初中反比例函数经典例题

合集下载

初二数学人教版(下册)反比例函数典型例题汇总(附答案)

初二数学人教版(下册)反比例函数典型例题汇总(附答案)

例 下面函数中,哪些是反比例函数?(1);(2);(3);(4);(5)3x y -=x y 8-=54-=x y 15-=x y .81=xy 解:其中反比例函数有(2),(4),(5).说明:判断函数是反比例函数,依据反比例函数定义,,它也可变形为xky =)0(≠k 及的形式,(4),(5)就是这两种形式.1-=kx y k xy =反比例函数的典型例题二例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非).(1)周长为定值的长方形的长与宽的关系 ( );(2)面积为定值时长方形的长与宽的关系 ( );(3)圆面积与半径的关系 ( );(4)圆面积与半径平方的关系 ( );(5)三角形底边一定时,面积与高的关系 ( );(6)三角形面积一定时,底边与高的关系 ( );(7)三角形面积一定且一条边长一定,另两边的关系 ( );(8)在圆中弦长与弦心距的关系 ( );(9)x 越来越大时,y 越来越小,y 与x 的关系 ( );(10)在圆中弧长与此弧所对的圆心角的关系 ( ).答:说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义.例 已知反比例函数,y 随x 增大而减小,求a 的值及解析式.62)2(--=a xa y 分析 根据反比例函数的定义及性质来解此题.解 因为是反比例函数,且y 随x 的增大而减小,62)2(--=a xa y 所以 解得⎩⎨⎧>--=-.02,162a a ⎩⎨⎧>±=.2,5a a 所以,解析式为.5=a xy 25-=反比例函数的典型例题四例 (1)若函数是反比例函数,则m 的值等于( )22)1(--=m xm y A .±1B .1C .D .-13(2)如图所示正比例函数)与反比例函数的0(>=k kx y xy 1=图像相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连结BC .若的面积为S ,则:ABC ∆A . B .C .D .S 的值不确定1=S 2=S 3=S 解:(1)依题意,得 解得.⎩⎨⎧-=-≠-,12,012m m 1-=m 故应选D .(2)由双曲线关于O 点的中心对称性,可知:.x y 1=OBC OBA S S ∆∆=∴.12122=⋅=⨯⨯==∆AB OB AB OB S S OBA 故应选A .例已知,与x 成正比例,与x 成反比例,当时,;当21y y y +=1y 2y 1=x 4=y 时,,求时,y 的值.3=x 5=y 1-=x 分析 先求出y 与x 之间的关系式,再求时,y 的值.1-=x 解 因为与x 成正比例,与x 成反比例,1y 2y 所以.)0(,212211≠==k k xk y x k y 所以.xkx k y y y 2121+=+=将,;,代入,得1=x 4=y 3=x 5=y 解得 ⎪⎩⎪⎨⎧=+=+.5313,42121k k k k ⎪⎪⎩⎪⎪⎨⎧==.821,81121k k 所以.xx y 821811+=所以当时,.1-=x 4821811-=--=y 说明不可草率地将都写成k 而导致错误,题中给出了两对数值,决定了21k k 、的值.21k k 、反比例函数的典型例题六例 根据下列表格x 与y 的对应数值.x ……123456…y …632 1.5 1.21…(1)在直角坐标系中,描点画出图像;(2)试求所得图像的函数解析式,并写出自变量x 的取值范围.解:(1)图像如右图所示.(2)根据图像,设,取代入,得)0(≠=k xky 6,1==y x . ∴.16k=6=k ∴函数解析式为.)0(6>=x xy 说明:本例考查了函数的三种表示法之间的变换能力,即先由列表法通过描点画图转化为图像法,再由图像法通过待定系数法转化为解析法,题目新颖别致,有较强的趣味性.反比例函数的典型例题七例(1)一次函数与反比例函数在同一坐标系中的图像大致是如图中1+-=x y xy 3=的( )(2)一次函数与反比例函数在同一直角坐标系内的图像的大致12--=k kx y xky =位置是图中的( )解:的图像经过第一、二、四象限,故排除B 、C ;又的图像两支1+-=x y xy 3=在第一、三象限,故排除D .∴答案应选A .(2)若,则直线经过第一、三、四象限,双曲线的图0>k )1(2+-=k kx y xky =像两支在第一、三象限,而选择支A 、B 、C 、D 中没有一个相符;若,则直线0<k 经过第二、三、四象限,而双曲线的两支在第二、四象限,故只有C 正)1(2+-=k kx y 确.应选C .例已知函数是反比例函数,且其函数图像在每一个象限内,随24231-⎪⎭⎫ ⎝⎛+=mx m y y 的增大而减小,求反比例函数的解析式.x 解:因为是的反比例函数,y x 所以,所以或1242-=-m 21=m .21-=m 因为此函数图像在每一象限内,随的增大而减小,y x 所以,所以,所以,031>+m 31->m 21=m 所以反比例函数的解析式为.65xy =说明:此题根据反比例函数的定义与性质来解反比例函数 ,当时,xky =)0(≠k 0>k 随增大而减小,当时,随增大而增大.y x 0<k y x例 一个长方体的体积是100立方厘米,它的长是y 厘米,宽是5厘米,高是x 厘米.(1)写出用高表示长的函数关系式;(2)写出自变量x 的取值范围;(3)当厘米时,求y 的值;3=x (4)画出函数的图像.分析 本题依据长方体的体积公式列出方程,然后变形求出长关于高的函数关系式.解 (1)因为长方体的长为y 厘米,宽为5厘米,高为x 厘米,所以,所以.1005=xy xy 20=(2)因为x 是长方体的高.所以.即自变量x 的取值范围是.0>x 0>x (3)当时,(厘米)3=x 326320==y (4)用描点法画函数图像,列表如下:x…0.5251015…y…401042311…描点画图如图所示.例 已知力F 所作用的功是15焦,则力F 与物体在力的方向通过的距离S 的图象大致是( ).说明 本题涉及力学中作功问题,主要考查在力的作用下物体作功情况,由此,识别正、反比例函数,一次函数的图象位置关系.解 据,得15=,即,所以F 与S 之间是反比例函数关系,故S F W ⋅=S F ⋅SF 15=选(B ).例 一个圆台形物体的上底面积是下底面积的如果如下图所示放在桌上,对桌面的.32压强是,翻过来放,对桌面的压强是多少?Pa 200解:由物理知识可知,压力,压强与受力面积之间的关系是因为是同F p S .SFp =一物体,的数值不变,所以与成反比例.F p S 设下底面是,则由上底面积是,0S 032S 由,且时,,SFp =0S S =200=p 有.20020000S S pS F =⨯==因为是同一物体,所以是定值.0200S F =所以当时,032S S =).Pa (3003220000===S S S F p 因此,当圆台翻过来时,对桌面的压强是300帕.说明:本题与物理知识结合考查了反比例函数,关键是清楚对于同一个物体,它对桌面的压力是一定的.例如图,P 是反比例函数上一点,若图中阴影部分的矩形面积是2,求这个xky =反比例函数的解析式.分析 求反比例函数的解析式,就是求k 的值.此题可根据矩形的面积公式及坐标与线段长度的转化来解.解 设P 点坐标为.),(y x 因为P 点在第二象限,所以.0,0><y x 所以图中阴影部分矩形的长、宽分别为.y x ,-又,所以.因为,所以.2=-xy 2-=xy xy k =2-=k 所以这个反比例函数的解析式为.xy 2-=说明 过反比例函数图像上的一点作两条坐标轴的垂线,可得到一个矩形,这个矩形的面积等于中的.xky =k例 当n 取什么值时,是反比例函数?它的图像在第几象限内?122)2(-++=n n xn n y 在每个象限内,y 随x 增大而增大还是减小?分析 根据反比例函数的定义可知,是反比例函数,)0(≠=k xky 122)2(-++=n n x n n y 必须且只需且.022≠+n n 112-=-+n n 解 是反比例函数,则122)2(-++=n n xn n y ⎪⎩⎪⎨⎧-=-+≠+,11,0222n n n n ∴⎩⎨⎧-==-≠≠.10,20n n n n 或且即 .1-=n 故当时,表示反比例函数:.1-=n 122)2(-++=n n xn n y xy 1-=,01<-=k ∴双曲线两支分别在二、四象限内,并且在每个象限内,y 随x 的增大而增大.。

人教版苏科版初中数学—反比例函数(经典例题 )

人教版苏科版初中数学—反比例函数(经典例题 )

班级小组姓名成绩(满分120)一、反比例函数(一)反比例函数的定义(共4小题,每题3分,题组共计12分)例1.下列函数中,是反比例函数的是()A.()11x y -=B.11y x =+C.21y x =D.13y x=例1.变式1.若函数()22351mm y m x +-=-为反比例函数,求的m 值.例1.变式2.当k 为时,反比例函数.例1.变式3.下列函数关系是反比例函数关系的是()A.三角形的底边为一常数,则三角形的面积y 与三角形的高x 间的函数关系B.力F 为一常数,则力所做的功W 与物体在力的方向上移动的距离S 间的函数关系C.矩形的面积为一常数,则矩形的长y 与宽x 间的函数关系D.当圆锥的底面积为一常数,圆锥的体积V 与圆锥的高h 间的函数关系(二)根据描述列出反比例函数的表达式(共4小题,每题3分,题组共计12分)例2.已知y 是x 的反比例函数,下表给出了x 与y 的一些值,由表知函数表达式为.根据函数表达式完成下表.x -1368y3-32例2.变式1.若y 与21x +成反比例,且1x =时,2y =,则此函数表达式为.例2.变式2.已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当2x =时,4y =-;当1x =-时,5y =,则y 与x 之间的函数表达式为.()223kk y k k x--=+例2.变式3.已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当1x =时,4y =;当3x =时,5y =,求1x =-时y 的值.(三)确定实际问题中函数表达式(共4小题,每题3分,题组共计12分)例3.一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么a 与b 成函数关系,列出a 关于b 的函数关系式为.例3.变式1.已知一个长方体的体积是100m³,它的长是y m ,宽是5m ,高为x m ,试写出,x y之间的函数关系式,并注明x 的取值范围.例3.变式2.有一水池装水12m³,如果从水管中1h 流出x m³的水,则经过y h 可以把水放完,写出y与x 的函数关系式及自变量x 的取值范围.例3.变式3.一定质量的氧气,它的密度()3/kg m ρ是它的体积()3V m 的反比例函数,当310V m =时,31.43/kg m ρ=.(1)求ρ与V 的函数关系式;(2)求当32V m =时,氧气的密度ρ.二、反比例函数的图像和性质(一)反比例函数的图象(共4小题,每题3分,题组共计12分)例4.关于反比例函数4y x=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支位于第二、四象限内C.两个分支关于x 轴成轴对称D.两个分支关于原点成中心对称例4.变式1.已知点(1,1)在反比例函数ky x=(k 是常数,0k ≠)的图象上,则这个反比例函数的大致图象是()A. B. C. D.例4.变式2.函数2y x =与函数1y x-=在同一坐标系中的大致图象是()A. B. C. D.例4.变式3.反比例函数1m y x-=的图象在第一、三象限内,则m 的取值范围是.(二)反比例函数的性质(共4小题,每题3分,题组共计12分)例5.如图,反比例函数ky x=的图象经过点A(-1,-2),则当1x >时,函数值y 的取值范围是()A.1y >B.01y << C.2y > D.02y <<例5.变式1.若点1P (1,m),2P (2,n)在反比例函数ky x=(0k <)的图象上,则m n(填“>”“<”或“=”).例5.变式2.在函数21a y x--=(a 为常数)的图像上有三点()11,x y 、()22,x y 、()33,x y ,且1230x x x <<<,则123,,y y y 的大小关系是()A.231y y y <<B.321y y y <<C.123y y y << D.312y y y <<例5.变式3.已知函数1y x-=,当自变量的取值为10x -<<或2x ≥,函数值y 的取值范围为.(三)反比例函数比例系数k 的几何意义(共4小题,每题3分,题组共计12分)例6.如图,已知A 是反比例函数ky x=(k 是常数,0k ≠)的图像上一点,AB⊥x 轴于点B,且△ABO 的面积是3,则k 的值是()A.3B.3-C.6D.6-例6.变式1.如图,正方形ABOC 的边长为2,反比例函数ky x=的图象过点A,则k 的值是()A.2B.2-C.4D.4-例6.变式2.如图,点A 在双曲线1y x =上,点B 在双曲线3y x=上,且AB∥x 轴,C,D 在x 轴上,若四边形ABCD 为矩形,则它的面积为.例6.变式3.如图,矩形AOBC 的面积为4,反比例函数ky x=的图象的一支经过矩形对角线的交点P,则该反比例函数的表达式是()A.4y x=B.2y x=C.1y x=D.12y x=三、反比例函数的应用(一)反比例函数解析式和图象问题(共4小题,每题3分,题组共计12分)例7.某段公路全长200km,一辆汽车要行驶完这段路程,则所行驶速度v (km/h)和时间t (h)间的关系式为,若限定汽车行驶速度不超过80km/h,则所用时间最少要.例7.变式1.一个三角形的面积为10,则底边长a 与这条边上的高h 间的关系式为,自变量的取值范围为.例7.变式2.某变阻器两端的电压为220V,则通过变阻器的电流I(A)与它的电阻R(Ω)之间的函数关系的图象大致为下图中的()例7.变式3.学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边长y (m)与相邻的另一边长x (m)之间的关系如图所示.(1)绿化带面积是多少?你能写出这一函数的表达式吗?(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?(二)函数图象交点问题(共4小题,每题3分,题组共计12分)例8.双曲线8y x=与直线2y x =的交点坐标为.例8.变式1.同一坐标系中,正比例函数2y x =的图象与反比例函数()22k y k x-=≠的图象有公共点,则k 的取值范围为.例8.变式2.函数1y x =(x ≥0),29y x=(x >0)的图象如图所示,则有如下结论:①两函数图象的交点A 的坐标为(3,3);②当x >3时,21y y >;③当1x =时,BC=8;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是.x(m)10203040y(m)例8.变式3.右图中曲线是反比例函数7nyx+=的图象的一支.(1)这个反比例函数图象的另一支位于哪个象限?常数n的取值范围是什么?(2)若一次函数2433y x=-+的图象与反比例函数7nyx+=的图象交于点A,与x轴交于点B,△AOB的面积为2,求n的值.(三)反比例函数的综合应用(共4小题,每题3分,题组共计12分)例9.(1)已知反比例函数kyx=(0k≠),当13x=-,6y=-时,求这个函数的表达式.(2)若一次函数4y mx=-的图象与(1)中的反比例函数kyx=的图象有交点,求m的取值范围.例9.变式1.今年两会提出:随着城镇化水平的提高,为了房产去库存,国家鼓励农民进城买房,可享受政府担保免收利息的惠民政策,小王家购买了一套学区房,首付15万元后,剩余部分贷款,贷款金额按月分期还款,每月还款数相同,计划每月还款y万元,x个月还清贷款,已知y是x的反比例函数,其图象如图所示.(1)求y与x的函数关系式,并求小王家购买学区房的总价是多少万元?(2)若计划80个月还清贷款,则每月应还款多少万元?例9.变式2.如图,函数11y k x b =+的图象与函数()220k y x x=>的图象相交于A,B 两点,与y 轴交于点C,已知,A 点坐标为(2,1),C 点坐标为(0,3).(1)求这两个函数表达式和点B 的坐标;(2)观察图像,比较0x >时,1y 与2y 大小.例9.变式3.如图,在直角坐标系中,O 为坐标原点.已知反比例函数ky x=(k >0)的图象经过点A(2,m),过点A 作AB⊥x 轴于点B,且△AOB 的面积为12.(1)求k 和m 的值;(2)点C(x ,y )在反比例函数ky x=的图象上,求当1≤x ≤3时函数值y 的取值范围;(四)反比例函数的跨学科应用(共4小题,每题3分,题组共计12分)例10.某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例.右图表示的是该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I 的函数表达式为()A.()60I R R =>B.()60I R R =->C.()30I R R=>D.()20I R R=>例10.变式1.某一电路中,电源电压()U V 保持不变,电流()I A 与电阻()R Ω之间的函数图像如图所示.(1)I 与R 的函数关系式为;(2)结合图象回答,当电路中的电流不超过12A 时,电路中电阻R 的取值范围是.例10.变式2.一定质量的二氧化碳,当它的体积35V m =时,它的密度31.98/kg m r =,则r 关于V 的函数图象大致是()例10.变式3.某小组到野外考察,路过一段临时铺设的木板路,木板对地面的压强()p Pa 是木板面积()2S m 的反比例函数,其图象如图所示.(1)请写出函数的表达式和变量的取值范围;(2)当木板的面积为20.2m 时,压强是多少;(3)如果要求压强不超过6000Pa ,木板的面积至少要多大?。

反比例函数(含答案)

反比例函数(含答案)

例1 已知一次函数2y x k =-的图象与反比例函数5k y x+=的图象相交,其中有一个交点的纵坐标为-4,求这两个函数的解析式. 解: 依题意,由两个函数解析式得所以一次函数和反比例函数的解析式分别为例注意: 解本题的关键是正确理解什么叫y 1与x+1成正比例,y 2与x 2成反比例,即把x+1与x 2看成两个新的变量.典型例题四例 (上海试题,2002)如图,直线221+=x y 分别交x 、y 轴于点A 、C ,P 是该直线上在第一象限内的一点,x PB ⊥轴,B 为垂足,9=ABP S ∆(1)求点P 的坐标;(2)设点R 与点P 在同一个反比例函数的图象上,且点R 在直线PB 的右侧.作x RT ⊥轴,T 为垂足,当BRT ∆与AOC ∆相似时,求点R 的坐标.那么2-=b BT ,b RT 6=. ①当RTB ∆∽AOC ∆时,CO BT AO RT =,即2==COAOBT RT , ∴226=-b b ,解得3=b 或1-=b (舍去). ∴ 点R 的坐标为()2,3.②RTB ∆∽ COA ∆时,AO BT CO RT =,即21==AO CO BT RT , ∴2126=-b b ,解得131+=b 或131-=b (舍去). ∴点R 的坐标为⎪⎪⎭⎫ ⎝⎛-+2113,131. 综上所述,点R 的坐标为()2,3或⎪⎫⎛-+113,131.y例 B.((解 :(1)设点A 的坐标为(m,n),那么n AB m OB =-=,.∵ AB OB S ABO ⋅=∆21,∴.4,2)(21-==⋅-mn n m 又mk n =,∴4-==mn k .∴ 双曲线:x y 4-=,直线:4+-=x y .(2)解由xy 4-=,4+-=x y 组成的方程组,得2221+=x ,2221-=y ;例 A 、B 求B 两点的抛物线在x 轴上截得的线段长能否等于3.如果能,求此时抛物线的解析式;如果不能,请说明理由. 解:(1)过点B 作x BH ⊥轴于点H . 在OHB ∆Rt 中,.3,31tan BH HO HO BH HOB =∴==∠由勾股定理,得222OB HO BH =+. 又10=OB ,.3,1,0.)10()3(222==∴>=+∴HO BH BH BH BH ∴ 点B (-3,-1).∵ ∴ ∴ (∵ ∴ ∴ 令 ).31(321)(2122m m GA BH DO GA DO BH DO S +-=+=⋅+⋅=由已知,直线经过第一、二、三象限, ∴ 0>b ,即03>-mm..03,0>-∴>m m由此得 .30<<m ∴ ).31)(3(21mm S +-=即 ).30(292<<-=m mm S (3)过A 、B 两点的抛物线在x 轴上截得的线段长不能等于3.证明如下:S ∆由得 ∵ ∴ ∴ ∴ 即 则 aa 2121令 .321=-x x 则 .9324)21(2=-⋅-+-aa a a 整理,得 01472=+-a a . ∵ ,012174)4(2<-=⨯⨯--=∆∴ 方程01472=+-a a 无实数根.因此过A 、B 两点的抛物线在x 轴上截得的线段长不能等于3.典型例题八例 在以下各小题后面的括号里填写正确的记号.若这个小题成正比例关系,填(正);若成反比例关系,填(反);若既不成正比例关系又不成反比例关系,填(非).(1)周长为定值的长方形的长与宽的关系 [ ]; (2)面积为定值时长方形的长与宽的关系 [ ]; (3)圆面积与半径的关系 [ ]; (4)圆面积与半径平方的关系 [ ];(5)三角形底边一定时,面积与高的关系 [ ]; (6)三角形面积一定时,底边与高的关系 [ ];(7)三角形面积一定且一条边长一定,另两边的关系 [ ]; (8)在圆中弦长与弦心距的关系 [ ];(9)x 越来越大时,y 越来越小,y 与x 的关系 [ ]; (10)在圆中弧长与此弧所对的圆心角的关系 [ ].说明:本题考查了正比例函数和反比例函数的定义,关键是一定要弄清出二者的定义。

反比例函数经典例题(有答案)

反比例函数经典例题(有答案)

一、反比例函数的对称性1、直线y=ax (a>0)与双曲线y= 3/x 交于A (x i, y〔)、B (X2, y2)两点,贝U 4x i y2-3x2y i=2、如图1,直线y=kx (k>0)与双曲线y= 2/x交于A, B两点,若A B两点的坐标分别为A (x i, y i),B (x2, y2),贝U x i y2+x2y i 的值为( )A 、-8B 、4C 、-4D 、0解析:直线Y=KX和双曲线Y=2/X图象都关于原点对称因此两交点A、B也关于原点对称X2=-Xi, Y2=-Yi双曲线形式可变化为XY=2即双曲线上点的横纵坐标乘积为 2因此XiYi=2XiY2+X2Yi=Xi(-Yi) + (-Xi) Yi=-XiYi-XiYi=-4图i 图2 图3 图4二、反比例函数中“ K”的求法1、如图2,直线l是经过点(i, 0)且与y轴平行的直线.Rt△ ABC中直角边AC=4, BC=3将BC边在直线l上滑动,使A, B在函数y=k/x的图象上.那么k的值是( )A、3 B 、6 C 、i2 D 、i5/4解析:BC 在直线X=i 上,设B(i , M),贝U C(i, M-3), .••A(5, M-3), 又A B都在双曲线上,二i*M=5*(M-3) , M=i5/4 即K=i5/4 2、如图3,已知点A、B在双曲线y= k/x (x>0)上,Adx轴于点C, Bdy轴于点D, AC与BD交于点P, P是AC的中点,若△ ABP的面积为3,则k=解析:A(xi,k/xi),B(x2,k/x2)AC:x=xi BD:y=k/x2P(xi,k/x2)k/x2=k/2xi 2xi=x2BP=x2-xi=xiAP=k/xi-k/x2=k/2xiS=xi*k/(2xi)*i/2)=k/4=3 k=i23、如图4,双曲线y= k/x (k > 0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为( )A、y=i/xB、y=2/xC、y=3/xD、=6/解析:设E(x0,k/x0)E 是BC中点,二B(x0,2k/x0)B、D两点纵坐标相同,二D(x0/2,2k/x0)BD=x0/2,OC=x0,BC=2k/x0梯形面积=(BD+OC/ BC/2=3k/2=3•,- k=2 .•.双曲线的解析式为:y=2/x三、反比例函数“ K”与面积的关系1、如图5,已知双曲线y i=1/x(x >0) , y2=4/x(x >0),点P为双曲线y2=4/x上的一点,且PAlx 轴于点A, PBLy轴于点B, PA PB分别次双曲线y=/x于D C两点,则^ PCD的面积为( ) 图5 图6 图7解析:假设P的坐标为(a,b ),则C (a/4,b), D(a,b/4),PC=3/4*a PD=3/4*bS=1/2*3/4*a*3/4*b因为点P为双曲线y2=4/x上的一点所以a*b=4所以S=9/82、如图6,直线l和双曲线y=k/x(k >0)交于A B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为G D、E,连接OA OB 0P,设AAOC勺面积为S、△ BOD的面积为&、APOE的面积为S3,则( )A S I<S3B 、S I>S2>S3C 、S I=S2>&D 、S=S< S3解析:结合题意可得:AB者S在双曲线y=kx上,则有S1=S2而AB之间,直线在双曲线上方;故S1=SK S3.3、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线y=k/x交于G D两点,且S3O C=&CO D=S\BOD 贝1J k=。

初中数学千题解——反比例函数100题(练习版)

初中数学千题解——反比例函数100题(练习版)

初中数学千题解——反比例函数100题(练习版)1.如图1.1所示,矩形ABCO中的顶点O与坐标原点重合,点A 在x轴上,点C在y轴上,反比例函数kyx(x≠0)的图像分布与BC、AB交于点E、F两点,连接AC.证明:(1)AC∥EF;(2)GE=FH2.如图1.2所示,矩形ABCO中的顶点O与坐标原点重合,点A 在x轴上,点C在y轴上,反比例函数kyx(x≠0)的图像分布与BC、BA的延长线交于点E、F两点,连接AC.证明:(1)AC∥EF;(2)GE=FH.图1.23.如图1.3所示,A 、B 是反比例函数1k y x第一象限图像上任意两点,射线OA 、OB 分别交反比例函数2 k yx的图像于C 、D 两点. 证明:(1)12k OAOC k ;(2)AB ∥CD .4.如图1.4所示,平行四边形ABCD 的顶点A 、B 位于反比例函数ky x第一象限的图像上,点C 、D 位于x 轴正半轴和y 轴正半轴上. 证明:(1)∠1=∠2,∠3=∠4.5.如图1.5所示,平行四边形ABCD的顶点A、B位于反比例函数kyx第一象限的图像上,点C、D分别位于y轴负半轴和x轴负半轴上,AD交y轴于点H,BC交x轴于点G.证明:(1)∠1=∠2,∠3=∠4;(2)四边形CDHG是菱形.6.如图1.6所示,A、B为反比例函数kyx第一象限图像上任意两点,连接AO并延长交反比例函数图像另一支于点C,连接BC交x轴于点G、交y轴于点F,连接AB并向两侧延长分别交x轴于点E、交y轴于点D.证明:∠1=∠2,∠3=∠4.7.如图1.7所示,在平面直角坐标系xOy中,点A、B在反比例函数4yx=(x>0)的图像上,延长AB交x轴于点C,且12BCAB=,连接OA交反比例函数1yx=(x>0)的图像于点D,则ABDS△=.8.如图1.8所示,双曲线4yx=(x>0)与直线EF交于点A、B,且AE=AB=BF,线段AO、BO 分别与双曲线2yx=(x>0)交于点C、D,则:(1)AB与CD的位置关系是;(2)四边形ABDC的面积为.9.如图1.9所示,直线y=-x与反比例函数kyx=的图像交于A、B两点,过点B作BD∥x轴,交y轴于点D,延长AD交反比例函数kyx=的图像于另一点C,则BCAC的值为.10.如图1.10所示,已知四边形ABCD是平行四边形,BC=2AB,A、B两点的坐标分别是(-1,0)和(0,2),C、D两点在反比例函数kyx的图像上,则k=.11.如图1.11所示,□ABCD的顶点A、B的坐标分别是A(-1,0)、B(0,-2),顶点C、D在双曲线y=kx上,边AD交y轴于点E,且四边形BCDE的面积是△ABE的面积的5倍,则k= ;12.如图1.12所示;A、B为反比例函数y=kx 第一象限图像上任意两点,连接B O并延长交反比例函数图像另一支于点C,连接AC交x轴于点F、交y轴于点G,连接BG,连接AB并向外两侧延长分别交x轴于点E、交y轴于点D;已知BEAB =12,S△GBO=1,则k= ;图1.1113. 如图1.13所示;在平面直角坐标系x O y 中,A (1,m )、B (n ,a )在反比例函数y =kx (k >0,x >0)的图像上,∠A O B =45°;(1)若a =12,已知∠A O B =∠O BA ,求k ;(2)若a =√63,求k14. 如图1.14所示;已知点A 、B 分别在反比例函数y =k x (x >0)和y =?4x (x >0)的图像上,且O A ⊥O B ,则OBOA 的值为;图1.12图1.1315. 如图1.15所示;已知点A (2,3)和点B (0,2),点A 在反比例函数y =kx的图像上,作AB ,再将射线AB 绕点A 按逆时针方向旋转45°,交反比例函数的图像于点C ,则点C 的坐标为;图1.14图1.1516.如图1.16所示,反比例函数y=kx的图像经过点(-1,-),点A是该图像第一象限分支上的动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点D,当ADCDC的坐标为____________.图1.1617.如图1.17所示,点P在双曲线y=kx(x>0)的图像上,以点P为圆心的⊙P与两坐标轴都相切,点E为y轴负半轴上的一点,过点P作PF⊥PE交x轴于点F,若OF -OE=10,则k的值是___________.18.如图1.18所示,正方形A1B1P1P2的顶点P1、P2在反比例函数y=4x(x>0)的图像上,顶点A1、B1分别在x轴和y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=4x(x>0)的图像上,顶点A2在x轴的正半轴上,则点P2的坐标为__________,点P3的坐标为__________.图1.1819.如图1.19所示,在平面直角坐标系xOy中,△ABC为等边三角形,顶点C在y轴的负半轴上,点A(1)、点B在第一象限,经过点A的反比例函数y=kx(x>0)的图像恰好经过顶点B,求△ABC 的边长.20.如图1.20所示,反比例函数y 1=-1x的图像有一个动点A ,过点A 、O 作直线y 2=ax ,交图像的另一支于点B.若在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在反比例函数y =kx的图像上运动,且tan ∠CAB =2,求k 的值.21、如图1.21所示,点A 是双曲线xy 9-=第二象限分支上的一个动点,连接AO 并延长交另一分支于点B ,以AB 为底作等腰△ABC ,且∠ACB=1200,点C 在第一象限,随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线xky =上运动,则k 的值为___________。

初中反比例函数精选题

初中反比例函数精选题

31、(09广东肇庆)如图 7,已知一次函数1y x m =+(m 为常数)的图象与反比例函数 2k y x=(k 为常数,0k ≠)的图象相交于点 A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围.32、(09湖北襄樊)如图32所示,在直角坐标系中,点A 是反比例函数1k y x=的图象上一点,AB x ⊥轴的正半轴于B点,C 是OB 的中点;一次函数2y ax b =+的图象经过A 、C 两点,并将y 轴于点()02D -,,若4AOD S =△. (1)求反比例函数和一次函数的解析式; (2)观察图象,请指出在y 轴的右侧,当12y y >时,x 的取值范围.33、(09年北京)如图,A 、B 两点在函数()0m y x x=>的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数。

34、(09甘肃兰州)如图14,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求方程0=-+xmb kx 的解(请直接写出答案); (4)求不等式0<-+xmb kx 的解集(请直接写出答案).35、(09湖北孝感)如图,点P 是双曲线11(00)k y k x x=<<,上一动点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y轴于A 、B 两点,交双曲线y =xk 2(0<k 2<|k 1|)于E 、F 两点. (1)图1中,四边形PEOF 的面积S 1= (用含k 1、k 2的式子表示);(3分)图32(2)图2中,设P 点坐标为(-4,3).①判断EF 与AB 的位置关系,并证明你的结论;(4分) ②记2PEF OEF S S S ∆∆=-,S 2是否有最小值?若有,求出其最小值;若没有,请说明理由.(5分)36、(09广西贵港)如图,已知反比例函数y = m x 的图象经过点A (-1,3),一次函数y =kx +b 的图象经过点A 和点C (0,4),且与反比例函数的图象相交于另一点B . (1)、求这两个函数的解析式; (2)、求点B 的坐标.37、(09广西河池)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例;药物释放完毕后,y 与x 成反比例,如图9所示.根据图中提供的信息,解答下列问题:(1)、写出从药物释放开始,y 与x 之间的两个函数关系式及相应的自变量取值范围;(2)、据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?M (-2,1-),且P (1-,-2)为双曲A 、B . △OBQ 与△OAP 面积相等?如果存在,请求OPCQ ,求平行四边形OPCQ第3页39、(09吉林长春)如图,在直角坐标系中,△OBA ∽△DOC ,边OA 、OC 都在x 轴的正半轴上,点B 的坐标为(6,8),∠BAO =∠OCD =90°,OD =5.反比例函数(0)ky x x=>的图象经过点D ,交AB 边于点E . (1)、求k 的值.(4分) (2)、求BE 的长.(2分)40、(09山东济南)已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()32A ,.(1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值? (3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.41、(09山东威海)一次函数y ax b =+的图象分别与x 轴、y轴交于点,M N ,与反比例函数k y x=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD . (1)若点AB ,在反比例函数ky x=的图象的同一分支上,如图1,试证明:①AEDK CFBK S S =四边形四边形;②AN BM=.(2)若点AB ,分别在反比例函数ky x=的图象的不同分支上,如图2,则AN 与BM还相等吗?试证明你的结论.(第40题42、(09浙江金华)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0)。

反比例函数经典例题

反比例函数经典例题

反比例函数经典例题1.(北京模拟)如图,直线AB经过第一象限,分别与%轴、》轴交于A、B两点,P为线段AB 上任意一点(不与A、B重合),过点P分别向%轴、y轴作垂线,垂足分别为。

、。

.设OC=%,四边形OCPD的面积为S.(1)若已知4(4,0),B(0,6),求S与%之间的函数关系式;39(2)若已知4(a,0),B(0,b),且当%=彳时,S有最大值不,求直线AB的解析式;48(3)在(2)的条件下,在直线AB上有一点M,且点M到%轴、y轴的距离相等,点N在过M 点的反比例函数图象上,且■OAN是直角三角形,求点N的坐标.2.(北京模拟)已知点A是双曲线y=k(k1>0)上一点,点A的横坐标为1,过点A作平行于y轴的直线,与%轴交于点B,与双曲线y=k2(k2<0)交于点C.点D(m,0)是%轴上一点,且位于直线AC右侧,E是AD的中点.(1)如图1,当m=4时,求△ACD的面积(用含k1、k2的代数式表示);(2)如图2,若点E恰好在双曲线y=与(k1>0)上,求m的值;(3)如图3,设线段EB的延长线与y轴的负半轴交于点R当m=2时,若△BDF的面积为1,且CF//AD,求k1的值,并直接写出线段CF的长.图1图2图33.(上海模拟)Rt△ABC在直角坐标系中的位置如图所示,tan/BAC=1,反比例函数yk=~(k十0)在第一象限内的图象与BC边交于点D(4,m),与AB边交于点E(2,n),x△BDE的面积为2.(1)求反比例函数和直线AB的解析式;4.(安徽某校自主招生)如图,直角梯形OABC的腰OC在y轴的正半轴上,点A(5n,0)在%轴的负半轴上,OA:AB:OC=5:5:3.点D是线段OC上一点,且OD=BD.(1)若直线y=kx+m(k十0)过B、D两点,求k的值;m(2)在(1)的条件下,反比例函数y=7的图象经过点B.xm①求证:反比例函数y=m的图象与直线AB必有两个不同的交点;x②已知点P(p,-n-1),Q(q,-n—2)在线段AB上,当点E落在线段PQ上时,求n的取值范围.5.(浙江杭州)在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当A ABQ是以AB为斜边的直角三角形时,求k的值.6.(浙江义乌)如图,矩形OABC的顶点A、C分别在l、y轴的正半轴上,点D为对角线kOB的中点,点E(4,n)在边AB上,反比例函数y=-在第一象限内的图象经过点D、E,x 1且tan Z BOA=2.(1)求反比例函数的解析式;(2)若反比例函数的图象与矩形的边BC交于点F将矩形折叠,使点O与点F重合,折痕分别与%、y轴正轴交于点H、G,求线段OG的长.7.(浙江某校自主招生)已知点P的坐标为(m,0),在%轴上存在点Q(不与P重合),以PQ为边,Z PQM=60°作菱形PQMN,使点M落在反比例函数y=-2^的图象上.x(1)如图所示,若点P的坐标为(1,0),图中已经画出一个符合条件的菱形PQMN,若另一个菱形为PQ1M1N1,求点M1的坐标;(2)探究发现,当符合上述条件的菱形只有两个时,一个菱形的顶点M在第四象限,另一个菱形的顶点M1在第二象限.通过改变P点坐标,对直线MM1的解析式y=kx+b进行探究可得k=,若点P的坐标为(m,0),则k=(用含m的代数式表示);(3)继续探究:①若点P的坐标为(m,0),则m在什么范围时,符合上述条件的菱形分别为两个、三个、四个?②求出符合上述条件的菱形刚好有三个时,点M坐标的所有情况.备用图8 .(浙江模拟)如图,在平面直角坐标系中,△AOB 的顶点O 是坐标原点,点A 坐标为(1,k 3),A 、B 两点关于直线y =%对称,反比例函数y =-(%>0)图象经过点A ,点P 是直线y %9 .(浙江模拟)已知点P (m ,n )是反比例函数y =6(%>0)图象上的动点,PA 〃1轴,%3 PB 〃y 轴,分别交反比例函数y =-(%>0)的图象于点A 、B ,点C 是直线y =2%上的一点.%(1)请用含m 的代数式分别表示P 、A 、B 三点的坐标; (2)在点P 运动过程中,连接AB ,△PAB 的面积是否变化,若不变,请求出△PAB 的面积;若改变,请说明理由;(3)在点P 运动过程中,以点P 、A 、B 、C 为顶点的四边形能否为平行四边形,若能,请求出此时m 的值;若不能,请说明理由.=%上一动点.(1)填空:B 点的坐标为( ); (2)若点C 是反比例函数图象上一点,是否存在这样的点C ,使得以A 、B 、C 、P 四点为 顶点的四边形是平行四边形?若存在,求出点C 坐标; (3)若点Q 是线段OP 上一点(Q 不与O 、P 重合),分别作直线OA 和直线AP 的垂线,垂足分别为E 、F ,Q 点坐标. 若不存在,请说明理由;当四边形AOBP 为菱形时,过点Q 当QE +QF +QB 的值最小时,求出11.(江苏泰州)如图,已知一次函数y1=kx+b的图象与x轴相交于点A,与反比例函数y2c5=x的图象相交于B(-1,5)、C(2,d)两点.点P(m,n)是一次函数y1=kx+b的图象上的动点. (1)求k、b的值;3c(2)设-1<m<5,过点P作x轴的平行线与函数y2=]的图象相交于点。

初中反比例函数经典例题

初中反比例函数经典例题

初中反比例函数习题集合(经典)(1)下列函数,① 1)2(=+y x ②. 11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于x 的反比例函数的有:_________________。

(2)函数22)2(--=ax a y 是反比例函数,则a 的值是( )A .-1B .-2C .2D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( )A .反比例函数B .正比例函数C .一次函数D .反比例或正比例函数 (4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (6)反比例函数(0ky k x=≠)的图象经过(—2,5n ), 求(1)n 的值;(2)判断点B (24,)是否在这个函数图象上,并说明理由 (7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.(8)若反比例函数22)12(--=m xm y 的图象在第二、四象限,则m 的值是( )A 、 -1或1;B 、小于12的任意实数; C 、-1; D、不能确定 (9)已知0k >,函数y kx k =+和函数ky x=在同一坐标系内的图象大致是( )(10)正比例函数2xy =和反比例函数2y x=的图象有 个交点.(11)正比例函数5y x =-的图象与反比例函数(0)ky k x=≠的图象相交于点A (1,a ),则a = .(12)下列函数中,当0x <时,y 随x 的增大而增大的是( )A .34y x =-+B .123y x =--C .4y x=- D .12y x =.xxxxABCD(13)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质: 甲:函数的图象经过第二象限; 乙:函数的图象经过第四象限; 丙:在每个象限内,y 随x 的增大而增大请你根据他们的叙述构造满足上述性质的一个函数: .(14)矩形的面积为6cm 2,那么它的长y (cm )与宽x (cm )之间的函数关系用图象表示为((15)反比例函数y=kx(k>0)在第一象限内的图象如图,点M(x,y)是图象上一点,MP 垂直x 轴于点P,MQ 垂直y 轴于点Q ;① 如果矩形OPMQ 的面积为2,则k=_________; ② 如果△MOP 的面积=____________.2、反比例函数y x=的图象经过(-2,5)点、(,3a -)及(10,b )点,则k = ,a = ,b = ;3、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;4、已知正比例函数y kx =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比ABCD系一定是( )A 、1k <0, 2k >0B 、1k >0, 2k <0C 、1k 、2k 同号D 、1k 、2k 异号11、已知反比例函数()0ky k x=<的图象上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A 、正数B 、 负数C 、 非正数D 、 不能确定12、在同一坐标系中,函数ky =和3y kx =+的图象大致是 ( )13、已知直线2y kx =+与反比例函数my x=的图象交于AB 两点,且点A 的纵坐标为-1,点B的横坐标为2,求这两个函数的解析式.14、已知函数12y y y =-,其中1x y 与成正比例,22x y -与成反比例,且当1,1;3, 5.2,.x y x y x y =====时当时求当时的值二次函数基础题: 1、若函数y =1)1(++a x a 是二次函数,则=a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中反比例函数习题集合(经典)(1)下列函数,① 1)2(=+y x ②. 11+=x y ③21x y = ④.x y 21-=⑤2x y =-⑥13y x = ;其中是y 关于x 的反比例函数的有:_________________。

(2)函数22)2(--=ax a y 是反比例函数,则a 的值是( )A .-1B .-2C .2D .2或-2 (3)如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( )A .反比例函数B .正比例函数C .一次函数D .反比例或正比例函数 (4)如果y 是m 的正比例函数,m 是x 的反比例函数,那么y 是x 的( ) (5)如果y 是m 的正比例函数,m 是x 的正比例函数,那么y 是x 的( ) (6)反比例函数(0ky k x=≠)的图象经过(—2,5n ), 求(1)n 的值;(2)判断点B (24,)是否在这个函数图象上,并说明理由 (7)已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.(8)若反比例函数22)12(--=m xm y 的图象在第二、四象限,则m 的值是( )A 、 -1或1;B 、小于12的任意实数; C 、-1; D、不能确定 (9)已知0k >,函数y kx k =+和函数ky x=在同一坐标系内的图象大致是( )(10)正比例函数2xy =和反比例函数2y x=的图象有 个交点.(11)正比例函数5y x =-的图象与反比例函数(0)ky k x=≠的图象相交于点A (1,a ),则a = .(12)下列函数中,当0x <时,y 随x 的增大而增大的是( )A .34y x =-+B .123y x =--C .4y x=- D .12y x =.xxxxABCD(13)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质: 甲:函数的图象经过第二象限; 乙:函数的图象经过第四象限; 丙:在每个象限内,y 随x 的增大而增大请你根据他们的叙述构造满足上述性质的一个函数: .(14)矩形的面积为6cm 2,那么它的长y (cm )与宽x (cm )之间的函数关系用图象表示为((15)反比例函数y=kx(k>0)在第一象限内的图象如图,点M(x,y)是图象上一点,MP 垂直x 轴于点P,MQ 垂直y 轴于点Q ;① 如果矩形OPMQ 的面积为2,则k=_________; ② 如果△MOP 的面积=____________.2、反比例函数y x=的图象经过(-2,5)点、(,3a -)及(10,b )点,则k = ,a = ,b = ;3、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;4、已知正比例函数y kx =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比ABCD系一定是( )A 、1k <0, 2k >0B 、1k >0, 2k <0C 、1k 、2k 同号D 、1k 、2k 异号11、已知反比例函数()0ky k x=<的图象上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A 、正数B 、 负数C 、 非正数D 、 不能确定12、在同一坐标系中,函数ky =和3y kx =+的图象大致是 ( )13、已知直线2y kx =+与反比例函数my x=的图象交于AB 两点,且点A 的纵坐标为-1,点B的横坐标为2,求这两个函数的解析式.14、已知函数12y y y =-,其中1x y 与成正比例,22x y -与成反比例,且当1,1;3, 5.2,.x y x y x y =====时当时求当时的值二次函数基础题: 1、若函数y =1)1(++a x a 是二次函数,则=a 。

2、二次函数开口向上,过点(1,3),请你写出一个满足条件的函数 。

3、二次函数y =x 2+x-6的图象:1)与y 轴的交点坐标 ; 2)与x 轴的交点坐标 ; 3)当x 取 时,y <0; 4)当x 取 时,y >0。

4、把函数y =322-+-x x 配成顶点式 ;顶点 ,对称轴 ,当x 取 时,函数y 有最________值是_____。

5、函数y =x 2-k x+8的顶点在x 轴上,则k = 。

6、抛物线y=3-x 2①左平移2个单位,再向下平移4个单位,得到的解析式是 ,顶点坐标 。

②抛物线y=3-x 2向右移3个单位得解析式是 7、如果点(1-,1)在y =2ax +2上,则=a 。

8、函数y=21-x 21- 对称轴是_______,顶点坐标是_______。

9、函数y=21-2)2(-x 对称轴是______,顶点坐标____,当 时y 随x 的增大而减少。

10、函数y =x 223+-x 的图象与x 轴的交点有 个,且交点坐标是 _。

11、①y =x 2(-1+x )2②y =21x③2+-=x y ④y=21-2)2(-x 二次函数有 个。

15、二次函数c x ax y ++=2过)1,1(-与(2,2-)求解析式。

12画函数322--=x x y 的图象,利用图象回答问题。

① 求方程0322=--x x 的解;②x 取什么时,y >0。

13、把二次函数y=2x 26-x+4;1)配成y =a (x-h )2+k 的形式,(2)画出这个函数的图象;(3)写出它的开口方向、对称轴和顶点坐标.二次函数中等题:1.当1x =时,二次函数23y x x c =-+的值是4,则c = . 2.二次函数2y x c =+经过点(2,0),则当2x =-时,y = .3.矩形周长为16cm ,它的一边长为x cm ,面积为y cm 2,则y 与x 之间函数关系式为 .4.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积增加y cm 2,则y 关于x 的函数解析式为 .5.二次函数2y ax bx c =++的图象是 ,其开口方向由________来确定. 6.与抛物线223y x x =-++关于x 轴对称的抛物线的解析式为 。

7.抛物线212y x =向上平移2个单位长度,所得抛物线的解析式为 。

8.一个二次函数的图象顶点坐标为(2,1),形状与抛物线22y x =-相同,这个函数解析式为 。

9.二次函数与x轴的交点个数是( )A .0B .1C .2D .10.把223y x x =---配方成2()y a x m k =++的形式为:y = . 11.如果抛物线222(1)y x m x m =-++与x 轴有交点,则m 的取值范围是 . 12.方程20ax bx c ++=的两根为-3,1,则抛物线2y ax bx c =++的对称轴是 。

13.已知直线21y x =-与两个坐标轴的交点是A 、B ,把22y x =平移后经过A 、B 两点,则平移后的二次函数解析式为____________________14.二次函数21y x x =++, ∵24b ac -=__________,∴函数图象与x 轴有_______个交点。

15.二次函数22y x x =-的顶点坐标是 ;当x _______时,y 随x 增大而增大;当x _________时, y 随x 增大而减小。

16.二次函数256y x x =-+,则图象顶点坐标为____________,当x __________时,0y >. 17.抛物线2y ax bx c =++的顶点在y 轴上,则a 、b 、c 中=0.二次函数提高题:1. 232m m y mx ++=是二次函数,则m 的值为( )A .0或-3B .0或3C .0D .-32.已知二次函数22(1)24y k x kx =-+-与x 轴的一个交点A (-2,0),则k 值为( ) A .2B .-1C .2或-1D .任何实数3.与22(1)3y x =-+形状相同的抛物线解析式为( ) A .2112y x =+B .2(21)y x =+C .2(1)y x =-D .22y x =4.关于二次函数2y ax b =+,下列说法中正确的是( )A .若0a >,则y 随x 增大而增大B .0x >时,y 随x 增大而增大。

C .0x <时,y 随x 增大而增大D .若0a >,则y 有最小值.5.函数223y x x =-+经过的象限是( )A .第一、二、三象限B .第一、二象限C .第三、四象限D .第一、二、四象限6.已知抛物线2y ax bx =+,当00a b ><,时,它的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第一、二、三、四象限7.21y x =-可由下列哪个函数的图象向右平移1个单位,下平移2个单位得到( )A 、2(1)1y x =-+B .2(1)1y x =++C .2(1)3y x =--D .2(1)3y x =++9.根据下列条件求y 关于x 的二次函数的解析式:(1) 当x =1时,y =0;x =0时,y =-2;x =2 时,y =3.(2) 图象过点(0,-2)、(1,2),且对称轴为直线x =23.(3) 图象经过(0,1)、(1,0)、(3,0).(4) 当x =3时,y 最小值=-1,且图象过(0,7).(5) 抛物线顶点坐标为(-1,-2),且过点(1,10).10.二次函数2y ax bx c =++的图象过点(1,0)、(0,3),对称轴x =-1.①求函数解析式;② 图象与x 轴交于A 、B (A 在B 左侧),与y 轴交于C ,顶点为D ,求四边形ABCD 的面积. 11. 若二次函数222(1)2y x k x k k =-+-+-的图象经过原点,求:①二次函数的解析式; ②它的图象与x 轴交点O 、A 及顶点C 所组成的△OAC 面积 二次函数提高题:1、抛物线()322+-=x y 的顶点坐标是( )(A ) (-2,3) (B )(2,3) (C )(-2,-3) (D )(2,-3)12、抛物线21323y x x =-+-与2y ax =的形状相同,而开口方向相反,则a =( )(A )13- (B )3 (C )3- (D )1313.与抛物线53212-+-=x x y 的形状大小开口方向相同,只有位置不同的抛物线是( )A .2523412-+-=x x yB .87212+--=x x yC .106212++=x x yD .532-+-=x x y14.二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( )A .x =4 B. x =3 C. x =-5 D. x =-1。

相关文档
最新文档