通信网络技术在智能电网中的应用

合集下载

LTE无线通信技术在智能电网中的应用

LTE无线通信技术在智能电网中的应用

LTE无线通信技术在智能电网中的应用随着电网业务对通信的需求日趋多元化,无线专网在电力系统中也受到越来越多的关注。

本文立足智能电网的背景,结合LTE技术优势、应用场景和常见解决方案,对LTE无线通信技术在智能电网中的应用情况进行了分析和讨论。

标签:LTE;无线专网;智能电网。

1 引言随着无线通信技术的发展,TD-LTE(Time Division Long Term Evolution,时分长期演进)无线专网通信技术在电力通信系统中也受到越来越多的关注,全球30多家主要电力公司建设了无线智能电网。

国内电力系统已经获得国家无线电管理委员会的专用频率使用批复,国家电网信通部主导成立了电力无线专网产业联盟。

天津、浙江、江苏、广东和贵州等电网公司近几年纷纷开展了基于不同技术体制的配用电通信无线专网试点建设和探索性应用,广州、珠海和佛山等地区供电局已经陆续开展TD-LTE电力无线专网建设。

2011年,浙江海盐供电局将TD-LTE技术引入电力系统,工作在230MHz电力频段,建成国网首个4G电力通信系统。

2012年,广东珠海供电局和华为技术公司试点建设了电力无线宽带专网,解决老旧城区有线接入困难、现有器件自动化程度低、PLC传输距离有限等问题。

2014年,南方电网在广州花都地区开始建设国内规模最大的4G 电力无线专网,拥有29 座基站、3353台无线终端。

2017年,国网天津市电力公司建设完成2 套核心网、16 个基站等组成的LTE电力无线专网,覆盖了商务区、自贸区、开发区等各类型区域。

2 网络特性2.1 技术优势TD-LTE的网络特性使其在建设电力专网行业应用中具有得天独厚的技术优势:高速率和低时延能够充分保障配网自动化、多媒体应急通信、视频监控等智能电网业务的实时双向通道;扁平化网络结构,易建设,易维护,易扩容,无需光纤铺设,可实现对配网通信网络的快速覆盖,解决配网通信最后一公里的难题;采用动态带宽分配,上下行时隙灵活配置,更加适应电力业务特点,并可根据业务的不同优先级来进行带宽分配,从而保证高优先级业务的可靠性;灵活的频谱适配能力,支持多种系统带宽等级(1.4、3、5、10、15、20MHz),利于电力行业频谱申请。

浅谈通信技术在智能电网中的应用

浅谈通信技术在智能电网中的应用


智能电网的概 念
方面,有线通信解决方案没 有信号干扰和依赖于 电池等问题。这两种
智 能电网就 是电网的智能化俗称 “ 电网 2 . 0 ” 。它以稳 定的电网框
解决方案都是智能电网系统 中的信息流传输所需要的。 前者可实现 传感 器和电器到智能电表 的连接 ,后者可实现智能电表和数据 中心 的连接 。 而一些如时间部署 、 运 营成本 、技术可用性和具体环境等重要的限制因
还 没有 达 成 统 一 明确 的 定义 。智 能 电 网 的主 要 特 征 可 以概 括 为 自愈 、 激
现代通信 技术的种类繁 多。 不同的通信方式和技术应用也是各有利 弊。 目前,我国的电力通信主要方式有 电力线载波通信 ( P L C ) 、光纤通 信、微 波通信 、无线通信等方 式。然而, 整个 电力通信 网所要完成的功 能太多, 希 望以单一的通信 系统及方式来满足所有功能显然不现实也不 经济。 四、通信技 术在智 能电网中的应用 信 息和通信 技术是智能 电网的核心,决定 了智能 电网的未来 。如我
素 ,应 在 智 能 电 网部 署 过 程 中重 点 考 虑 。
架 为基础 以通信 网络和计算机信 息网络为平 台对 电力系统的发 电、输
电、变电、配 电、用 电和调度等进行智能控制实现 电力、信息 、业 务的 高度融合 。 目前 有关 智能电网的研 究与开发 尚处起 步阶段, 国际上对其
率。
二 、 我 国 智 能 电 网 发展 的现 状
理、用 户双 向通信等方面 ,提 高工作效率 ,减少人为差错,加强用 户管 理。此外,电网管理部门还可以根据 回传 的用户 电能使用数据对全 网电 能进行合 理调配 ,实现从 电量采集及传输、统计查询、线损分析、异 常 报警、报表生成等一系列远程监控管理工作的全面 自动化 ,进而达 到智

信息通信技术在智能电网中的应用价值

信息通信技术在智能电网中的应用价值

信息通信技术在智能电网中的应用价值一、远程监控与控制现代化的信息通信技术为智能电网的建设提供了有效的支持。

智能电网需要采用传感器、监控系统等设备进行信息采集和传输,这些设备需要通过通讯网络与中央控制系统相连。

这一过程需要高效的远程监控与控制技术的支持,以保证系统的可靠性和稳定性。

远程监控与控制技术可以随时监测智能电网的运行状态,及时发现并修复故障,保证电力系统的稳定运行。

同时,远程监控还可以实现电力系统的远程控制,根据能源消费的情况,及时调整供电方式,提高能源利用率。

二、能量管理能量管理是智能电网的重要组成部分,主要是通过信息技术实现对能源的有效管理和利用。

智能电网可以实现对消费者的能量消耗进行细致的管理,如能源计量、计费等,减少不必要的浪费和节能。

能源管理系统需要实现对能源的采集、传输、分析和处理,这些任务均需要信息通信技术的支持。

信息技术可以对能源进行细致的数据分析,对能源消耗行为进行评估和诊断,实现精细化的能源管理,从而提高能源利用效率和减少浪费。

三、供需平衡信息通信技术可以实现智能电网的供需平衡。

随着能源消费的不断增加,供需平衡逐渐成为能源管理的一个难点。

传统的电力系统缺乏有效的信息支持,无法实现能源供需的精准调配,导致浪费和资源利用效率低下。

智能电网利用信息技术可以对能源的供需行为进行监测和优化,根据实际消费需求,及时调整能源的供给方案,从而实现供需平衡和能源的最优利用。

四、智能配电智能配电是智能电网的重要内容之一,主要是通过智能电表和智能配电设备进行实现。

智能配电可以实现对电力质量和供电安全等方面的管理和监测,从而提高电力系统的可靠性。

智能电表可以将电能的信息实时传输到配电控制系统中,实现对电能的获取和分析。

配电控制系统可以根据消费者的实际需求,调整电能的供给周期和电压等参数,保证电网稳定运行和消费者用电的安全。

综上所述,信息通信技术对于智能电网的建设和发展具有重要的作用。

通过信息技术的支持,智能电网可以实现远程监控和控制、能效管理、供需平衡和智能配电等多个方面的优化和升级,从而提高电力系统的运行效率、安全性和可靠性,减少资源浪费和环境污染。

电力通信技术在智能电网中的应用

电力通信技术在智能电网中的应用

电力通信技术在智能电网中的应用随着智能电网的建设,电力通信技术的应用越来越广泛。

电力通信技术是指在电力系统中传递电信业务信息的技术,包括以太网通信、无线通信、电力线通信等多种通信技术。

这些技术可以有效地传递电力系统中的各种信息,从而实现智能电网的高效运行和管理。

首先,以太网通信技术的应用是智能电网不可或缺的一部分。

以太网是一种广泛应用的通信技术,目前已经成为电力系统中最常用的通讯技术之一。

以太网通信技术可以实现电力系统的数据采集、监控、保护和控制等功能,从而实现对电力系统全面的监测和管理。

同时,以太网通信技术也可以提高电力信息的传输速度和精度,让电力系统的运行更加稳定和可靠。

其次,无线通信技术的应用也十分重要。

无线通信技术可以通过无线信号传输,实现电力系统中各种信息的快速传递和交换。

目前在智能电网中,无线通信技术主要应用在实时监测和实时控制领域。

比如说,通过无线通信技术可以实现远程测量和遥控操作,为电力系统的运行提供更加全面、精确的数据支持。

同时,无线通信技术也可以让电力系统和智能终端设备进行无线联网,让电力系统更加便捷地实现人机交互。

最后,电力线通信技术的应用也十分重要。

电力线通信技术利用电力系统的输电线路作为传输介质,实现电力信息的传输。

该技术主要应用于电力系统中不便于布设传输线路的场所,例如山区、森林等。

同时,电力线通信技术也可以利用电缆线路进行信息传输,实现电力系统中各种设备的联网和通信。

这种技术的优点是覆盖范围广、成本低,同时也可以降低电力系统设备和造成的影响。

综上所述,电力通信技术是智能电网的重要支撑,也是实现电力系统智能化的必要条件。

随着技术的不断升级和发展,电力通信技术的应用将越来越广泛,为智能电网的建设和发展提供更加全面、高效的支持。

信息通信技术在智能电网中的应用价值

信息通信技术在智能电网中的应用价值

信息通信技术在智能电网中的应用价值在智能电网中,ICT可以实现电力系统的远程监测和控制。

通过物联网技术,可以对电网中的各个设备进行实时监测,及时获取设备的工作状态、温度、湿度等信息。

可以通过远程控制系统对设备进行远程操作,实现设备的开关、调节和维护,提高电网的运行效率和可靠性。

ICT可以实现智能电网的数据管理与分析。

智能电网中涉及大量的数据,包括电力消费数据、设备状态数据、市场交易数据等。

通过ICT技术,可以对这些数据进行采集、存储、处理和分析,提取有价值的信息,为电力企业的决策提供支持。

可以通过对用户用电数据的分析,预测电力需求,优化电网负荷,提高电网的供需平衡。

ICT还可以实现智能电网的能源管理与调度。

智能电网需要根据不同时段的电力需求和能源供给,进行灵活的能源调度和管理。

通过ICT技术,可以对能源的生产、传输和储存进行实时监测和控制,实现能源的高效利用和优化配置。

电力市场的交易也需要依靠ICT技术进行实时的电力定价和交易,以实现电力资源的优化配置和市场的公平竞争。

ICT还可以实现智能电网的运维与安全。

智能电网涉及众多的设备和系统,需要进行持续的监控和管理。

通过ICT技术,可以实现对电网设备的远程巡检和故障诊断,及时发现和处理设备故障。

ICT技术也可以应用于智能电网的安全保护,包括网络安全、数据安全和信息安全等方面,防止电网受到攻击和破坏。

信息通信技术在智能电网中的应用价值体现在远程监测与控制、数据管理与分析、能源管理与调度以及运维与安全等方面。

通过ICT技术的应用,可以提高智能电网的运行效率、可靠性和安全性,实现电力资源的优化配置和市场的公平竞争,推动电力行业向智能化、可持续发展的方向迈进。

通信技术在智能电网中的应用

通信技术在智能电网中的应用

通信技术在智能电网中的应用智能电网作为现代化电力系统的重要组成部分,将传统的电力系统和先进的通信技术结合在一起,实现了电力传输和管理的高效与智能化。

本文将探讨通信技术在智能电网中的应用,并分析其对电力系统运行和管理的影响。

一、概述智能电网是基于通信技术和信息技术的电力系统,通过全面感知、灵活控制和智能调度实现了电力供应和需求的平衡,提高了电力系统的可靠性、可用性和经济性。

二、通信技术在智能电网中的作用1. 数据采集和传输通信技术在智能电网中起到了数据采集和传输的关键作用。

通过传感器、智能电表、智能终端等设备,实时采集电力系统的各项数据,如电压、电流、功率等信息,并通过通信网络将这些数据传输至智能电网管理中心。

这使得运营商能够及时了解电力系统的运行状态,进行实时监控和管理。

2. 远程监控与控制通信技术使得智能电网的运营商能够通过远程监控与控制实时掌握电力系统的运行情况,并能够进行远程控制和调度。

运营商可以通过智能电网管理中心对电力系统进行实时监测,并根据监测结果进行调度操作,如调整发电机的输出功率、优化电力配送和供应方案等。

这不仅提高了电力系统的运行效率,还能减少因电力供需不平衡造成的能源浪费和环境污染。

3. 故障监测和维护通信技术在智能电网中还能够及时监测和诊断电力系统的故障,并进行远程维护。

通过各种传感器和智能设备,智能电网能够实时监测电力设备的运行状态,并在出现故障时及时发出警报。

运营商可以通过通信技术远程访问电力设备,进行故障诊断和维护,大大减少了因设备故障带来的停电时间和维修成本。

4. 节能和环保智能电网通过通信技术实现对电力系统的精细化调度和管理,能够优化能源分配和利用,减少能源浪费,从而达到节能和环保的目的。

通信技术可以收集并分析电力系统的历史数据,根据用户需求和能源供应情况进行智能调度,最大限度地提高能源利用效率。

此外,智能电网还能够实现对可再生能源的接入和管理,进一步促进清洁能源的开发和利用。

5G通信技术在智能电网的应用

5G通信技术在智能电网的应用

5G通信技术在智能电网的应用摘要:本文主要围绕第5代无线通信技术在智能电网中的应用进行初步研究,从配电自动化、用户信息采集、视频监控、无线集群调度等主要方面,阐述5G在智能电网应用中的技术合理性、技术优势以及技术解决方案。

关健词:智能电网;5G;无线通信5G技术是一种新时代科学技术在通信技术领域发展的产物,同2G、3G、4G等通信技术相比,它的通信带宽和速度明显加快。

新时代,电力在人们工作生活中的地位越来越重要,对电网进行优化能够更加满足人们的需求。

将5G通信技术在电网中应用可以使电力运行更加迅速,给人们的生产生活带来便利。

1智能电网的特点新时代电力发展脚步加快,使电网逐渐智能化,智能化电网有以下几种特点。

第一种特点是牢靠性,在电网内部构成中使用高级科技的通信技术,使电网能够对发生的状况进行判断,对出现的问题进行报警或自动修复。

智能电网可以在出现问题情况下保持一定的电力供应,更加适应人们的生活。

第二种特点是开放兼容性,智能电网可以对不同种类的电源兼容,使各种电力可以正常使用。

第三种特点是互动性,智能电网的普及能够使电网部门同电力用户之间互动交流,电力用户可以直接向电网部门反馈意见,电网部门及时听取不同的意见,有助于服务的优化。

第四种特点是高效性,智能电网可以帮助电力运行速度更快,使电力信息更快的集结整理,使工作更加高效,优化电力资源25G通信技术在智能电网的应用2.1智能电网中5G通信技术的具体应用5G网络技术是在4G网络技术架构的基础上,采用大规模天线完成高频信号传输,并运用低频段传输信息。

目前4G网络传输速度最大能够达到150Mb/s,运用5G网络能够达到15Gb/s,并且可以使网络时延低于100ms,上述特点能够更好满足智能电网的各项业务需求。

在将5G通信技术用于智能电网过程中,以下技术具有较强的代表性。

2.1.1多天线传输技术多天线传输技术通过对有源天线阵列的引进,对无线信号的覆盖能力作出有效改进。

智能电网的通信技术与应用

智能电网的通信技术与应用

智能电网的通信技术与应用随着能源需求的不断增长和环保意识的加强,智能电网成为未来能源发展的趋势。

智能电网的构建需要多种技术支持,其中通信技术是至关重要的一环。

本文将重点介绍智能电网的通信技术及其应用。

一、智能电网通信技术简介智能电网通信技术是将信息与能源相结合的一种技术,它主要包括无线通信技术和有线通信技术两种。

1. 无线通信技术无线通信技术是指通过微波等电磁波传输数据的技术。

在智能电网中,无线通信技术的主要应用方式为移动通信网络和卫星通信网络。

移动通信网络使用GPRS、3G、4G等通信技术实现数据传输,卫星通信网络则通过卫星与地球站之间的通信来实现数据传输。

在智能电网的应用中,无线通信技术主要用于智能电表与数采终端、负荷控制器、再生能源发电设施、电动汽车充电桩等设备之间的数据传输。

2. 有线通信技术有线通信技术是指利用电缆、光缆等物理介质来传输数据的技术。

在智能电网中,有线通信技术主要包括PLC(电力线通信)和光纤通信。

PLC是将数据信号通过电力线路传输的技术,该技术不需要专用线路,只需要在电力线路上加装与传输相关的设备,然后通过编码、调制等技术实现数据的传输。

光纤通信则是利用光纤作为传输介质,将电信号转化为光信号来进行数据传输。

二、智能电网通信技术的应用智能电网通信技术的应用主要包括以下几个方面:1. 实现数据采集和监测智能电网需要对电能的生产、传输、使用等环节进行监测和管理,因此需要在电网中安装数采终端,实现数据采集和监测。

通信技术可以实现数采终端与智能电表、负荷控制器等设备之间的数据传输,从而实现对电网各环节的实时监测和管理。

2. 实现负荷控制和能量调度智能电网可以通过负荷控制器对电网中的负荷进行控制,实现对电网的负荷平衡和能量调度。

通过无线通信和有线通信技术,负荷控制器可以实时与智能电表、储能装置等设备之间进行数据交流,从而实现能量的平衡分配和负荷的控制。

3. 提高电网安全智能电网通信技术不仅可以实现电能的监测和管理,还可以对电网中的故障进行快速定位和处理,提高电网的安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信网络技术在智能电网中的应用
伴随着我国科学技术水平的突飞猛进,通信行业、计算机等等具有带动社会生产力的技术产业都在一定程度上得到了极大的发展。

当前,就分析时下社会生产水平我们应认识到未来很长一段时间仍需依仗如通信、计算机等高新技术来推动各行业、各领域的深入发展。

文章以我国智能电网建设作为研究对象,就通信网络技术在智能电网中的应用作重点讨论。

标签:通信网络;智能电网;计算机技术
引言:
建设智能电网已然成为当下我国乃至世界各国发展电力输送的一个必然趋势。

在实现以上操作过程中,我们利用其完全智能化的系统作业即可以通融电力行业和通信行业之间的业务,由始至终,不管是哪一阶段的实现都离不开通信网络技术的辅助作用。

由此可见,通信网络技术在智能电网中的应用是至为重要的。

一、智能电网的发展背景
我国电网的规划及建设无不在大电量消耗和电网建设费用高的压力之下完成,实际上对我国电网建设是否合理的问题上一直以来都会听到一些不同的声音,所面临的考验可想而知。

电网的运行在直接应对供电用户的用电安全要求必然会很高,不管是在电网建设阶段还是后期的运行维护阶段都应该对电网设备的运行状况了如指掌,如电网设备的当前运行状况、维修程度以及更换相关零配件的最佳时机等等。

电网建设会涉及电力营销,电力需求管理的服务水平、电力成本回收率和窃电行为造成损失都应及时得到收集和掌握。

利用所收集电网的各种数据信息来作为电网和电力设备的建设投资指导,电力设备可在趋近于设备最大电容量或实际运行能力的前提下运作,可充分发挥电力设备的运作潜力。

利用电网的即时重构及优化运作的方式,将电力设备能够在其自身可允许的实际电力容量范围内良性运行,以保证电力设备使用年限的达标。

二、通信网络技术在智能电网中的网络功能构架
1、电网数据信息采集
即时数据信息是提供智能电网的重要依据,其内容一般包含三个方面,即电网的运作数据信息、电力设备的运作状态数据信息和用电客户的计量数据信息。

我国在电力这一行业中,企业关于电网数据信息采集工作的侧重点依然在于电网的运作数据信息。

如图2所示,我们只有着手于加强各阶段对智能电网的建设工作,将整个电网的可视化水平提高,并为智能化进程夯实基础。

2、数据信息集成系统分析及优化、数据信息展现
智能电网的数据信息集成系统分析及优化和数据信息的展现过程主要在于对计算机信息网络技术的应用。

利用前期采集和通信网络传送来的数据信息作为电力规划与设计、电力系统运作和投资资产的方案优化提供更为科学的决策依据。

电网的设计优化可利用对用电客户在负荷模式之下进行分析,而清晰地确定哪条负荷线路超载而需要改造;同时利用电力设备的寿命周期性分析,得到的结果可针对电网的检修计划方案进行优化,又可掌握每一位用电客户在负荷模式下能够采集的详细数据信息,来提升三相负荷的平衡性,而降低了电力输送对网络系统的损耗。

三、智能电网中的通信需求
传统的通信网络工程主要特征表现为具有区域性的网络体系,且如果在宽带不足的条件下不会具备对整个电网系统即时数据的实时监视功能。

本文所讨论的通信网络技术在智能电网中的应用是现代电网对通信网络技术要求的不断提升,分析其具体表现有以下几点:要求SCADA系统的数据信息传输效率高;对于用电监测和计量的设备实现更高等级的自动化;系统数据信息传输的通信宽带要求高;要求电网系统运作拥有高标准可执行的通信规约;要求电网系统运作拥有可拓展的监测程序。

通信网络技术的发展是以高新计算机技术应用作为基石,同时期电网技术在智能电网中应用数据的处理能力得到了进一步的提高,Internet网络和ICP/IP网络协议的广泛推广与应用致使每一位电力用户在不同地点和位置都可方便对各类信息进行查询。

四、通信网络技术在智能电网中的应用
通信网络技术在智能电网中应用的首要任务是以配电网的自动化为先手,在主要电网路中可依托于现有的SDH网络和综合性较强的数据信息网做数据信息的接入工作,而就我国当下配电网自动化的内容仍然存在大片空白,下文以配电网络中通信网络技术在智能电网中的应用展开介绍。

1、骨干层
采用工业级以太网交换机构成冗余光纤环形网络结构,用光纤链路连成环状拓扑结构。

此结构充分利用了工业冗余环网结构的优点,当链路发生故障时网络传输的恢复时间被控制在50毫秒以内。

而如果用普通民用以太网交换机构造链路冗余网络,其恢复时间长达30秒以上,显然无法满足数据传输不间断的要求,这也是工业以太网交换机比较明显的优势。

此环形拓扑结构便于工程扩充和维护,安全性能高。

采用网络监控软件对网络控制器进行网络实时监控,同时和电网测控系统进行有机协调,保证互不影响。

此外,信息通信网的骨干层,还可采用同步数字体系、波分复用(Wavelength Division Multiplexing,WDM)、光传送网(Optical Transport Network,OTN)、多业务传送平台(Multi-Service Transfer Platform,MSTP)、分组传送网(Packe
tTransport Network,PTN)等多种信息传送技术。

另外,无线通信方式(如微波和卫星)也是组建信息通信网骨干层的补充技术。

2、接入层
第一、测控点数据量较多、且距离光纤网络较近的区域,推荐采用工业以太网交换机配光缆构成环形网络结构。

此结构具有与骨干层结构一样特点,当链路发生故障时,通信网络传输的恢时间被控制在50毫秒之内。

第二、测控点及数据量较少、且跟离光纤网络较远的区域,推荐采用数字工业级配载波设备构成树型或链型网络结构。

此结构充分利用了载波通信系统的优点,使用现有电缆资源作为通信介质;地埋电缆和架空电缆均适用选择不同的耦合设备。

载波通信通道建立时间小于300毫秒,电缆干扰的情况有四个频点可供通信设备选用,设备端接受灵敏度可达-70dB,并可在无中继的情况下传输5km。

载波设备有多种通信接口可供选择,如RS232、RS485等接口,方便级联进上层网络。

此外,信息通信网的接入层是相对于骨干层而言的,处于整体网络接入的位置。

接入层类似于人体的外围神经组织,也可以理解为神经末梢,它将所收集的信息通过骨干层网络传送到对端。

接入层按照传输介质不同,可分为有线接入和无线接入两种方式,彼此之间相互补充。

在智能电网中,有线接入还包括无源光网络(Passive Optical Network,PON)、电力线载波等,无线接入则包括TD-SCDMA、WCDMA、CDMA2000、WiMAX、Wi-Fi、ZigBee等。

智能电网建设必以安全可靠的通信网络作为基础,需选择安全可靠的设备来组网。

世界各国在配电网中的工业设备中往往采用以太网+TCP/IP协议作为其通信与控制的标准。

一般来看,以太网+TCP/IP协议在工业控制网络中主要是为负责不同厂站网络区段之间关键自动化设备的联系,安全性和可靠性要求较高。

五、结束语
我国将全国电网建设的目标制定为:实现信息化、数字化、自动化和互动化的智能电网络,国家及地方電力部门都将以此分为不同阶段进行推进化建设和发展。

在整个建设与发展过程中,通信网络技术在智能电网中的作用至关重要,我们也期待在未来有关国家电网建设工作对于通信网络技术的应用更为广阔和延伸。

参考文献:
[1]赵大平,张海亮.智能网络通信技术在微型智能电网中的应用[A].2011电力通信管理暨智能电网通信技术论坛论文集[C].2011.
[2]张刚.促进我国智能电网发展的政策体系研究[J].国家电网,2011,(5).。

相关文档
最新文档