m 的值;(2)点C (x ,y )在反比例函数y= 的图象上,求当1≤x ≤3时函数值y 的取值范围;5、如图,四边形ABCD 为菱形,已知A (0,4),B (—3,0)。

⑴求点D 的坐标;⑵求经过点C 的反比例函数解析式.6、如图,一次函数3y kx =+的图象与反比例函数my x=(x 〉0)的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且S △DBP =27,12OC CA =。

(1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?xkxk BOA21xy A O PBC D7、已知一次函数y =kx +b 的图象交反比例函数42my x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式; (3)写出当x 取何值时,一次函数的值小于反比例函数的值?8、如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。

中考数学反比例函数-经典压轴题附答案

中考数学反比例函数-经典压轴题附答案

中考数学反比例函数-经典压轴题附答案一、反比例函数1.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A、B两点,点A的坐标为(2,3n),点B的坐标为(5n+2,1).(1)求反比例函数与一次函数的表达式;(2)将一次函数y=kx+b的图象沿y轴向下平移a个单位,使平移后的图象与反比例函数y= 的图象有且只有一个交点,求a的值;(3)点E为y轴上一个动点,若S△AEB=5,则点E的坐标为________.【答案】(1)解:∵A、B在反比例函数的图象上,∴2×3n=(5n+2)×1=m,∴n=2,m=12,∴A(2,6),B(12,1),∵一次函数y=kx+b的图象经过A、B两点,∴,解得,∴反比例函数与一次函数的表达式分别为y= ,y=﹣ x+7.(2)解:设平移后的一次函数的解析式为y=﹣ x+7﹣a,由,消去y得到x2+(2a﹣14)x+24=0,由题意,△=0,(21a﹣14)2﹣4×24=0,解得a=7±2 .(3)(0,6)或(0,8)【解析】【解答】(3)设直线AB交y轴于K,则K(0,7),设E(0,m),由题意,PE=|m﹣7|.∵S△AEB=S△BEP﹣S△AEP=5,∴ ×|m﹣7|×(12﹣2)=5.∴|m﹣7|=1.∴m1=6,m2=8.∴点E的坐标为(0,6)或(0,8).故答案为(0,6)或(0,8).【分析】(1)由A、B在反比例函数的图象上,得到n,m的值和A、B的坐标,用待定系数法求出反比例函数与一次函数的表达式;(2)由将一次函数y=kx+b的图象沿y轴向下平移a个单位,得到平移后的一次函数的解析式,由平移后的图象与反比例函数的图象有且只有一个交点,得到方程组求出a的值;(3)由点E为y轴上一个动点和S△AEB=5,求出点E的坐标.2.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.3.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.4.如图,过原点O的直线与双曲线交于上A(m,n)、B,过点A的直线交x轴正半轴于点D,交y轴负半轴于点E,交双曲线于点P.(1)当m=2时,求n的值;(2)当OD:OE=1:2,且m=3时,求点P的坐标;(3)若AD=DE,连接BE,BP,求△PBE的面积.【答案】(1)解:∵点A(m,n)在双曲线y=上,∴mn=6,∵m=2,∴n=3;(2)解:由(1)知,mn=6,∵m=3,∴n=2,∴A(3,2),∵OD:OE=1:2,设OD=a,则OE=2a,∵点D在x轴坐标轴上,点E在y轴负半轴上,∴D(a,0),E(0,﹣2a),∴直线DE的解析式为y=2x﹣2a,∵点A(3,2)在直线y=2x﹣2a上,∴6﹣2a=2,∴a=2,∴直线DE的解析式为y=2x﹣4①,∵双曲线的解析式为y=②,联立①②解得,(点A的横纵坐标,所以舍去)或,∴P(﹣2,﹣3);(3)解:∵AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,A(m,n),∴E(0,﹣n),D( m,0),∴直线DE的解析式为y= x﹣n,∵mn=6,∴m=,∴y= x﹣n③,∵双曲线的解析式为y=④,联立③④解得,∴(点A的横纵坐标,所以舍去)或,∴P(﹣2m,﹣2n),∵A(m,n),∴直线AB的解析式为y=x⑤.联立④⑤解得,(点A的横纵坐标,所以舍去)或∴B(﹣m,﹣n),∵E(0,﹣n),∴BE∥x轴,∴S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|= mn=3.【解析】【分析】(1)把A(2,n)代入解析式即可求出n;(2)先求出A点坐标,设OD=a,则OE=2a,得D(a,0),E(0,﹣2a),直线DE的解析式为y=2x﹣2a,把点A(3,2)代入求出a,再联立两函数即可求出交点P;(3)由AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,故A(m,n),E(0,﹣n),D( m,0),求得直线DE 的解析式为y= x﹣n,又mn=6,得y= x﹣n,与y=联立得,即为P点坐标,由直线AB的解析式为y= x与双曲线联立解得B (﹣m,﹣n),再根据S△PBE= BE×|y E﹣y P|= ×m×|﹣n﹣(﹣2n)|求出等于3.5.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.【答案】(1)解:设反比例函数解析式为y= ,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y= ;把A(3,m)代入y= ,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1(2)解:由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方(3)解:存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y= x,可设直线C1C2的解析式为y= x+b',把C1(﹣3,﹣2)代入,可得﹣2= ×(﹣3)+b',解得b'= ,∴直线C1C2的解析式为y= x+ ,解方程组,可得C2();如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y= x+ ,把A(3,2)代入,可得2= ×3+ ,解得 =﹣,∴直线AC3的解析式为y= x﹣,解方程组,可得C3();综上所述,点C的坐标为(﹣3,﹣2),(()).【解析】【分析】(1)用待定系数法求出反比例函数解析式,一次函数解析式,将已知的点A,B的坐标代入设的函数解析式列出关于待定系数的方程(组)求出系数,再回代到解析式(2)结合图像判断直线AB在双曲线的交点坐标为A,B,X取值范围为双曲线所在象限交点的横坐标,第一象限为为小于横坐标大于零,第三象限为小于横坐标(3)结合已知条件根据同底等高、等底同高作出与原三角形面积相等的三角形,再结合已知条件用待定系数法求出与双曲线有交点的直线的解析式,得出点的坐标,注意要考虑满足条件的所有点C的坐标。

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。

自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。

1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。

2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。

3) 设三角形的底边、对应高、面积分别为a、h、S。

当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。

4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。

3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。

4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。

5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。

二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。

(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。

)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数难题
1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n An-1An都是等腰直角三角形,点P1、P
2、P3…Pn都在函
2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函
数y=
(1)求AB的长;
(2)当矩形ABCD是正方形时,将反比例函数y=k
x
的图象沿y轴翻折,得到反比例函数y= 1
k
x
的图象(如
图2),求k1的值;
(3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线
y=k
x
于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明
理由.
1.已知反比例函数y=
2k
x
和一次函数y=2x-1,其中一次函数的图象经过(a,b ),(a+k ,b+k+2)两点.ﻫ(1)求反比例函数的解析式; (2)求反比例函数与一次函数两个交点A、B 的坐标: (3)根据函数图象,求不等式
2k
x
>2x -1的解集;ﻫ(4)在(2)的条件下,x轴上是否存在点P,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.
1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k≠0)的图象与反比例函数y =
(m≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =\f (4,5). (1)求该反比例函数和一次函数; (2)求△AO C的面积.
(1)过A 点作AD⊥x轴于点D,∵sin ∠AO E= 错误!未定义书签。

,OA =5, ∴在Rt△ADO中,∵sin∠AOE=错误!未定义书签。

=错误!未定义书签。

= 4
5,
∴AD=4,DO=OA 2-DA2=3,又点A 在第二象限∴点A的坐标为(-3,4),
x
m
将A 的坐标为(-3,4)代入y= 错误!未定义书签。

,得4=\f(m,-3)∴m=-12,∴该反比例函数的解析式为y =-
错误!,
∵点B 在反比例函数y=-错误!的图象上,∴n=-错误!未定义书签。

=-2,点B的坐标为(6,-2), ∵一次函数y=kx+b(k≠0)的图象过A、B 两点,∴错误!未定义书签。

,∴错误!未定义书签。

∴ 该一次函数解析式为y=-错误!未定义书签。

x +2.
(2)在y =-错误!未定义书签。

x+2中,令y=0,即-错误!x +2=0,∴x=3,
∴点C 的坐标是(3,0),∴OC=3, 又DA=4, ∴S△AOC=错误!×OC×AD=错误!×3×4=6,所以△AOC 的面积为6.
练习1.已知Rt△A BC 的斜边AB 在平面直角坐标系的x轴上,点C(1,3)在反比例函数y = 错误!未定义书签。

的图象上,且sin∠BA C= 错误!未定义书签。

.
(1)求k 的值和边AC 的长; (2)求点B 的坐标.


)

C(1,3



y =

x
得k = 3
设斜边AB
上的高为CD,则sin∠BAC =错误!=错误! ∵C(1,3) ∴CD=3,∴AC=5
(2)分两种情况,当点B 在点A 右侧时,如图1有:A D=错误!未定义书签。

=4,AO=4-1=3 ∵△AC D∽ABC ∴AC 2
=AD ·A B ∴AB =AC
2
A D=错误!未定义书签。

∴OB=AB -AO =
25
4
-3=错误!未定义书签。

图1 此时B 点坐标为(\f(13,4),0)
图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5
OB= AB-AO =25
4
-5=错误!
此时B点坐标为(-错误!未定义书签。

,0) 所以点B的坐标为(\f(13,4),0)或(-错误!,0).
1.如图,矩形A BOD 的顶点A 是函数
与函数在第二象限的交点,轴于B ,
轴于D ,且矩形ABO D的面积为3.
(1)求两函数的解析式.
(2)求两函数的交点A 、C 的坐标. (3)若点P 是y轴上一动点,且,
求点P的坐标.
解:(1)由图象知k<0,由结论及已知条件得
-k =3 ∴
∴反比例函数的解析式为,一次函数的解析式为
(2)由,解得,
∴点A 、C 的坐标分别为(
,3),(3,

(3)设点P 的坐标为(0,m ) 直线
与y 轴的交点坐标为M (0,2)

∴∣PM ∣=,即∣m -2∣=,∴或,
∴点P的坐标为(0,)或(0,)
1.如图,已知,是一次函数的图像和反比例函数的图像的两个交
点.
(1)求反比例函数和一次函数的解析式;
(2)求直线与轴的交点的坐标及三角形的面积.
解:(1)在上.
反比例函数的解析式为:.
点在上
经过,,
解之得一次函数的解析式为:
(2)是直线与轴的交点当时,点
1.(1)探究新知
如图1,已知△ABC与△ABD的面积相等,
试判断AB与CD的位置关系,并说明理由.
(2)结论应用:
①如图2,点M,N在反比例函数(k>0)的图象上,过
点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.
试证明:MN∥EF.
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断
MN与EF是否平行。

解:(1)证明:分别过点C,D,作CG⊥AB,DH⊥AB,
垂足为G,H,则∠CGA=∠DHB=90°.
∴CG∥DH.
∵△ABC与△ABD的面积相等,
∴CG=DH.
∴四边形CGHD为平行四边形
∴AB∥CD
(2)①证明:连结MF,NE.
利用同底等高的三角形面积相等,可知
∴S△EFM=S△EF N
由(1)中的结论可知:MN∥EF.
②如图所示, MN∥EF.
已知:如图,正比例函数的图象与反比例函数的图象交于点
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当取何值时,反比例函数的值大于正比例函数的值?
(3)是反比例函数图象上的一动点,其中过点作直线轴,交轴于点;过点作直线轴交轴于点,交直线于点.当四边形的面积为6时,请判断线段与的大小关系,并说明理由.
(1)由点A(3,2)在两函数图象上,可求得
k=6,a=,正比例函数为,反比例函数为
(2)0<x<3
(3)设D点坐标为(3,t),则M点坐标为(
由四边形OADM的面积为6得 3+6+3=3t解得t=4
故点M为( D点为(3,4)
从而M点为BD中点,BM=DM。

相关文档
最新文档