串行通信原理
串行通信的原理范文

串行通信的原理范文1.数据编码:发送端将要发送的数据按照特定的编码规则转换成串行数据流。
常用的编码方式有ASCII码、二进制编码等。
2.帧同步:发送端需要发送一些特定的字节用于同步接收端的时钟,使接收端能够正确地接收数据。
这样接收端就能根据时钟信号来正确解析数据帧。
3.逐位传输:发送端逐位地将数据流传输到接收端。
每个位都用特定的电平表示0/14.辅助控制信号:串行通信中除了传输数据位外,还需要一些辅助控制信号,如起始位、停止位和校验位。
起始位标志着数据流的开始,停止位标志着数据流的结束,而校验位用于数据的校验。
串行通信相较于并行通信的优点主要体现在以下几个方面:1.成本效益:串行通信相比并行通信所需的线路和芯片数目更少,因此成本更低。
这也使得串行通信在长距离通信中更具优势。
2.容错能力:串行通信中的校验位能够检测数据在传输过程中是否发生错误,并进行纠错。
这样可以增加通信的可靠性。
3.可扩展性:串行通信可以通过增加传输速率来实现更高的带宽,并支持更多设备的连接。
这在现代高速数据传输中非常重要。
串行通信有广泛的应用1. 串行总线:串行总线是一种用于连接计算机内部各个部件的通信方式。
常见的串行总线有SPI(Serial Peripheral Interface)和I2C (Inter-Integrated Circuit)等。
2.串口通信:串口通信是一种将计算机与外部设备(如打印机、调制解调器等)连接的通信方式。
常见的串口通信标准包括RS-232、RS-485等。
3.网络通信:现代网络通信中,数据包被分解成许多小的串行数据流进行传输。
这包括以太网、USB等。
4. 无线通信:对于一些无线通信技术,如蓝牙、ZigBee等,数据通信的物理层也是通过串行通信进行的。
总结来说,串行通信是一种经济高效的通信方式,它通过逐位传输数据来减少线路和芯片的数量。
串行通信具有较高的容错能力、可扩展性,并在各种应用场景中都有广泛的应用。
串行通信

17
9.2 MCS-51串行口及控制寄存器
一、串行接口控制: 1.数据缓冲器SBUF: 发送SBUF和接收SBUF共用一个地址99H。 1)发送SBUF存放待发送的8位数据,写入SBUF将同 时启动发送。发送指令: MOV SBUF,A 2)接收SBUF存放已接收成功的8位数据,供CPU读取。 读取串行口接收数据指令: MOV A,SBUF
25
9.3 MCS-51串行通信工作方式及应用
4.发送:写入SBUF,同时启动发送,一帧发送结束, TI=1。 接收:REN=1,允许接收。
接收完一帧,若RI=0且停止位为1 (或 SM2=0),将接 收数据装入SBUF,停止位装入RB8,并使
RI=1;
否则丢弃接收数据,不置位RI。
26
9.3 MCS-51串行通信工作方式及应用
波 特 率
1/12 fosc (固定不变) 2SMOD/32 T1 溢出率 2SMOD/64 fosc 2SMOD/32 T1 溢出率
传 送 位 数
8(数据) 10(起始位、8位数据位、 停止位) 11(第9位为1:地址; 为0:数据) 11位 (同方式2)
发送 端
RXD TXD TXD TXD
接收 端
地线
发送接 收器
接收发数据线 发送接 收器 送器
地线
10
9.1 串行数据通信的基础知识
五、异步串行通信的信号形式:
1、远距离直接传输数字信号,信号会发生畸变, 因此要把数字信号转变为模拟信号再进行传送。 可利用光缆、专用通信电缆或电话线。 方法:通常使用频率调制法(频带传送方式)。
11
9.1 串行数据通信的基础知识
TXD 写入 发 SBUF 送 (a) 时 序 RXD输出
单片机中串行通信的三种类型

单片机中串行通信的三种类型在单片机的世界里,串行通信就像一条小小的高速公路,将各种数据在不同的部件之间传递。
它的基本任务就是让不同的设备能够互相“聊天”,共享信息。
想象一下,如果没有串行通信,单片机和外设之间就像被厚厚的墙隔开了,彼此难以沟通。
因此,了解串行通信的三种主要类型非常重要。
下面,我们就来聊聊这些串行通信的类型吧!1. 异步串行通信1.1 什么是异步串行通信?异步串行通信,顾名思义,就是在数据传输的时候,双方并不需要保持同步。
说白了,就是两头在做各自的事情,偶尔通过约定的信号来“打招呼”。
就像你和朋友在微信上聊天,不需要时时刻刻保持在线,偶尔发个消息就行了。
1.2 异步串行通信的工作原理在这种通信方式中,数据被拆分成一串串的字节,每个字节都会被加上一个起始位和一个停止位。
起始位告诉接收方:“嘿,数据来了!”而停止位则是“这条消息完了!”的信号。
这就像在你发短信时,在开始和结束的时候都留个标记,让对方知道你的信息什么时候开始和结束。
1.3 异步串行通信的应用这种通信方式应用非常广泛,比如我们常用的UART(通用异步收发传输器)就属于这个类别。
UART在我们的生活中几乎无处不在,从电脑的串口到一些简单的传感器都用得上它。
2. 同步串行通信2.1 什么是同步串行通信?同步串行通信和异步串行通信有点像“有组织的队伍”,双方在数据传输的过程中要保持同步。
就是说,你发数据的时候,对方也要准备好接收数据,这就像排队一样,大家都得按顺序来。
2.2 同步串行通信的工作原理在同步通信中,除了数据本身,还需要一个额外的时钟信号来确保数据的准确传输。
可以把时钟信号看作是“指挥棒”,它帮助双方协调一致地进行数据传输。
想象一下在舞台上表演的舞者,大家都得跟着同一个节拍才能跳得整齐划一。
2.3 同步串行通信的应用同步串行通信的速度通常比异步串行通信快,因为它减少了数据传输过程中的额外开销。
常见的同步串行通信协议包括SPI(串行外设接口)和I2C(集成电路间接口)。
串行通讯原理说明--RS232_UART

对于非屏蔽电缆,计算非屏蔽电缆的电缆长度的公式如下:
??电缆长度=(2500—接收器输入电容)/(电缆电容×1.5)?
? 电缆长度的单位是ft,输入电容的单位是pF,电缆电容的单位是pF/ft。
带状电缆的典型电容是15 pF/ft,假定接收器的输人电容是100 pF,电缆最长可以达到106 ft((2500—100)/(15×1.5) )。一个单根非屏蔽双绞线的典型电容是12 pF/ft。仍然假定输入电容为100 pF, 则最大电缆长度为133ft。
接收线信号检出(Received Line detection-RLSD)——用来表示DCE已接通通信链路,告知DTE准备接收数据。当本地的MODEM收到由通信链路另一端(远地)的MODEM送来的载波信号时,使RLSD信号有效,通知终端准备接收,并且由MODEM将接收下来的载波信号解调成数字两数据后,沿接收数据线RxD送到终端。此线也叫做数据载波检出(Data Carrier dectection-DCD)线。
能够完成上述“串<- ->并”转换功能的电路,通常称为“通用异步收发器”
(UART:Universal Asynchronous Receiver and Transmitter),
典型的芯片有:Intel 8250/8251,16550。
EIA-RS-232C对电器特性、逻辑电平和各种信号线功能都作了规定。
return((char)length);
}
return 0;
}
//写入函数程序为:
bWriteStatus=WriteFile(hCom,buffer,length,&length,&m_lpOverlapped)
串行通信的基本原理

本文详细介绍了串行通信的基本原理,以及在Windows NT、Win98环境下用MFC 实现串口(COM)通信的方法:使用ActiveX控件或Win API.并给出用Visual C++6.0编写的相应MFC32位应用程序。
关键词:串行通信、VC++6.0、ActiveX控件、Win API、MFC32位应用程序、事件驱动、非阻塞通信、多线程.在Windows应用程序的开发中,我们常常需要面临与外围数据源设备通信的问题。
计算机和单片机(如MCS-51)都具有串行通信口,可以设计相应的串口通信程序,完成二者之间的数据通信任务。
实际工作中利用串口完成通信任务的时候非常之多。
已有一些文章介绍串口编程的文章在计算机杂志上发表。
但总的感觉说来不太全面,特别是介绍32位下编程的更少,且很不详细。
笔者在实际工作中积累了较多经验,结合硬件、软件,重点提及比较新的技术,及需要注意的要点作一番探讨。
希望对各位需要编写串口通信程序的朋友有一些帮助。
一.串行通信的基本原理串行端口的本质功能是作为CPU和串行设备间的编码转换器。
当数据从 CPU经过串行端口发送出去时,字节数据转换为串行的位。
在接收数据时,串行的位被转换为字节数据。
在Windows环境(Windows NT、Win98、Windows2000)下,串口是系统资源的一部分。
应用程序要使用串口进行通信,必须在使用之前向操作系统提出资源申请要求(打开串口),通信完成后必须释放资源(关闭串口)。
串口通信程序的流程如下图:二.串口信号线的接法一个完整的RS-232C接口有22根线,采用标准的25芯插头座(或者9芯插头座)。
25芯和9芯的主要信号线相同。
以下的介绍是以25芯的RS-232C为例。
①主要信号线定义:2脚:发送数据TXD; 3脚:接收数据RXD; 4脚:请求发送RTS; 5脚:清除发送CTS;6脚:数据设备就绪DSR;20脚:数据终端就绪DTR; 8脚:数据载波检测DCD;1脚:保护地; 7脚:信号地。
简述并行、串行、异步、同步通信原理

标题:并行、串行、异步、同步通信原理解析一、介绍并行、串行、异步、同步通信的概念1. 并行通信:指多个数据信号在同一时刻通过不同的传输路径传输,在数据传输过程中,多个信号可以同时进行传输,从而提高数据传输效率。
2. 串行通信:指数据信号按照顺序一个接一个地通过同一传输路径传输,在数据传输过程中,数据信号只能依次进行传输,适用于长距离传输和节约传输线路资源。
3. 异步通信:指数据传输时没有固定的时钟信号,数据在发送方和接收方之间按照不规则的时间间隔传输,需要通过起始位和停止位来标识数据的起始和结束。
4. 同步通信:指数据传输时需要有固定的时钟信号,数据在发送方和接收方之间按照固定的时间间隔传输,需要通过时钟信号进行同步。
二、并行通信的原理及特点1. 原理:多个数据信号同时通过不同的传输路径传输。
2. 特点:1) 传输速度快:由于多个数据信号同时进行传输,因此传输速度相对较快。
2) 传输距离有限:由于多条传输路径之间的信号相互干扰,因此传输距离相对较短。
3) 成本较高:需要多条传输路径和大量的接口,成本相对较高。
三、串行通信的原理及特点1. 原理:数据信号按照顺序一个接一个地通过同一传输路径传输。
2. 特点:1) 传输速度慢:由于数据信号只能依次进行传输,因此传输速度相对较慢。
2) 传输距离远:适用于长距离传输,可以节约传输线路资源。
3) 成本较低:只需要一条传输路径和少量的接口,成本相对较低。
四、异步通信的原理及特点1. 原理:数据传输时没有固定的时钟信号,数据在发送方和接收方之间按照不规则的时间间隔传输。
2. 特点:1) 灵活性高:数据传输时间不固定,可以根据实际需要进行调整。
2) 精度较低:由于没有固定的时钟信号,数据传输的精度相对较低。
3) 适用于短距离传输:由于数据传输精度较低,适用于短距离传输和数据量较小的情况。
五、同步通信的原理及特点1. 原理:数据传输时需要有固定的时钟信号,数据在发送方和接收方之间按照固定的时间间隔传输。
uart通信原理(一)

UART通信原理- 什么是UART通信UART是通用异步收发传输(Universal AsynchronousReceiver/Transmitter)的缩写,是一种串行通信协议。
它是一种简单的串行通信协议,用于在微控制器、传感器、外围设备等之间进行数据传输。
UART通信使用两根线进行数据传输,一根线用于发送数据,另一根线用于接收数据。
这种通信方式不需要时钟信号,因此称为“异步通信”。
- UART通信的原理UART通信的原理是通过发送和接收端口来实现。
在发送端,数据会被发送到UART发送缓冲区,然后通过串行传输线发送出去。
在接收端,串行传输线接收到数据后,数据会被存储在接收缓冲区中,然后被读取出来。
UART通信的速度是通过波特率(Baud Rate)来定义的。
波特率表示每秒传输的比特数,通常以bps(bits per second)为单位。
发送和接收端的波特率必须保持一致,否则数据将无法正确地传输。
- UART通信的数据帧UART通信的数据帧由起始位、数据位、校验位和停止位组成。
起始位标识数据的开始,数据位包含实际的数据,校验位用于检测数据传输过程中的错误,停止位标识数据的结束。
数据帧的格式是由发送端和接收端约定好的,以确保数据可以正确地被解析和处理。
- UART通信的应用UART通信在嵌入式系统中被广泛应用,例如单片机与外围设备的通信、传感器数据的采集、串口通信等。
由于其简单易用的特点,UART通信在各种嵌入式系统中都可以找到应用。
- 结语UART通信作为一种简单而实用的串行通信协议,在嵌入式系统中扮演着重要的角色。
通过了解UART通信的原理和应用,我们可以更好地理解串行通信的工作方式,从而更好地应用它在实际的项目中。
希望本文能够帮助读者更深入地了解UART通信的原理和应用。
串行通信的工作原理

串行通信是指将数据按照一定的顺序逐个传输的通信方式。
在串行通信中,数据被分成一系列的位,每个位被称为一位元或一个符号。
每个位元或符号按照一定的顺序依次传输,形成一条连续的数据流。
串行通信的工作原理如下:
1. 数据编码:发送端将要传输的数据转换成一系列的位元或符号,并且按照一定的编码方式进行编码。
2. 数据传输:发送端将编码后的数据通过通信线路逐个传输给接收端。
在传输过程中,每个位元或符号按照一定的顺序依次传输,形成一条连续的数据流。
3. 数据解码:接收端将接收到的数据按照与发送端相同的编码方式进行解码,将连续的数据流还原成原始的数据。
4. 数据处理:接收端对解码后的数据进行处理,例如进行错误检测、纠错等操作。
在串行通信中,数据传输速度通常比较慢,但是由于数据传输的连续性和稳定性,串行通信在一些应用场合中仍然具有重要的作用。
例如,在计算机内部通信、串口通信等场合中,串行通信仍然是一种常用的通信方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串行通信原理
串行通讯是一种在计算机领域用于数据传输的技术。
串行通讯通过一个线路逐位传输数据,相比于并行通讯的方式,更加经济和易于实现。
在串行通讯中,数据被分成逐位的信息串,这些信息串逐位传输,最终组成有意义的数据。
主要应用于计算机与周边设备之间的数据传输。
串行通信主要包括两种方式:同步串行通信和异步串行通信。
同步传输根据系统时钟处理数据传输,而异步传输较为灵活,是一种更加通用性的传输方式。
串行通讯的原理
1.数据格式
在串行通讯过程中,数据是以特定的格式传输的。
数据格式包括数据位、同步位、波特率和校验位。
数据位:表示每一个数据中包含的二进制位数,包括5位、6位、7位、8位等不同的长度。
通常情况下,大多数串行通讯系统都采用8位数据位。
同步位:用于标识数据传输已经开始,也就是数据的起始位置,通常情况下,同步位的值为0。
波特率:表示数据传输的速度,也就是每秒钟传输的数据位数。
波特率越高,信号传输的速度越快。
常用的波特率为9600、19200、38400、57600等。
校验位:用于检测传输数据中的错误。
通过对传输的数据进行校验位的比对,可以减少数据传输中的错误发生。
常用的校验方式有奇偶校验、校验和、循环冗余校验等。
2.串行通讯的流程
串行通讯的流程可以分为三个主要阶段:起始位、数据位和停止位。
起始位:用于标识数据传输的开始,表示数据传输的起始位置。
通常情况下,起始位的值为0。
数据位:用于传输数据信息,包括了需要传输的数据。
停止位:用于标识数据传输的结束,表示数据传输的终止位置。
通常情况下,停止位的值为1。
串行通讯的工作原理
串行通讯的工作原理主要包括:发送过程和接收过程。
1.发送过程
在发送过程中,数据被通过串行通讯数据线逐位地传输。
发送过程中,数据被分成字节,每个字节由8位组成。
在数据传输前,发送端将数据位、同步位、波特率和校验位进
行设置。
然后发送端将数据逐位地传输到接收端。
发送端会首先发送起始位表示数据传输的开始,接着发送数据位,每个字节之间间隔
一段时间,以便接收端辨别每个字节,并识别出其所代表的意义。
在数据传输结束后,发
送端发送停止位表示数据传输的结束。
2.接收过程
在接收过程中,接收端需要能够实时地接收和处理数据。
接收端首先接收到起始位,
然后识别出下一个字节的数据位长度,并从数据线中读取字节数据。
接收端在读取完一个
字节的数据位后,会进行校验位验证,如果校验位验证失败,数据将被认为是无效的数
据。
在接收端读完数据后,会发送回应信号给发送方,告知其已经成功地接收了数据。
接
收端会持续接收数据,直到完整的数据传输完成。
总结
串行通讯是一种在计算机领域用于数据传输的技术,它使用数据位、同步位、波特率
和校验位来传输数据信息。
通常情况下,涉及到计算机和周边设备之间的数据传输。
串行
通讯的工作原理是数据被发送端根据数据格式逐位传输,并在接收端进行处理验证,直到
完整的数据传输完成。
通过串行通讯技术,高效传输数据将有利于信息领域的发展。
在实际应用中,串行通讯被广泛应用于串口通讯、网络通讯、无线通讯等领域。
串口
通讯是串行通讯最常见的应用领域之一,它通过计算机上的串口连接周边设备,例如打印机、扫描仪、条形码阅读器等。
串口通讯通常使用串行通讯标准如RS-232、RS-485等协议,这些协议规定了数据传输的特性、格式、数据位数、波特率和校验等信息。
串行通讯在网络通讯中也有很重要的应用,因为数据必须传输到网络才能在远程计算
机上进行处理。
在网络通讯中,串行通讯通常使用USB、TCP/IP等协议实现。
在无线通讯中,串行通讯通常用于蓝牙、Wi-Fi、ZigBee等协议,这些协议可以将串行数据转换为无
线信号,以便于在无线网络中传输数据。
串行通信是一种非常重要的通信方式,应用于各个领域,它具有成本低、易于实现、
可靠性好等优点。
鉴于串行通讯在工业自动化、物联网等领域的广泛应用,对于串行通讯
技术的学习和掌握将有利于我们掌握现代通讯技术,提高自己的技能水平。
在工业自动化领域,串行通信的应用尤为广泛,几乎每一个工业现场都需要涉及到串行通信的组件或设备。
PLC(可编程逻辑控制器)或者DCS(分布控制系统)等设备,它们通过串行通信与各种感知设备、执行器以及其他PLC或DCS系统通讯,完成对生产线的开关、控制、监测等功能。
它们使用串行通信协议进行数据通信,使得整个生产线工作更加高效、稳定。
在物联网应用中,也需要使用到串行通信技术。
一个物联网设备需要通过串行通讯将数据上传到云端并进行处理。
由于物联网设备通常资源有限,需要占据更少的带宽和存储空间。
串行通讯是实现高效传输数据的一项重要技术,将有助于实现大数据的收集和处理。
串行通讯的应用范围非常广泛,从工业自动化、物联网到电子设备、计算机、网络通信等领域,都需要用到串行通讯技术。
对于计算机专业的学生来说,学习串行通讯原理和技术将让他们更加深入地了解计算机底层原理,有利于提高整体理解能力,增强个人竞争力。