2019年四川省宜宾市中考数学试卷 解析版

合集下载

四川省宜宾市2019年中考[数学]考试真题与答案解析

四川省宜宾市2019年中考[数学]考试真题与答案解析

四川省宜宾市2019年中考[数学]考试真题与答案解析一、选择题1.6的相反数是( ) A. 6 B. C.D. 6-1616-2. 我国自主研发的北斗系统技术世界领先,2020年6月23日在西昌卫星发射中心成功发射最后一颗北斗三号组网卫星,该卫星发射升空的速度是7100米/秒,将7100用科学记数法表示为( )A. 7100B.C.D. 40.7110⨯27110⨯37.110⨯3. 如图所示,圆柱的主视图是( )A.B.C.D.4. 计算正确的是( )A. B. C.D. 325a b ab +=()2224a a -=-()22121a a a +=++3412a a a ⋅=5. 不等式组的解集在数轴上表示正确的是( )20211x x -<⎧⎨--≤⎩A. B.C.D.6. 7名学生的鞋号(单位:厘米)由小到大是:20,21,22,22,23,23,则这组数据的众数和中位数分别是( ) A. 20,21B. 21,22C. 22,22D.22,237. 如图,M,N 分别是的边AB,AC 的中点,若,则=ABC ∆65,45A ANM ︒︒∠=∠=B ∠( )A. B. C.D. 20︒45︒65︒70︒8. 学校为了丰富学生的知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学书的本数相等,设文学类图书平均每本x 元,则列方程正确的是( ) A. B.15000120008x x=-15000120008x x=+C.D. 150********x x =-15000120008x x=+9. 如图,AB 是的直径,点C 是圆上一点,连结AC 和BC ,过点C 作O CD AB ⊥于D ,且,则的周长为( )4,3CD BD ==OA.B. C. D.253π503π6259π62536π10. 某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( ) A. 2种 B. 3种C. 4种 D.5种11. 如图,都是等边三角形,且B,C,D 在一条直线上,连结,,ABC ECD ∆∆,BE AD点M,N 分别是线段BE,AD 上的两点,且,则的形状是11,33BM BE AN AD ==CMN ∆( )A. 等腰三角形B. 直角三角形C. 等边三角形D.不等边三角形12. 函数的图象与x 轴交于点(2,0),顶点坐标为(-1,n),其中2(0)y ax bx c a =++≠,以下结论正确的是( )0n >①;0abc >②函数在处的函数值相等;2(0)y ax bx c a =++≠1,2x x ==-③函数的图象与的函数图象总有两个不同的交点;1y kx =+2(0)y ax bx c a =++≠④函数在内既有最大值又有最小值. 2(0)y ax bx c a =++≠33x -≤≤A.①③ B. ①②③ C. ①④D. ②③④二、填空题13.分解因式:3_________a a -=14.如图,A,B,C 是上的三点,若是等边三角形,则.O OAB ∆cos ______A ∠=15.一元二次方程的两根为,则2280x x +-=12,x x 2112122________x xx x x x ++=16.如图,四边形中,是AB 上一动ABCD _,,3,5,2,DA AB CB AB AD AB BC P ⊥⊥===点,则的最小值是________________PC PD +17.定义:分数(m,n 为正整数且互为质数)的连分数(其中为整数,且等式nm右边的每一个分数的分子都为1),记作:例如1211....n m a a ∆++=,的连分数是,记作711111....19511119222221177111515222∆====++++++++=71911211122+++,则.71111192122∆+++=111_______123∆++=18.在直角三角形ABC 中,是AB 的中点,BE 平分交AC 于90,ACB D ︒∠=ABC ∠点E 连接CD 交BE 于点O ,若,则OE 的长是________.8,6AC BC ==三、解答题19.(1)计算:()()10202013314π-⎛⎫----+- ⎪⎝⎭(2)化简:22221111a a a a -⎛⎫÷- ⎪-+⎝⎭20.如图,在三角形ABC 中,点D 是BC 上的中点,连接AD 并延长到点E ,使,连接CE.DE AD =(1)求证:ABD ECD∆≅∆(2)若的面积为5,求的面积ABD ∆ACE ∆21.在疫情期间,为落实停课不停学,某校对本校学生某一学科在家学习的情况进行抽样调查,了解到学生的学习方式有:电视直播、任教老师在线辅导、教育机构远程教学、自主学习,参入调查的学生只能选择一种学习方式,将调查结果绘制成不完整的扇形统计图和条形统计图,解答下列问题.(1)本次受调查的学生有________人;(2)补全条形统计图;(3)根据调查结果,若本校有1800名学生,估计有多少名学生与任课教师在线辅导?22.如图,两楼地面距离BC为米,楼AB高30米,从楼AB的顶部AB CD,点A测得楼CD顶部点D的仰角为45度.(1)求的大小;CAD(2)求楼CD的高度(结果保留根号)23.如图,一次函数的图像与反比例函数的图像交于y kx b =+(0)my x x=<两点,过点A 作于点P.()()3,,1,3A n B ---AC OP ⊥(1)求一次函数和反比例函数的表达式;(2)求四边形ABOC 的面积.24.如图,已知AB 是圆O 的直径,点C 是圆上异于A,B 的一点,连接BC 并延长至点D ,使得,连接AD 交于点E ,连接BE.CD BC =O (1)求证:是等腰三角形;ABD ∆(2)连接OC 并延长,与B 以为切点的切线交于点F ,若,求4,1AB CF ==DE 的长.25.如图,已知二次函数图像的顶点在原点,且点(2,1)在二次函数的图像上,过点F(0,1)作x 轴的平行线交二次函数的图像于M,N 两点(1)求二次函数的表达式;(2)P 为平面内一点,当时等边三角形时,求点P 的坐标;PMN ∆(3)在二次函数的图象上是否存在一点E ,使得以点E 为圆心的圆过点F 和和点N ,且与直线相切,若存在,求出点E 的坐标,并求的半径;若不存1y =-E 在,说明理由.答案解析一、选择题1-6:BDBCAC 7-12: DBABCC二、填空题13. 14. 15. (1)(1)a a a +-372-16. 17.18.710三、解答题19.(1)原式=4-1-3+1=1(2)原式==22(1)11(1)(1)11a a a a a a a -+⎛⎫÷- ⎪+-++⎝⎭211a a a a =÷++211a a a a+=⨯+20.证明:(1)因为D 是BC 的中点,所以BD=CD在三角形ABD,CED 中,BD CD ADB CED AD ED =⎧⎪∠=∠⎨⎪=⎩所以;ABD ECD ∆≅∆(2)在三角形ABC 中,D 是BC 的中点所以ABD ACDS S =ABD ECD∆≅∆ ABD ECD S S ∴=5ABD S =5510ACE ACD ECD S S S ∴=+=+=答:三角形ACE 的面积为10;21.(1)60;(2)补全图形如图:(3)学生数为30180090060⨯=答:在线辅导的有900人22.(1)过点A 作于点E,AE CD ⊥30BC AB ==tan AB ACB BC ∴∠==30ACB ︒∴∠=45EAD ︒∠= 75CAD CAE DAE ︒∴∠=∠+∠=(2)在三角形AED 中,tan DE DAE AE∠=7530DAE AB EC ︒∠===30CD CE DE ∴=+=+23.解:(1)将点B(-1,-3)代入,m y x=解得3m =所以反比例函数的表达式为;3y x=将点A(-3,n)代入有,n=-13y x=将A,B 代入得y kx b =+313k b k b -+=-⎧⎨-+=-⎩解得1,4k b =-=-所以一次函数表达式为;4y x =--(2)过点B 作BE 垂直于y 轴于点E,4y x =-- ()0,4Q ∴-ABOE ACOQ OBQ S S S ∴=-()1122AO OQ OC OQ BE =+⋅-⨯()111434122=+⋅-⨯⨯112=答:四边形的面积为;11224.(1)证明:因为AB 是圆O 的直径所以90ACB ︒∠=AC BD∴⊥BC CD= 所以点D 是BD 的中点所以AB=AD所以三角形ABD 是等腰三角形(2)因为三角形ABD 是等腰三角形所以,1,,2BAC BAD AB AD BC BD ∴∠=∠==12BAC BOC∠=∠BAD BOC∴∠=∠因为BF 是切线,所以90FOB ︒∠=因为AB 是直径,所以90AEB OBF ︒∠=∠=OBF AEB∴∆∆ OB OFAE AB∴=4,3AB OF OC CF ==+= 83AE ∴=43DE AD AE ∴=-=25.解:(1)因为二次函数的顶点是原点所以设二次函数的解析式为,2y ax =将(2,1)代入,2y ax =212a =⋅解得14a =所以二次函数的解析式为214y x =(2)将y=1代入,214y x =,2114x =2x ∴=±()()2,1,2,1M N ∴-4MN ∴=是等边三角形PMN ∴∆所以点P 在y 轴上且PM=4所以PF =(0,1)F或(0,1P ∴+(0,1P -(3)假设在二次函数的图像上存在点E 满足条件设点Q 是FN 的中点,所以Q(1,1)所以点E 在FN 的垂直平分线上所以点E 是FN 的垂直平分线与的图像的交点214y x =211144y ∴=⨯=,11,4E ⎛⎫∴ ⎪⎝⎭54EN ==54EF ==点E 到直线y=-1的距离为()15144--=所以在二次函数图像上存在点E ,使得以点E 为圆心,半径为的圆,54过点F,N 且与直线相切.1y =-。

2019年各地中考解析版数学试卷汇编:直角三角形与勾股定理 (Word版 含解析)

2019年各地中考解析版数学试卷汇编:直角三角形与勾股定理  (Word版 含解析)

直角三角形与勾股定理一.选择题(共12小题)1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3 B.3C.4D.22.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.C.D.23.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和5.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣86.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.7.如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC 的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A.B.C.D.8.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°9.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10 B.8 C.4D.210.满足下列条件时,△ABC不是直角三角形的为()A.AB=,BC=4,AC=5 B.AB:BC:AC=3:4:5C.∠A:∠B:∠C=3:4:5 D.|cos A﹣|+(tan B﹣)2=0 11.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.512.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°二.填空题(共12小题)13.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.14.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.15.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为cm.16.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.17.把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=.18.如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为m.19.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.20.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.21.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=.22.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.23.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB=.24.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为.三.解答题(共9小题)25.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.26.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.27.在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).28.某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,≈1.73)29.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.30.已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB =,求线段PA+PF的最小值.(结果保留根号)31.如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.32.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B (8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A 运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.33.已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点.(1)如图1,求证:AB2=4AD•BC;(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.参考答案与试题解析一.选择题(共12小题)1.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3 B.3C.4D.2【分析】连接AC,如图,根据圆内接四边形的性质和圆周角定理得到∠1=∠CDA,∠2=∠3,从而得到∠3=∠CDA,所以AC=AD=5,然后利用勾股定理计算AE的长.【解答】解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.2.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A.1 B.C.D.2【分析】根据正六边的性质,正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,然后求出等边三角形的高即可.【解答】解:边长为2的正六边形由6个边长为2的等边三角形组成,其中等边三角形的高为原来的纸带宽度,所以原来的纸带宽度=×2=.故选:C.3.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.【分析】设DE=x,则AD=8﹣x,由长方体容器内水的体积得出方程,解方程求出DE,再由勾股定理求出CD,过点C作CF⊥BG于F,由△CDE∽△BCF的比例线段求得结果即可.【解答】解:过点C作CF⊥BG于F,如图所示:设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×6,解得:x=4,∴DE=4,∵∠E=90°,由勾股定理得:CD=,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF,∵∠DEC=∠BFC=90°,∴△CDE∽△BCF,∴,即,∴CF=.故选:A.4.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可.【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的长=a﹣(c﹣b),宽=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C.5.如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20 B.﹣16 C.﹣12 D.﹣8【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:则△BDE≌△FDE,∴BD=FD,BE=FE,∠DFE=∠DBE=90°易证△ADF∽△GFE∴,∵A(﹣8,0),B(﹣8,4),C(0,4),∴AB=OC=EG=4,OA=BC=8,∵D、E在反比例函数y=的图象上,∴E(,4)、D(﹣8,)∴OG=EC=,AD=﹣,∴BD=4+,BE=8+∴,∴AF=,在Rt△ADF中,由勾股定理:AD2+AF2=DF2即:(﹣)2+22=(4+)2解得:k=﹣12故选:C.6.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE =AF=1,则GF的长为()A.B.C.D.【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.7.如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC 的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S 关于t的函数图象大致为()A.B.C.D.【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论;【解答】解:∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,∴S关于t的函数图象大致为C选项,故选:C.8.如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°【分析】根据三角形内角和定理求出∠C=90°﹣∠B=54°.由直角三角形斜边上的中线的性质得出AD=BD=CD,利用等腰三角形的性质求出∠BAD=∠B=36°,∠DAC=∠C =54°,利用三角形内角和定理求出∠ADC=180°﹣∠DAC﹣∠C=72°.再根据折叠的性质得出∠ADF=∠ADC=72°,然后根据三角形外角的性质得出∠BED=∠BAD+∠ADF=108°.【解答】解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.9.如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10 B.8 C.4D.2【分析】设CD=5x,BD=7x,则BC=2x,由AC=12即可求x,进而求出BC;【解答】解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2;故选:D.10.满足下列条件时,△ABC不是直角三角形的为()A.AB=,BC=4,AC=5 B.AB:BC:AC=3:4:5C.∠A:∠B:∠C=3:4:5 D.|cos A﹣|+(tan B﹣)2=0【分析】依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.【解答】解:A、∵,∴△ABC是直角三角形,错误;B、∵(3x)2+(4x)2=9x2+16x2=25x2=(5x)2,∴△ABC是直角三角形,错误;C、∵∠A:∠B:∠C=3:4:5,∴∠C=,∴△ABC不是直角三角形,正确;D、∵|cos A﹣|+(tan B﹣)2=0,∴,∴∠A=60°,∠B=30°,∴∠C=90°,∴△ABC是直角三角形,错误;故选:C.11.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B.3 C.D.5【分析】先根据正方形的性质得出∠B=90°,然后在Rt△BCE中,利用勾股定理得出BC2,即可得出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2﹣EB2=22﹣12=3,∴正方形ABCD的面积=BC2=3.故选:B.12.如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°【分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.【解答】解:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.二.填空题(共12小题)13.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为60°或10 度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;14.公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是 4 .【分析】应用勾股定理和正方形的面积公式可求解.【解答】解:∵勾a=6,弦c=10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4故答案是:415.如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为(10﹣2)cm.【分析】过点A作AG⊥DE于点G,由旋转的性质推出∠AED=∠ADG=45°,∠AFD=60°,利用锐角三角函数分别求出AG,GF,AF的长,即可求出CF=AC﹣AF=10﹣2.【解答】解:过点A作AG⊥DE于点G,由旋转知:AD=AE,∠DAE=90°,∠CAE=∠BAD=15°,∴∠AED=∠ADG=45°,在△AEF中,∠AFD=∠AED+∠CAE=60°,在Rt△ADG中,AG=DG==3,在Rt△AFG中,GF==,AF=2FG=2,∴CF=AC﹣AF=10﹣2,故答案为:10﹣2.16.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.17.把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=﹣.【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴CD=BF+DF﹣BC=+﹣2=﹣,故答案为:﹣.18.如图,为测量旗杆AB的高度,在教学楼一楼点C处测得旗杆顶部的仰角为60°,在四楼点D处测得旗杆顶部的仰角为30°,点C与点B在同一水平线上.已知CD=9.6m,则旗杆AB的高度为14.4 m.【分析】作DE⊥AB于E,则∠AED=90°,四边形BCDE是矩形,得出BE=CD=9.6m,∠CDE=∠DEA=90°,求出∠ADC=120°,证出∠CAD=30°=∠ACD,得出AD=CD=9.6m,在Rt△ADE中,由直角三角形的性质得出AE=AD=4.8m,即可得出答案.【解答】解:作DE⊥AB于E,如图所示:则∠AED=90°,四边形BCDE是矩形,∴BE=CD=9.6m,∠CDE=∠DEA=90°,∴∠ADC=90°+30°=120°,∵∠ACB=60°,∴∠ACD=30°,∴∠CAD=30°=∠ACD,∴AD=CD=9.6m,在Rt△ADE中,∠ADE=30°,∴AE=AD=4.8m,∴AB=AE+BE=4.8m+9.6m=14.4m;故答案为:14.4.19.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为21°.【分析】设∠ADE=x,由等腰三角形的性质和直角三角形得出∠DAE=∠ADE=x,DE=AF =AE=EF,得出DE=CD,证出∠DCE=∠DEC=2x,由平行四边形的性质得出∠DCE=∠BCD ﹣∠BCA=63°﹣x,得出方程,解方程即可.【解答】解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°;故答案为:21°.20.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:PA+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是2.【分析】(1)在BC上截取BG=PD,通过三角形求得证得AG=AP,得出△AGP是等边三角形,得出∠AGC=60°=∠APG,即可求得∠APE=60°,连接EC,延长BC到F,使CF=PA,连接EF,证得△ACE是等边三角形,得出AE=EC=AC,然后通过证得△APE≌△ECF (SAS),得出PE=PF,即可证得结论;(2)以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,可证△GMO≌△DME,可得GO=DE,则MO+NO+GO=NO+OE+DE,即当D、E、O、N四点共线时,MO+NO+GO 值最小,最小值为ND的长度,根据勾股定理先求得MF、DF,然后求ND的长度,即可求MO+NO+GO的最小值.【解答】(1)证明:如图1,在BC上截取BG=PD,在△ABG和△ADP中,∴△ABG≌△ADP(SAS),∴AG=AP,∠BAG=∠DAP,∵∠GAP=∠BAD=60°,∴△AGP是等边三角形,∴∠AGC=60°=∠APG,∴∠APE=60°,∴∠EPC=60°,连接EC,延长BC到F,使CF=PA,连接EF,∵将△ABC绕点A逆时针旋转60°得到△ADE,∴∠EAC=60°,∠EPC=60°,∵AE=AC,∴△ACE是等边三角形,∴AE=EC=AC,∵∠PAE+∠APE+∠AEP=180°,∠ECF+∠ACE+∠ACB=180°,∠ACE=∠APE=60°,∠AED=∠ACB,∴∠PAE=∠ECF,在△APE和△ECF中∴△APE≌△ECF(SAS),∴PE=PF,∴PA+PC=PE;(2)解:如图2:以MG为边作等边三角形△MGD,以OM为边作等边△OME.连接ND,作DF⊥NM,交NM的延长线于F.∵△MGD和△OME是等边三角形∴OE=OM=ME,∠DMG=∠OME=60°,MG=MD,∴∠GMO=∠DME在△GMO和△DME中∴△GMO≌△DME(SAS),∴OG=DE∴NO+GO+MO=DE+OE+NO∴当D、E、O、M四点共线时,NO+GO+MO值最小,∵∠NMG=75°,∠GMD=60°,∴∠NMD=135°,∴∠DMF=45°,∵MG=.∴MF=DF=4,∴NF=MN+MF=6+4=10,∴ND===2,∴MO+NO+GO最小值为2,故答案为2,21.如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=24+16.【分析】将△BPC绕点B逆时针旋转60°后得△AP'B,根据旋转的性质可得∠PBP′=∠CAB=60°,BP=BP′,可得△BPP′为等边三角形,可得BP′=BP=8=PP',由勾股定理的逆定理可得,△APP′是直角三角形,由三角形的面积公式可求解.【解答】解:如图,将△BPC绕点B逆时针旋转60°后得△AP'B,连接PP′,根据旋转的性质可知,旋转角∠PBP′=∠CAB=60°,BP=BP′,∴△BPP′为等边三角形,∴BP′=BP=8=PP';由旋转的性质可知,AP′=PC=10,在△BPP′中,PP′=8,AP=6,由勾股定理的逆定理得,△APP′是直角三角形,∴S△ABP+S△BPC=S四边形AP'BP=S△BP'B+S△AP'P=BP2+×PP'×AP=24+16故答案为:24+1622.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 5 cm.【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解答】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.23.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB= 4 .【分析】根据三角形中位线定理求出CM,根据直角三角形的性质求出AB.【解答】解:∵E、F分别为MB、BC的中点,∴CM=2EF=2,∵∠ACB=90°,CM是斜边AB上的中线,∴AB=2CM=4,故答案为:4.24.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为.【分析】在Rt△ABC中,求出AB=2a,AC=a,在Rt△FEC中用a表示出FE长,并证明∠FEC=30°,从而EM转化到MA上,根据△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB可求周长.【解答】解:在Rt△ABC中,∠B=60°,∴∠A=30°,∴AB=2a,AC=a.∵DE是中位线,∴CE=a.在Rt△FEC中,利用勾股定理求出FE=a,∴∠FEC=30°.∴∠A=∠AEM=30°,∴EM=AM.△FMB周长=BF+FE+EM+BM=BF+FE+AM+MB=BF+FE+AB=.故答案为.三.解答题(共9小题)25.如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.①求证:EC=BD;②若设△AEC三边分别为a、b、c,利用此图证明勾股定理.【分析】①通过AAS证得△CAE≌△BCD,根据全等三角形的对应边相等证得结论;②利用等面积法证得勾股定理.【解答】①证明:∵∠ACB=90°,∴∠ACE+∠BCD=90°.∵∠ACE+∠CAE=90°,∴∠CAE=∠BCD.在△AEC与△BCD中,∴△CAE≌△BCD(AAS).∴EC=BD;②解:由①知:BD=CE=aCD=AE=b∴S梯形AEDB=(a+b)(a+b)=a2+ab+b2.又∵S梯形AEDB=S△AEC+S△BCD+S△ABC=ab+ab+c2=ab+c2.∴a2+ab+b2=ab+c2.整理,得a2+b2=c2.26.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.【分析】(1)由正方形的性质得出∠BAE=∠ADF=90°,AB=AD=CD,得出AE=DF,由SAS证明△BAE≌△ADF,即可得出结论;(2)由全等三角形的性质得出∠EBA=∠FAD,得出∠GAE+∠AEG=90°,因此∠AGE=90°,由勾股定理得出BE==5,在Rt△ABE中,由三角形面积即可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE===5,在Rt△ABE中,AB×AE=BE×AG,∴AG==.27.在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【分析】(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.【解答】解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.28.某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,≈1.73)【分析】(1)过点C作CG⊥AM于点G,证明AB∥CG∥DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,如图3,通过解直角三角形求得求得DH,最后便可求得结果.【解答】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠GCD=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CD×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×sin50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.29.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A为圆心的与BC相切于点D,分别交AB、AC于点E、F.(1)求△ABC三边的长;(2)求图中由线段EB、BC、CF及所围成的阴影部分的面积.【分析】(1)根据勾股定理即可求得;(2)根据勾股定理求得AD,由(1)得,AB2+AC2=BC2,则∠BAC=90°,根据S阴=S△ABC ﹣S扇形AEF即可求得.【解答】解:(1)AB==2,AC==2,BC==4;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD==2,∴S阴=S△ABC﹣S扇形AEF=AB•AC﹣π•AD2=20﹣5π.30.已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB =,求线段PA+PF的最小值.(结果保留根号)【分析】(1)①解直角三角形求出∠A′CD即可解决问题.②连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF =PA+PB′≥AB′,求出AB′即可解决问题.【解答】(1)①解:旋转角为105°.理由:如图1中,∵A′D⊥AC,∴∠A′DC=90°,∵∠CA′D=15°,∴∠A′CD=75°,∴∠ACA′=105°,∴旋转角为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴=,∴=,∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′OF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴PA+PF=PA+PB′≥AB′,在Rt△CB′M中,CB′=BC=AB=2,∠MCB′=30°,∴B′M=CB′=1,CM=,∴AB′===.∴PA+PF的最小值为.31.如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上.(1)填空:∠CDE=(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.【分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=,即可求解;(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE∴△ACD≌△BCE,∠DCE=α∴CD=CE∴∠CDE=故答案为:(2)AE=BE+CF理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE∴DF=EF=∵AE=AD+DF+EF∴AE=BE+CF(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=5,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG==8∵AC2=AE2+CE2,∴(5)2=(8﹣CE)2+CE2,∴CE=7(不合题意舍去),CE=1若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.32.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B (8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A 运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:y=25t2﹣80t+100(0≤t≤4);(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y关于t 的函数解析式(由时间=路程÷速度可得出t的取值范围);(2)将PQ=3代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;(3)连接OB,交PQ于点D,过点D作DF⊥OA于点F,利用勾股定理可求出OB的长,由BQ∥OP可得出△BDQ∽△ODP,利用相似三角形的性质结合OB=10可求出OD=6,由CB ∥OA可得出∠DOF=∠OBC,在Rt△OBC中可求出sin∠OBC及cos∠OBC的值,由OF=OD •cos∠OBC,DF=OD•sin∠OBC可求出点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【解答】解:(1)过点P作PE⊥BC于点E,如图1所示.。

2019四川省绵阳中考数学试卷(word版,含答案)

2019四川省绵阳中考数学试卷(word版,含答案)

2019四川省绵阳中考数学试卷(word版,含答案)2019年四川省绵阳市中考数学试卷⼀、选择题(本⼤题共12⼩题,共36.0分)1.若√a=2,则a的值为()A. ?4B. 4C. ?2D. √22.据⽣物学可知,卵细胞是⼈体细胞中最⼤的细胞,其直径约为0.0002⽶.将数0.0002⽤科学记数法表⽰为()A. 0.2×10?3B. 0.2×10?4C. 2×10?3D. 2×10?43.对如图的对称性表述,正确的是()A. 轴对称图形B. 中⼼对称图形C. 既是轴对称图形⼜是中⼼对称图形D. 既不是轴对称图形⼜不是中⼼对称图形4.下列⼏何体中,主视图是三⾓形的是()A. B. C. D.5.如图,在平⾯直⾓坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对⾓线交点E的坐标为()A. (2,√3)B. (√3,2)C. (√3,3)D. (3,√3)6.已知x是整数,当|x-√30|取最⼩值时,x的值是()A. 5B. 6C. 7D. 87.帅帅收集了南街⽶粉店今年6⽉1⽇⾄6⽉5⽇每天的⽤⽔量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A. 极差是6B. 众数是7C. 中位数是5D. ⽅差是88.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A. ab2B. a+b2C. a2b3D. a2+b39.红星商店计划⽤不超过4200元的资⾦,购进甲、⼄两种单价分别为60元、100元的商品共50件,据市场⾏情,销售甲、⼄商品各⼀件分别可获利10元、20元,两种商品均售完.若所获利润⼤于750元,则该店进货⽅案有()A. 3种B. 4种C. 5种D. 6种10.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所⽰,它是由四个全等的直⾓三⾓形与中间的⼩正⽅形拼成的⼀个⼤正⽅形.如果⼤正⽅形的⾯积是125,⼩正⽅形⾯积是25,则(sinθ-cosθ)2=()A. 15B. √55C. 3√55D. 9511.如图,⼆次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4ab +ba<-4,正确的个数是()A. 1B. 2C. 3D. 412. 如图,在四边形ABCD 中,AB ∥DC ,∠ADC =90°,AB =5,CD =AD =3,点E 是线段CD 的三等分点,且靠近点C ,∠FEG 的两边与线段AB 分别交于点F 、G ,连接AC 分别交EF 、EG 于点H 、K .若BG =32,∠FEG =45°,则HK =()A. 2√23B. 5√26C. 3√22D. 13√26⼆、填空题(本⼤题共6⼩题,共18.0分) 13. 因式分解:m 2n +2mn 2+n 3=______.14. 如图,AB ∥CD ,∠ABD 的平分线与∠BDC 的平分线交于点E ,则∠1+∠2=______.15. 单项式x -|a -1|y 与2x √b?1y 是同类项,则a b =______.16. ⼀艘轮船在静⽔中的最⼤航速为30km /h ,它以最⼤航速沿江顺流航⾏120km 所⽤时间,与以最⼤航速逆流航⾏60km 所⽤时间相同,则江⽔的流速为______km /h . 17. 在△ABC 中,若∠B =45°,AB =10√2,AC=5√5,则△ABC 的⾯积是______. 18. 如图,△ABC 、△BDE 都是等腰直⾓三⾓形,BA =BC ,BD =BE ,AC =4,DE =2√2.将△BDE 绕点B 逆时针⽅向旋转后得△BD ′E ′,当点E ′恰好落在线段AD ′上时,则CE ′=______.三、解答题(本⼤题共7⼩题,共66.0分)19. (1)计算:2√23+|(-12)-1|-2√2tan30°-(π-2019)0;(2)先化简,再求值:(a a 2?b 2-1a+b )÷bb?a ,其中a =√2,b =2-√2.20.胜利中学为丰富同学们的校园⽣活,举⾏“校园电视台主待⼈“选拔赛,现将36名参赛选⼿的成绩(单位:分)统计并绘制成频数分布直⽅图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直⽅图,并求扇形统计图中扇形D对应的圆⼼⾓度数;(2)成绩在D区域的选⼿,男⽣⽐⼥⽣多⼀⼈,从中随机抽取两⼈临时担任该校艺术节的主持⼈,求恰好选中⼀名男⽣和⼀名⼥⽣的概率.21.⾠星旅游度假村有甲种风格客房15间,⼄种风格客房20间.按现有定价:若全部⼊住,⼀天营业额为8500元;若甲、⼄两种风格客房均有10间⼊住,⼀天营业额为5000元.(1)求甲、⼄两种客房每间现有定价分别是多少元?(2)度假村以⼄种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天⽀出80元的各种费⽤.当每间房间定价为多少元时,⼄种风格客房每天的利润m最⼤,最⼤利润是多少元?22.如图,⼀次函数y=kx+b(k≠0)的图象与反⽐例函数y=m2?3m(m≠0x且m≠3)的图象在第⼀象限交于点A、B,且该⼀次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂⾜分别为E、D.已知A(4,1),CE=4CD.(1)求m的值和反⽐例函数的解析式;(2)若点M为⼀次函数图象上的动点,求OM长度的最⼩值.23.如图,AB是⊙O的直径,点C为BD?的中点,CF为⊙O的弦,且CF⊥AB,垂⾜为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.24.在平⾯直⾓坐标系中,将⼆次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所⽰的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的⼀次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另⼀个交点为D,△ABD的⾯积为5.(1)求抛物线和⼀次函数的解析式;(2)抛物线上的动点E在⼀次函数的图象下⽅,求△ACE⾯积的最⼤值,并求出此时点E的坐标;PA的最⼩值.(3)若点P为x轴上任意⼀点,在(2)的结论下,求PE+3525.如图,在以点O为中⼼的正⽅形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停⽌.在运动过程中,△ADE的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直⾓三⾓形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的⾯积为S,求S关于时间t的关系式.答案和解析1.【答案】B【解析】解:若=2,则a=4,故选:B.根据算术平⽅根的概念可得.本题主要考查算术平⽅根,解题的关键是掌握算术平⽅根的定义.2.【答案】D【解析】解:将数0.0002⽤科学记数法表⽰为2×10-4,故选:D.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图所⽰:是中⼼对称图形.故选:B.直接利⽤中⼼对称图形的性质得出答案.此题主要考查了中⼼对称图形的性质,正确把握定义是解题关键.4.【答案】C【解析】解:A、正⽅体的主视图是正⽅形,故此选项错误;B、圆柱的主视图是长⽅形,故此选项错误;C、圆锥的主视图是三⾓形,故此选项正确;D、六棱柱的主视图是长⽅形,中间还有两条竖线,故此选项错误;故选:C.主视图是从找到从正⾯看所得到的图形,注意要把所看到的棱都表⽰到图中.此题主要考查了⼏何体的三视图,关键是掌握主视图所看的位置.5.【答案】D【解析】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴=30°,∠FAE=60°,∵A(4,0),∴OA=4,∴=2,∴,EF===,∴OF=AO-AF=4-1=3,∴.故选:D.过点E作EF⊥x轴于点F,由直⾓三⾓形的性质求出EF长和OF长即可.本题考查了菱形的性质、勾股定理及含30°直⾓三⾓形的性质.正确作出辅助线是解题的关键.6.【答案】A【解析】解:∵,∴5<,且与最接近的整数是5,∴当|x-|取最⼩值时,x的值是5,故选:A.根据绝对值的意义,由与最接近的整数是5,可得结论.本题考查了算术平⽅根的估算和绝对值的意义,熟练掌握平⽅数是关键.7.【答案】D【解析】解:由图可知,6⽉1⽇⾄6⽉5⽇每天的⽤⽔量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从⼩到⼤的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C不符合题意;D.平均数是(5+7+11+3+9)÷5=7,⽅差S2=[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.根据极差、众数、中位数及⽅差的定义,依次计算各选项即可作出判断.本题考查了折线统计图,主要利⽤了极差、众数、中位数及⽅差的定义,根据图表准确获取信息是解题的关键.8.【答案】A【解析】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m?(23)2n=4m?82n=4m?(8n)2=ab2,故选:A.将已知等式代⼊22m+6n=22m×26n=(22)m?(23)2n=4m?82n=4m?(8n)2可得.本题主要考查幂的运算,解题的关键是熟练掌握幂的乘⽅与积的乘⽅的运算法则.9.【答案】C【解析】解:设该店购进甲种商品x件,则购进⼄种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货⽅案有5种,故选:C.设该店购进甲种商品x件,则购进⼄种商品(50-x)件,根据“购进甲⼄商品不超过4200元的资⾦、两种商品均售完所获利润⼤于750元”列出关于x的不等式组,解之求得整数x 的值即可得出答案.本题主要考查⼀元⼀次不等式组的应⽤,解题的关键是理解题意,找到题⽬蕴含的不等关系,并据此列出不等式组.10.【答案】A【解析】解:∵⼤正⽅形的⾯积是125,⼩正⽅形⾯积是25,∴⼤正⽅形的边长为5,⼩正⽅形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ=,∴(sinθ-cosθ)2=.故选:A.根据正⽅形的⾯积公式可得⼤正⽅形的边长为5,⼩正⽅形的边长为5,再根据直⾓三⾓形的边⾓关系列式即可求解.本题考查了解直⾓三⾓形的应⽤,勾股定理的证明,正⽅形的⾯积,难度适中.11.【答案】D【解析】解:①∵抛物线开⼝向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上⽅,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<-<,∴1<-<,当-<时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2a-c,∴-2a-c>-3a,∴2a-c>0,故②正确;③∵-,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,故③正确;④∵-,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.⼆次函数y=ax2+bx+c(a≠0)①⼆次项系数a决定抛物线的开⼝⽅向和⼤⼩.当a>0时,抛物线向上开⼝;当a<0时,抛物线向下开⼝;|a|还可以决定开⼝⼤⼩,|a|越⼤开⼝就越⼩.②⼀次项系数b和⼆次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).本题考查了⼆次函数图象与系数关系,熟练掌握⼆次函数图象的性质是解题的关键.12.【答案】B【解析】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.根据等腰直⾓三⾓形的性质得到AC=3,根据相似三⾓形的性质得到==,求得CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,得到EM=AD=3,AM=DE=2,由勾股定理得到EG==,求得EK=,根据相似三⾓形的性质得到==,设HE=3x,HK=x,再由相似三⾓形的性质列⽅程即可得到结论.本题考查了勾股定理,相似三⾓形的判定和性质,等腰直⾓三⾓形的性质,矩形的判定和性质,熟练掌握相似三⾓形的判定和性质是解题的关键.13.【答案】n(m+n)2【解析】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.⾸先提取公因式n,再利⽤完全平⽅公式分解因式得出答案.此题主要考查了公式法以及提取公因式法分解因式,正确应⽤公式是解题关键.14.【答案】90°【解析】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1=∠ABD,∵BE是∠BDC的平分线,∴∠2=∠CDB,∴∠1+∠2=90°,故答案为:90°.根据平⾏线的性质可得∠ABD+∠CDB=180°,再根据⾓平分线的定义可得∠1=∠ABD,∠2=∠CDB,进⽽可得结论.此题主要考查了平⾏线的性质,关键是掌握两直线平⾏,同旁内⾓互补.15.【答案】1【解析】解:由题意知-|a-1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,结合⼆次根式的性质可求出a,b的值,再代⼊代数式计算即可.此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度⼀般.16.【答案】10【解析】解:设江⽔的流速为xkm/h,根据题意可得:=,解得:x=10,经检验得:x=10是原⽅程的根,答:江⽔的流速为10km/h.故答案为:10.直接利⽤顺⽔速=静⽔速+⽔速,逆⽔速=静⽔速-⽔速,进⽽得出等式求出答案.此题主要考查了分式⽅程的应⽤,正确得出等量关系是解题关键.17.【答案】75或25【解析】解:过点A作AD⊥BC,垂⾜为D,如图所⽰.在Rt△ABD中,AD=AB?sinB=10,BD=AB?cosB=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC=BC?AD=75或25.故答案为:75或25.过点A 作AD ⊥BC ,垂⾜为D ,通过解直⾓三⾓形及勾股定理可求出AD ,BD ,CD 的长,进⽽可得出BC 的长,再利⽤三⾓形的⾯积公式可求出△ABC 的⾯积.本题考查了解直⾓三⾓形、勾股定理以及三⾓形的⾯积,通过解直⾓三⾓形及勾股定理,求出AD ,BC 的长度是解题的关键. 18.【答案】√2+√6【解析】解:如图,连接CE′,∵△ABC 、△BDE 都是等腰直⾓三⾓形,BA=BC ,BD=BE ,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE 绕点B 逆时针⽅向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS ),∴∠D′=∠CE′B=45°,过B 作BH ⊥CE′于H ,在Rt △BHE′中,BH=E′H=BE′=,在Rt △BCH 中,CH==,∴CE′=+,故答案为:.如图,连接CE′,根据等腰三⾓形的性质得到AB=BC=2,BD=BE=2,根据性质的性质得到D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,由全等三⾓形的性质得到∠D′=∠CE′B=45°,过B 作BH ⊥CE′于H ,解直⾓三⾓形即可得到结论.本题考查了旋转的性质,全等三⾓形的判定和性质,等腰直⾓三⾓形的性质,解直⾓三⾓形,正确的作出辅助线是解题的关键.19.【答案】解:(1)2√23+|(-12)-1|-2√2tan30°-(π-2019)0 =2√63+2-2√2×√33-1=2√63+2-2√63-1=1;(2)原式=a(a+b)(a?b)×b?ab -1a+b ×b?ab =-ab(a+b)-b?ab(a+b) =-b b(a+b) =-1a+b ,当a =√2,b =2-√2时,原式=-√2+2?√2=-12.【解析】(1)根据⼆次根式的性质、负整数指数幂、零指数幂的运算法则、特殊⾓的三⾓函数值计算;(2)根据分式的混合运算法则把原式化简,代⼊计算即可.本题考查的是分式的化简求值、实数的运算,掌握分式的混合运算法则、分式的通分、约分法则、实数的混合运算法则是解题的关键. 20.【答案】解:(1)80~90的频数为36×50%=18,则80~85的频数为18-11=7, 95~100的频数为36-(4+18+9)=5,补全图形如下:扇形统计图中扇形D 对应的圆⼼⾓度数为360°×536=50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学⽣恰好是⼀名男⽣和⼀名⼥⽣的结果数为12,所以抽取的学⽣恰好是⼀名男⽣和⼀名⼥⽣的概率为1220=35.【解析】(1)由B 组百分⽐求得其⼈数,据此可得80~85的频数,再根据各组频数之和等于总⼈数可得最后⼀组频数,从⽽补全图形,再⽤360°乘以对应⽐例可得答案;(2)画树状图展⽰所有20种等可能的结果数,找出抽取的学⽣恰好是⼀名男⽣和⼀名⼥⽣的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利⽤列表法或树状图法展⽰所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数⽬m ,然后根据概率公式计算事件A 或事件B 的概率. 21.【答案】解:设甲、⼄两种客房每间现有定价分别是x 元、y 元,根据题意,得:{10x +10y =500015x+20y=8500,解得{y =200x=300,答:甲、⼄两种客房每间现有定价分别是300元、200元;(2)设当每间房间定价为x 元, m =x (20-x?20020×2)-80×20=?110(x ?200)2+2400,∴当x =200时,m 取得最⼤值,此时m =2400,答:当每间房间定价为200元时,⼄种风格客房每天的利润m 最⼤,最⼤利润是2400元.【解析】(1)根据题意可以列出相应的⼆元⼀次⽅程组,从⽽可以解答本题;(2)根据题意可以得到m 关于⼄种房价的函数关系式,然后根据⼆次函数的性质即可解答本题.本题考查⼆次函数的应⽤、⼆元⼀次⽅程组的应⽤,解答本题的关键是明确题意,利⽤⼆次函数的性质解答.22.【答案】解:(1)将点A (4,1)代⼊y =m2?3mx,得,m 2-3m =4,解得,m 1=4,m 2=-1,∴m 的值为4或-1;反⽐例函数解析式为:y =4x ;(2)∵BD ⊥y 轴,AE ⊥y 轴,∴∠CDB =∠CEA =90°,∴△CDB ∽△CEA ,∴CDCE =BDAE ,∵CE =4CD ,∴AE =4BD ,∵A (4,1),∴AE =4,∴BD =1,∴x B =1,∴y B =4x =4,∴B (1,4),将A (4,1),B (1,4)代⼊y =kx +b ,得,{k +b =44k+b=1,解得,k =-1,b =5,∴y AB =-x +5,设直线AB 与x 轴交点为F ,当x =0时,y =5;当y =0时x =5,∴C (0,5),F (5,0),则OC =OF =5,∴△OCF 为等腰直⾓三⾓形,∴CF =√2OC =5√2,则当OM 垂直CF 于M 时,由垂线段最知可知,OM 有最⼩值,即OM =12CF =5√22.【解析】。

2019年四川省宜宾市中考数学试卷附分析答案

2019年四川省宜宾市中考数学试卷附分析答案

个或 4 个小正方体,
则组成这个几何体的小正方体的个数是 7 个或 8 个或 9 个,
组成这个几何体的小正方体的个数最多是 9 个.
故选:B.
6.(3 分)如表记录了两位射击运动员的八次训练成绩:
次数 第 1 次 第 2 次 第 3 次 第 4 次 第 5 次 第 6 次 第 7 次 第 8 次
环数
(2)化简:


第 3页(共 22页)
18.(6 分)如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.
19.(8 分)某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、 二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获 得纪念奖有 17 人,获得三等奖有 10 人,并制作了如图不完整的统计图. (1)求三个年级获奖总人数; (2)请补全扇形统计图的数据; (3)在获一等奖的同学中,七年级和八年级的人数各占 ,其余为九年级的同学,现从 获一等奖的同学中选 2 名参加市级比赛,通过列表或者树状图的方法,求所选出的 2 人 中既有七年级又有九年级同学的概率.
20.(8 分)甲、乙两辆货车分别从 A、B 两城同时沿高速公路向 C 城运送货物.已知 A、C 两城相距 450 千米,B、C 两城的路程为 440 千米,甲车比乙车的速度快 10 千米/小时, 甲车比乙车早半小时到达 C 城.求两车的速度.
21.(8 分)如图,为了测得某建筑物的高度 AB,在 C 处用高为 1 米的测角仪 CF,测得该 建筑物顶端 A 的仰角为 45°,再向建筑物方向前进 40 米,又测得该建筑物顶端 A 的仰 角为 60°.求该建筑物的高度 AB.(结果保留根号)
24.(12 分)如图,在平面直角坐标系 xOy 中,已知抛物线 y=ax2﹣2x+c 与直线 y=kx+b 都经过 A(0,﹣3)、B(3,0)两点,该抛物线的顶点为 C. (1)求此抛物线和直线 AB 的解析式; (2)设直线 AB 与该抛物线的对称轴交于点 E,在射线 EB 上是否存在一点 M,过 M 作

2019年四川宜宾中考数学试卷及详细答案解析(word版)

2019年四川宜宾中考数学试卷及详细答案解析(word版)

2019年四川宜宾中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。

1.(3分)2的倒数是( ) A .12B .﹣2C .−12D .±122.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( ) A .5.2×10﹣6B .5.2×10﹣5C .52×10﹣6D .52×10﹣53.(3分)如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE 绕着点A 顺时针旋转到与△ABF 重合,则EF =( )A .√41B .√42C .5√2D .2√134.(3分)一元二次方程x 2﹣2x +b =0的两根分别为x 1和x 2,则x 1+x 2为( ) A .﹣2B .bC .2D .﹣b5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A .10B .9C .8D .76.(3分)如表记录了两位射击运动员的八次训练成绩:次数 环数 运动员第1次第2次第3次第4次第5次第6次第7次第8次甲 10 7 7 8 8 8 9 7 乙1055899810根据以上数据,设甲、乙的平均数分别为x 甲、x 乙,甲、乙的方差分别为s 甲2,s 乙2,则下列结论正确的是( ) A .x 甲=x 乙,s 甲2<s 乙2 B .x 甲=x 乙,s 甲2>s 乙2 C .x 甲>x 乙,s 甲2<s 乙2D .x 甲<x 乙,s 甲2<s 乙27.(3分)如图,∠EOF 的顶点O 是边长为2的等边△ABC 的重心,∠EOF 的两边与△ABC 的边交于E ,F ,∠EOF =120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是( )A .√32B .2√35C .√33D .√348.(3分)已知抛物线y =x 2﹣1与y 轴交于点A ,与直线y =kx (k 为任意实数)相交于B ,C 两点,则下列结论不正确的是( ) A .存在实数k ,使得△ABC 为等腰三角形B .存在实数k ,使得△ABC 的内角中有两角分别为30°和60° C .任意实数k ,使得△ABC 都为直角三角形D .存在实数k ,使得△ABC 为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。

四川省宜宾市2019中考数学试卷(解析版)

四川省宜宾市2019中考数学试卷(解析版)

2019年四川省宜宾市中考数学试卷一、选择题(本大题共8小题,共24.0分) 1. 2的倒数是( )A. 12B. −2C. −12D. ±122. 人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为( )A. 5.2×10−6B. 5.2×10−5C. 52×10−6D. 52×10−53. 如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE 绕着点A 顺时针旋转到与△ABF 重合,则EF =( )A. √41B. √42C. 5√2D. 2√134. 一元二次方程x 2-2x +b =0的两根分别为x 1和x 2,则x 1+x 2为( )A. −2B. bC. 2D. −b5. 已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是( )A. 10B. 9C. 8D. 76. 次数 环数 运动员 第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲 10 7 7 8 8 8 9 7 乙1055899810根据以上数据,设甲、乙的平均数分别为x 甲−、x 乙−,甲、乙的方差分别为s 甲2,s 乙2,则下列结论正确的是( )A. x 甲−=x 乙−,s 甲2<s 乙2B. x 甲−=x 乙−,s 甲2>s 乙2C. x 甲−>x 乙−,s 甲2<s 乙2D. x 甲−<x 乙−,s 甲2<s 乙27. 如图,∠EOF 的顶点O 是边长为2的等边△ABC 的重心,∠EOF 的两边与△ABC 的边交于E ,F ,∠EOF =120°,则∠EOF 与△ABC 的边所围成阴影部分的面积是( )A. √32B. 2√35C. √33D. √348.已知抛物线y=x2-1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A. 存在实数k,使得△ABC为等腰三角形B. 存在实数k,使得△ABC的内角中有两角分别为30∘和60∘C. 任意实数k,使得△ABC都为直角三角形D. 存在实数k,使得△ABC为等边三角形二、填空题(本大题共8小题,共24.0分)9.分解因式:b2+c2+2bc-a2=______.10.如图,六边形ABCDEF的内角都相等,AD∥BC,则∠DAB=______°.11.将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为______.12.如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=______.13.某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是______.14.若关于x的不等式组{x−24<x−132x−m≤2−x有且只有两个整数解,则m的取值范围是______.15.如图,⊙O的两条相交弦AC、BD,∠ACB=∠CDB=60°,AC=2√3,则⊙O的面积是______.16.如图,△ABC和△CDE都是等边三角形,且点A、C、E在同一直线上,AD与BE、BC分别交于点F、M,BE与CD交于点N.下列结论正确的是______(写出所有正确结论的序号).①AM=BN;②△ABF≌△DNF;③∠FMC+∠FNC=180°;④1MN =1AC+1CE三、计算题(本大题共1小题,共10.0分)17.(1)计算:(2019-√2)0-2-1+|-1|+sin245°(2)化简:2xyx2−y2÷(1x−y+1x+y)四、解答题(本大题共7小题,共62.0分)18.如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.19.某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.(1)求三个年级获奖总人数;(2)请补全扇形统计图的数据;(3)在获一等奖的同学中,七年级和八年级的人数各占1,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过4列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.20.甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.21.如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)(k>0)的图象和一次函数y=-x+b22.如图,已知反比例函数y=kx的图象都过点P(1,m),过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1.(1)求反比例函数和一次函数的解析式;(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形OAPMB的面积.23.如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.24.如图,在平面直角坐标系xOy中,已知抛物线y=ax2-2x+c与直线y=kx+b都经过A(0,-3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,求点P的坐标,并求△PAB面积的最大值.答案和解析1.【答案】A【解析】解:2的倒数是,故选:A.根据倒数的定义,可以求得题目中数字的倒数,本题得以解决.本题考查倒数,解答本题的关键是明确倒数的定义.2.【答案】B【解析】解:0.000052=5.2×10-5;故选:B.由科学记数法可知0.000052=5.2×10-5;本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.3.【答案】D【解析】解:由旋转变换的性质可知,△ADE≌△ABF,∴正方形ABCD的面积=四边形AECF的面积=25,∴BC=5,BF=DE=1,∴FC=6,CE=4,∴EF===2.故选:D.根据旋转变换的性质求出FC、CE,根据勾股定理计算即可.本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.4.【答案】C【解析】解:根据题意得:x1+x2=-=2,故选:C.根据“一元二次方程x2-2x+b=0的两根分别为x1和x2”,结合根与系数的关系,即可得到答案.本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.5.【答案】B【解析】解:从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.本题考查三视图的知识及从不同方向观察物体的能力,解题中用到了观察法.确定该几何体有几列以及每列方块的个数是解题关键.6.【答案】A【解析】解:(1)=(10+7+7+8+8+8+9+7)=8;=(10+5+5+8+9+9+8+10)=8;s甲2=[(10-8)2+(7-8)2+(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2+(7-8)2]=1;s乙2=[(10-8)2+(5-8)2+(5-8)2+(8-8)2+(9-8)2+(9-8)2+(8-8)2+(10-8)2]=,∴=,s 甲2<s乙2,故选:A.分别计算平均数和方差后比较即可得到答案.本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.【答案】C【解析】解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN=×1=,∴S△OBC=BC•ON=.∵∠EOF=∠AOB=120°,∴∠EOF-∠BOF=∠AOB-∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.连接OB、OC,过点O作ON⊥BC,垂足为N,由点O是等边三角形ABC的内心可以得到∠OBC=∠OCB=30°,结合条件BC=2即可求出△OBC的面积,由∠EOF=∠BOC,从而得到∠EOB=∠FOC,进而可以证到△EOB≌△FOC,因而阴影部分面积等于△OBC的面积.此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.8.【答案】D【解析】解:A、如图1,可以得△ABC为等腰三角形,正确;B、如图3,∠ACB=30°,∠ABC=60°,可以得△ABC的内角中有两角分别为30°和60°,正确;C、如图2和3,∠BAC=90°,可以得△ABC为直角三角形,正确;D、不存在实数k,使得△ABC为等边三角形,不正确;本题选择结论不正确的,故选:D.通过画图可解答.本题考查了二次函数和正比例函数图象,等边三角形和判定,直角三角形的判定,正确画图是关键.9.【答案】(b+c+a)(b+c-a)【解析】解:原式=(b+c)2-a2=(b+c+a)(b+c-a).故答案为:(b+c+a)(b+c-a)当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题考查了分组分解法分解因式,难点是采用两两分组还是三一分组.比如本题有a的二次项,a的一次项,有常数项,所以首要考虑的就是三一分组.10.【答案】60【解析】解:在六边形ABCDEF中,(6-2)×180°=720°,=120°,∴∠B=120°,∵AD∥BC,∴∠DAB=180°-∠B=60°,故答案为:60°.先根据多边形内角和公式(n-2)×180°求出六边形的内角和,再除以6即可求出∠B的度数,由平行线的性质可求出∠DAB的度数.本题考查了多边形的内角和公式,平行线的性质等,解题关键是能够熟练运用多边形内角和公式及平行线的性质.11.【答案】y=2(x+1)2-2【解析】解:将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为:y=2(x+1)2-2.故答案为:y=2(x+1)2-2.直接利用二次函数的平移规律进而得出答案.此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.12.【答案】165【解析】解:在Rt△ABC中,AB==5,由射影定理得,AC2=AD•AB,∴AD==,故答案为:.根据勾股定理求出AB,根据射影定理列式计算即可.本题考查的是射影定理、勾股定理,在直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.13.【答案】65×(1-10%)×(1+5%)-50(1-x)2=65-50【解析】解:设每个季度平均降低成本的百分率为x,依题意,得:65×(1-10%)×(1+5%)-50(1-x)2=65-50.故答案为:65×(1-10%)×(1+5%)-50(1-x)2=65-50.设每个季度平均降低成本的百分率为x,根据利润=售价-成本价结合半年以后的销售利润为(65-50)元,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】-2≤m<1【解析】解:解不等式①得:x>-2,解不等式②得:x≤,∴不等式组的解集为-2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:-2≤m<1,故答案为-2≤m<1.先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于m的不等式组,求出即可.本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于m的不等式组,难度适中.15.【答案】16π【解析】解:∵∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°,∴△ACB为等边三角形,∵AC=2,∴圆的半径为4,∴⊙O的面积是16π,故答案为:16π.由∠A=∠BDC,而∠ACB=∠CDB=60°,所以∠A=∠ACB=60°,得到△ACB为等边三角形,又AC=2,从而求得半径,即可得到⊙O的面积.本题考查了圆周角定理,解题的关键是能够求得圆的半径,难度不大.16.【答案】①③④【解析】证明:①∵△ABC和△CDE都是等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE,∠ADC=∠BEC,∠CAD=∠CBE,在△DMC和△ENC中,,∴△DMC≌△ENC(ASA),∴DM=EN,CM=CN,∴AD-DM=BE-EN,即AM=BN;②∵∠ABC=60°=∠BCD,∴AB∥CD,∴∠BAF=∠CDF,∵∠AFB=∠DFN,∴△ABF∽△DNF,找不出全等的条件;③∵∠AFB+∠ABF+∠BAF=180°,∠FBC=∠CAF,∴∠AFB+∠ABC+∠BAC=180°,∴∠AFB=60°,∴∠MFN=120°,∵∠MCN=60°,∴∠FMC+∠FNC=180°;④∵CM=CN,∠MCN=60°,∴△MCN是等边三角形,∴∠MNC=60°,∵∠DCE=60°,∴MN∥AE,∴==,∵CD=CE,MN=CN,∴=,∴=1-,两边同时除MN得=-,∴=.故答案为①③④①根据等边三角形性质得出AC=BC,CE=CD,∠ACB=∠ECD=60°,求出∠BCE=∠ACD,根据SAS推出两三角形全等即可;②根据∠ABC=60°=∠BCD,求出AB∥CD,可推出△ABF∽△DNF,找不出全等的条件;③根据角的关系可以求得∠AFB=60°,可求得MFN=120°,根据∠BCD=60°可解题;④根据CM=CN,∠MCN=60°,可求得∠CNM=60°,可判定MN∥AE,可求得==,可解题.本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,考查了平行线的运用,考查了正三角形的判定,本题属于中档题.17.【答案】解:(1)原式=1-12+1+(√22)2 =2-12+12=2(2)原式=2xy (x+y)(x−y)÷2x (x+y)(x−y)=2xy (x+y)(x−y)×(x+y)(x−y)2x=y .【解析】(1)先根据0指数幂、负整数指数幂的意义、特殊角的三角函数值,计算出(2019-)0、2-1、sin 245°的值,再加减;(2)先算括号里面的加法,再把除法转化为乘法,求出结果.本题考查了零指数、负整数指数幂的意义,特殊角的三角函数值、分式的混合运算等知识点,题目难度不大,综合性较强,是中考热点题型.a 0=1(a≠0); a -p =(a≠0).18.【答案】证明:∵∠BAE =∠DAC∴∠BAE +∠CAE =∠DAC +∠CAE∴∠CAB =∠EAD ,且AB =AD ,AC =AE∴△ABC ≌△ADE (SAS )∴∠C =∠E【解析】由“SAS”可证△ABC ≌△ADE ,可得∠C=∠E .本题考查了全等三角形的判定和性质,证明∠CAB=∠EAD 是本题的关键.19.【答案】解:(1)三个年级获奖总人数为17÷34%=50(人);(2)三等奖对应的百分比为1050×100%=20%, 则一等奖的百分比为1-(14%+20%+34%+24%)=4%,补全图形如下:(3)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人, 画树状图为:(用A 、B 、C 分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率为13.【解析】(1)由获得纪念奖的人数及其所占百分比可得答案;(2)先求出获得三等奖所占百分比,再根据百分比之和为1可得一等奖对应百分比,从而补全图形;(3)画树状图(用A 、B 、C 分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图.20.【答案】解:设乙车的速度为x 千米/时,则甲车的速度为(x +10)千米/时. 根据题意,得:450x+10+12=440x ,解得:x =80,或x =-110(舍去),∴x =80,经检验,x =,80是原方程的解,且符合题意.当x =80时,x +10=90.答:甲车的速度为90千米/时,乙车的速度为80千米/时.【解析】设乙车的速度为x 千米/时,则甲车的速度为(x+10)千米/时,路程知道,且甲车比乙车早半小时到达C 城,以时间做为等量关系列方程求解.本题考查分式方程的应用、分式方程的解法,分析题意,找到合适的等量关系是解决问题的关键.根据时间=,列方程求解.21.【答案】解:设AM =x 米,在Rt △AFM 中,∠AFM =45°,∴FM =AM =x ,在Rt △AEM 中,tan ∠AEM =AM EM , 则EM =AM tan∠AEM =√33x , 由题意得,FM -EM =EF ,即x -√33x =40, 解得,x =60+20√3,∴AB =AM +MB =61+20√3,答:该建筑物的高度AB 为(61+20√3)米.【解析】设AM=x 米,根据等腰三角形的性质求出FM ,利用正切的定义用x 表示出EM ,根据题意列方程,解方程得到答案.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.22.【答案】解:(1)∵过点P 作y 轴的垂线,垂足为A ,O 为坐标原点,△OAP 的面积为1.∴S △OPA =12|k |=1,∴|k |=2,∵在第一象限,∴k =2,∴反比例函数的解析式为y =2x ;∵反比例函数y =k x (k >0)的图象过点P (1,m ),∴m =21=2,∴P (1,2),∵次函数y =-x +b 的图象过点P (1,2),∴2=-1+b ,解得b =3,∴一次函数的解析式为y =-x +3;(2)设直线y =-x +3交x 轴、y 轴于C 、D 两点,∴C (3,0),D (0,3),解{y =−x +3y =2x得{y =2x=1或{y =1x=2, ∴P (1,2),M (2,1),∴PA =1,AD =3-2=1,BM =1,BC =3-2=1,∴五边形OAPMB 的面积为:S △COD -S △BCM -S △ADP =12×3×3-12×1×1-12×1×1=72. 【解析】(1)根据系数k 的几何意义即可求得k ,进而求得P (1,2),然后利用待定系数法即可求得一次函数的解析式;(2)设直线y=-x+3交x 轴、y 轴于C 、D 两点,求出点C 、D 的坐标,然后联立方程求得P 、M 的坐标,最后根据S 五边形=S △COD -S △APD -S △BCM ,根据三角形的面积公式列式计算即可得解;本题考查了反比例函数与一次函数的交点问题,三角形的面积以及反比例函数系数k 的几何意义,求得交点坐标是解题的关键.23.【答案】(1)证明:∵OA =OD ,∠A =∠B =30°, ∴∠A =∠ADO =30°,∴∠DOB =∠A +∠ADO =60°,∴∠ODB =180°-∠DOB -∠B =90°,∵OD 是半径,∴BD 是⊙O 的切线;(2)∵∠ODB =90°,∠DBC =30°,∴OD =12OB ,∵OC =OD ,∴BC =OC =1,∴⊙O 的半径OD 的长为1;(3)∵OD =1,∴DE =2,BD =√3,∴BE =√BD 2+DE 2=√7,∵BD 是⊙O 的切线,BE 是⊙O 的割线,∴BD 2=BM •BE ,∴BM =BD 2BE =√7=3√77. 【解析】(1)根据等腰三角形的性质得到∠A=∠ADO=30°,求出∠DOB=60°,求出∠ODB=90°,根据切线的判定推出即可; (2)根据直角三角形的性质得到OD=OB ,于是得到结论;(3)解直角三角形得到DE=2,BD=,根据勾股定理得到BE==,根据切割线定理即可得到结论.本题考查了切线的判定和性质,圆周角定理,直角三角形的性质,勾股定理,切割线定理,正确的识别图形是解题的关键.24.【答案】解:(1)∵抛物线y =ax 2-2x +c 经过A (0,-3)、B (3,0)两点, ∴{c =−39a−6+c=0,∴{c =−3a=1,∴抛物线的解析式为y =x 2-2x -3,∵直线y =kx +b 经过A (0,-3)、B (3,0)两点,∴{b =−33k+b=0,解得:{b =−3k=1,∴直线AB 的解析式为y =x -3,(2)∵y =x 2-2x -3=(x -1)2-4,∴抛物线的顶点C 的坐标为(1,-4),∵CE ∥y 轴,∴E (1,-2),∴CE =2,①如图,若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE =MN , 设M (a ,a -3),则N (a ,a 2-2a -3), ∴MN =a -3-(a 2-2a -3)=-a 2+3a ,∴-a 2+3a =2,解得:a =2,a =1(舍去),∴M (2,-1),②如图,若点M 在x 轴上方,四边形CENM 为平行四边形,则CE =MN ,设M (a ,a -3),则N (a ,a 2-2a -3),∴MN =a 2-2a -3-(a -3)=a 2-3a ,∴a 2-3a =2,解得:a =3+√172,a =3−√172(舍去), ∴M (3+√172,−3+√172), 综合可得M 点的坐标为(2,-1)或(3+√172,−3+√172).(3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2-2m -3),则G (m ,m -3),∴PG =m -3-(m 2-2m -3)=-m 2+3m ,∴S △PAB =S △PGA +S △PGB =12PG ⋅OB =12×(−m 2+3m)×3=−32m 2+92m =-32(m −32)2+278,∴当m =32时,△PAB 面积的最大值是278,此时P 点坐标为(32,−32).【解析】(1)将A (0,-3)、B (3,0)两点坐标分别代入二次函数的解析式和一次函数解析式即可求解;(2)先求出C 点坐标和E 点坐标,则CE=2,分两种情况讨论:①若点M 在x 轴下方,四边形CEMN 为平行四边形,则CE=MN ,②若点M 在x 轴上方,四边形CENM 为平行四边形,则CE=MN ,设M (a ,a-3),则N (a ,a 2-2a-3),可分别得到方程求出点M 的坐标;(3)如图,作PG ∥y 轴交直线AB 于点G ,设P (m ,m 2-2m-3),则G (m ,m-3),可由,得到m的表达式,利用二次函数求最值问题配方即可.本题是二次函数综合题,考查了待定系数法求函数解析式,二次函数求最值问题,以及二次函数与平行四边形、三角形面积有关的问题.。

2019年四川省宜宾市中考数学试卷 解析版

2019年四川省宜宾市中考数学试卷  解析版

2019年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。

1.(3分)2的倒数是()A .B.﹣2C .D .2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A.5.2×10﹣6B.5.2×10﹣5C.52×10﹣6D.52×10﹣5 3.(3分)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A .B .C.5D.24.(3分)一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为()A.﹣2B.b C.2D.﹣b5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.76.(3分)如表记录了两位射击运动员的八次训练成绩:根据以上数据,设甲、乙的平均数分别为、,甲、乙的方差分别为s 甲2,s乙2,则下列结论正确的是()A.=,s 甲2<s乙2B.=,s甲2>s乙2C.>,s 甲2<s乙2D.<,s甲2<s乙27.(3分)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC 的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.B.C.D.8.(3分)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A.存在实数k,使得△ABC为等腰三角形B.存在实数k,使得△ABC的内角中有两角分别为30°和60°C.任意实数k,使得△ABC都为直角三角形D.存在实数k,使得△ABC为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。

2019年四川省绵阳市中考数学试卷(解析版)

2019年四川省绵阳市中考数学试卷(解析版)

2019年四川省绵阳市中考数学试卷(解析版)一、选择题:本大题共12个小题,每小题3分,共36分.每个小题只有一个选项符合题目要求.1.(3分)若2,则a的值为()A.-4 B.4 C.-2 D.【解答】解:若2,则a=4,故选:B.2.(3分)据生物学可知,卵细胞是人体细胞中最大的细胞,其直径约为0.0002米.将数0.0002用科学记数法表示为()A.0.2×10-3B.0.2×10-4C.2×10-3D.2×10-4【解答】解:将数0.0002用科学记数法表示为2×10-4,故选:D.3.(3分)对如图的对称性表述,正确的是()A.轴对称图形B.中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形【解答】解:如图所示:是中心对称图形.故选:B.4.(3分)下列几何体中,主视图是三角形的是()A.B.C.D.【解答】解:A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.5.(3分)如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为()A.(2,) B.(,2) C.(,3) D.(3,)【解答】解:过点E作EF⊥x轴于点F,∵四边形OABC为菱形,∠AOC=60°,∴30°,∠F AE=60°,∵A(4,0),∴OA=4,∴2,∴,EF,∴OF=AO-AF=4-1=3,∴.故选:D.6.(3分)已知x是整数,当|x|取最小值时,x的值是()A.5 B.6 C.7 D.8【解答】解:∵,∴5,且与最接近的整数是5,∴当|x|取最小值时,x的值是5,故选:A.7.(3分)帅帅收集了南街米粉店今年6月1日至6月5日每天的用水量(单位:吨),整理并绘制成如下折线统计图.下列结论正确的是()A.极差是6 B.众数是7 C.中位数是5 D.方差是8【解答】解:由图可知,6月1日至6月5日每天的用水量是:5,7,11,3,9.A.极差=11-3=8,结论错误,故A不符合题意;B.众数为5,7,11,3,9,结论错误,故B不符合题意;C.这5个数按从小到大的顺序排列为:3,5,7,9,11,中位数为7,结论错误,故C 不符合题意;D.平均数是(5+7+11+3+9)÷5=7,方差S2[(5-7)2+(7-7)2+(11-7)2+(3-7)2+(9-7)2]=8.结论正确,故D符合题意;故选:D.8.(3分)已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b3【解答】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.9.(3分)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种【解答】解:设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.10.(3分)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ-cosθ)2=()A.B.C.D.【解答】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ-5sinθ=5,∴cosθ-sinθ,∴(sinθ-cosθ)2.11.(3分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a-c>0;③a+2b+4c>0;④4,正确的个数是()A.1 B.2 C.3 D.4【解答】解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴,∴1,当时,b>-3a,∵当x=2时,y=4a+2b+c=0,∴b=-2ac,∴-2ac>-3a,∴2a-c>0,故②正确;③∵,∴2a+b>0,∵c>0,4c>0,∴a+2b+4c>0,④∵,∴2a+b>0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>-4ab,∵a>0,b<0,∴ab<0,dengx∴,即,故④正确.故选:D.12.(3分)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E 是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG,∠FEG=45°,则HK=()A.B.C.D.【解答】解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG,∴AG,∵AB∥DC,∴△CEK∽△AGK,∴,∴,∴,∵CK+AK=3,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG,∴EG,∵,∴EK,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴,∴设HE=3x,HKx,∵△HEK∽△HCE,∴,∴,解得:x,∴HK,故选:B.二、填空题:本大题共6个小题,每小题3分,共18分,将答案填写在答题卡相应的横线上.13.(3分)因式分解:m2n+2mn2+n3=n(m+n)2.【解答】解:m2n+2mn2+n3=n(m2+2mn+n2)=n(m+n)2.故答案为:n(m+n)2.14.(3分)如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=【解答】解:∵AB∥CD,∴∠ABD+∠CDB=180°,∵BE是∠ABD的平分线,∴∠1∠ABD,∵BE是∠BDC的平分线,∴∠2∠CDB,∴∠1+∠2=90°,故答案为:90°.15.(3分)单项式x-|a-1|y与2xy是同类项,则a b=1.【解答】解:由题意知-|a-1|0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.16.(3分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行60km所用时间相同,则江水的流速为10km/h.【解答】解:设江水的流速为x km/h,根据题意可得:,解得:x=10,经检验得:x=10是原方程的根,答:江水的流速为10km/h.故答案为:10.17.(3分)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sin B=10,BD=AB•cos B=10;在Rt△ACD中,AD=10,AC=5,∴BC=BD+CD=15或BC=BD-CD=5,∴S△ABC BC•AD=75或25.故答案为:75或25.18.(3分)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.【解答】解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′HBE′,在Rt△BCH中,CH,∴CE′,故答案为:.三、解答题:本大题共7个小题,共86分,解答应写出文字说明、证明过程或演算步骤19.(16分)(1)计算:2|()-1|-2tan30°-(π-2019)0;(2)先化简,再求值:(,其中a,b=2.【解答】解:(1)2|()-1|-2tan30°-(π-2019)02-211=1;(2)原式,当a,b=2时,原式.20.(11分)胜利中学为丰富同学们的校园生活,举行“校园电视台主待人“选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.【解答】解:(1)80~90的频数为36×50%=18,则80~85的频数为18-11=7,95~100的频数为36-(4+18+9)=5,补全图形如下:扇形统计图中扇形D对应的圆心角度数为360°50°;(2)画树状图为:共有20种等可能的结果数,其中抽取的学生恰好是一名男生和一名女生的结果数为12,所以抽取的学生恰好是一名男生和一名女生的概率为.21.(11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?【解答】解:设甲、乙两种客房每间现有定价分别是x元、y元,根据题意,得:,解得,答:甲、乙两种客房每间现有定价分别是300元、200元;(2)设当每间房间定价为x元,m=x(20)-80×20,∴当x=200时,m取得最大值,此时m=2400,答:当每间房间定价为200元时,乙种风格客房每天的利润m最大,最大利润是2400元.22.(11分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数y(m≠0且m≠3)的图象在第一象限交于点A、B,且该一次函数的图象与y轴正半轴交于点C,过A、B分别作y轴的垂线,垂足分别为E、D.已知A(4,1),CE=4C D.(1)求m的值和反比例函数的解析式;(2)若点M为一次函数图象上的动点,求OM长度的最小值.【解答】解:(1)将点A(4,1)代入y,得,m2-3m=4,解得,m1=4,m2=-1,∴m的值为4或-1;反比例函数解析式为:y;(2)∵BD⊥y轴,AE⊥y轴,∴∠CDB=∠CEA=90°,∴△CDB∽△CEA,∴,∵CE=4CD,∴AE=4BD,∵A(4,1),∴AE=4,∴BD=1,∴x B=1,∴y B4,∴B(1,4),将A(4,1),B(1,4)代入y=kx+b,得,,解得,k=-1,b=5,∴y AB=-x+5,设直线AB与x轴交点为F,当x=0时,y=5;当y=0时x=5,∴C(0,5),F(5,0),则OC=OF=5,∴△OCF为等腰直角三角形,∴CFOC=5,则当OM垂直CF于M时,由垂线段最知可知,OM有最小值,即OMCF.23.(11分)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.24.(12分)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PEP A的最小值.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x-1)2-2,∵OA=1,∴点A的坐标为(-1,0),代入抛物线的解析式得,4a-2=0,∴,∴抛物线的解析式为y,即y.令y=0,解得x1=-1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴5,∴y D,代入抛物线解析式得,,解得x1=-2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴,∴S△ACE=S△AME-S△CME,,∴当a时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交轴于点P,∵E(),OA=1,∴AG=1,EG,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PEAP=FP+HP=FH,此时FH最小,∵EF,∠AEG=∠HEF,∴,∴.∴PEP A的最小值是3.25.(14分)如图,在以点O为中心的正方形ABCD中,AD=4,连接AC,动点E从点O出发沿O→C以每秒1个单位长度的速度匀速运动,到达点C停止.在运动过程中,△ADE 的外接圆交AB于点F,连接DF交AC于点G,连接EF,将△EFG沿EF翻折,得到△EFH.(1)求证:△DEF是等腰直角三角形;(2)当点H恰好落在线段BC上时,求EH的长;(3)设点E运动的时间为t秒,△EFG的面积为S,求S关于时间t的关系式.【解答】(1)证明:∵四边形ABCD是正方形,∴∠DAC=∠CAB=45°,∴∠FDE=∠CAB,∠DFE=∠DAC,∴∠FDE=∠DFE=45°,∴∠DEF=90°,∴△DEF是等腰直角三角形;(2)设OE=t,连接OD,∴∠DOE=∠DAF=90°,∵∠OED=∠DF A,∴△DOE∽△DAF,∴,∴t,又∵∠AEF=∠ADG,∠EAF=∠DAG,∴△AEF∽△ADG,∴,∴,又∵AE=OA+OE=2t,∴,∴EG=AE-AG,当点H恰好落在线段BC上∠DFH=∠DFE+∠HFE=45°+45°=90°,∴△ADF∽△BFH,∴,∵AF∥CD,∴,∴,∴,解得:t1,t2(舍去),∴EG=EH;(3)过点F作FK⊥AC于点K,由(2)得EG,∵DE=EF,∠DEF=90°,∴∠DEO=∠EFK,∴△DOE≌△EKF(AAS),∴FK=OE=t,∴S.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年四川省宜宾市中考数学试卷一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。

1.(3分)2的倒数是()A .B.﹣2C .D .2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A.5.2×10﹣6B.5.2×10﹣5C.52×10﹣6D.52×10﹣5 3.(3分)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A .B .C.5D.24.(3分)一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为()A.﹣2B.b C.2D.﹣b5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.76.(3分)如表记录了两位射击运动员的八次训练成绩:根据以上数据,设甲、乙的平均数分别为、,甲、乙的方差分别为s 甲2,s乙2,则下列结论正确的是()A.=,s 甲2<s乙2B.=,s甲2>s乙2C.>,s 甲2<s乙2D.<,s甲2<s乙27.(3分)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC 的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.B.C.D.8.(3分)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A.存在实数k,使得△ABC为等腰三角形B.存在实数k,使得△ABC的内角中有两角分别为30°和60°C.任意实数k,使得△ABC都为直角三角形D.存在实数k,使得△ABC为等边三角形二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。

9.(3分)分解因式:b2+c2+2bc﹣a2=.10.(3分)如图,六边形ABCDEF的内角都相等,AD∥BC,则∠DAB=°.11.(3分)将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为.12.(3分)如图,已知直角△ABC中,CD是斜边AB上的高,AC=4,BC=3,则AD=.13.(3分)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是.14.(3分)若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.(3分)如图,⊙O的两条相交弦AC、BD,∠ACB=∠CDB=60°,AC=2,则⊙O 的面积是.16.(3分)如图,△ABC和△CDE都是等边三角形,且点A、C、E在同一直线上,AD与BE、BC分别交于点F、M,BE与CD交于点N.下列结论正确的是(写出所有正确结论的序号).①AM=BN;②△ABF≌△DNF;③∠FMC+∠FNC=180°;④=三、解答题:(本大题共8小题,共72分)解答应写出文字说明、证明过程或演算步骤。

17.(10分)(1)计算:(2019﹣)0﹣2﹣1+|﹣1|+sin245°(2)化简:÷(+)18.(6分)如图,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠C=∠E.19.(8分)某校在七、八、九三个年级中进行“一带一路”知识竞赛,分别设有一等奖、二等奖、三等奖、优秀奖、纪念奖.现对三个年级同学的获奖情况进行了统计,其中获得纪念奖有17人,获得三等奖有10人,并制作了如图不完整的统计图.(1)求三个年级获奖总人数;(2)请补全扇形统计图的数据;(3)在获一等奖的同学中,七年级和八年级的人数各占,其余为九年级的同学,现从获一等奖的同学中选2名参加市级比赛,通过列表或者树状图的方法,求所选出的2人中既有七年级又有九年级同学的概率.20.(8分)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C 两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.21.(8分)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)22.(10分)如图,已知反比例函数y=(k>0)的图象和一次函数y=﹣x+b的图象都过点P(1,m),过点P作y轴的垂线,垂足为A,O为坐标原点,△OAP的面积为1.(1)求反比例函数和一次函数的解析式;(2)设反比例函数图象与一次函数图象的另一交点为M,过M作x轴的垂线,垂足为B,求五边形OAPMB的面积.23.(10分)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O 的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O 于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.24.(12分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b 都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,求点P的坐标,并求△P AB面积的最大值.2019年四川省宜宾市中考数学试卷参考答案与试题解析一、选择题:(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡对应题目上。

1.(3分)2的倒数是()A.B.﹣2C.D.【分析】根据倒数的定义,可以求得题目中数字的倒数,本题得以解决.【解答】解:2的倒数是,故选:A.【点评】本题考查倒数,解答本题的关键是明确倒数的定义.2.(3分)人体中枢神经系统中约含有1千亿个神经元,某种神经元的直径约为52微米,52微米为0.000052米.将0.000052用科学记数法表示为()A.5.2×10﹣6B.5.2×10﹣5C.52×10﹣6D.52×10﹣5【分析】由科学记数法可知0.000052=5.2×10﹣5;【解答】解:0.000052=5.2×10﹣5;故选:B.【点评】本题考查科学记数法;熟练掌握科学记数法a×10n中a与n的意义是解题的关键.3.(3分)如图,四边形ABCD是边长为5的正方形,E是DC上一点,DE=1,将△ADE 绕着点A顺时针旋转到与△ABF重合,则EF=()A.B.C.5D.2【分析】根据旋转变换的性质求出FC、CE,根据勾股定理计算即可.【解答】解:由旋转变换的性质可知,△ADE≌△ABF,∴正方形ABCD的面积=四边形AECF的面积=25,∴BC=5,BF=DE=1,∴FC=6,CE=4,∴EF===2.故选:D.【点评】本题考查的是旋转变换的性质、勾股定理的应用,掌握性质的概念、旋转变换的性质是解题的关键.4.(3分)一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为()A.﹣2B.b C.2D.﹣b【分析】根据“一元二次方程x2﹣2x+b=0的两根分别为x1和x2”,结合根与系数的关系,即可得到答案.【解答】解:根据题意得:x1+x2=﹣=2,故选:C.【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.5.(3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.7【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.【点评】本题考查三视图的知识及从不同方向观察物体的能力,解题中用到了观察法.确定该几何体有几列以及每列方块的个数是解题关键.6.(3分)如表记录了两位射击运动员的八次训练成绩:根据以上数据,设甲、乙的平均数分别为、,甲、乙的方差分别为s甲2,s乙2,则下列结论正确的是()A.=,s甲2<s乙2B.=,s甲2>s 乙2C.>,s甲2<s乙2D.<,s甲2<s乙2【分析】分别计算平均数和方差后比较即可得到答案.【解答】解:(1)=(10+7+7+8+8+8+9+7)=8;=(10+5+5+8+9+9+8+10)=8;s甲2=[(10﹣8)2+(7﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(7﹣8)2]=1;s乙2=[(10﹣8)2+(5﹣8)2+(5﹣8)2+(8﹣8)2+(9﹣8)2+(9﹣8)2+(8﹣8)2+(10﹣8)2]=,∴=,s甲2<s乙2,故选:A.【点评】本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.(3分)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC 的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.B.C.D.【分析】连接OB、OC,过点O作ON⊥BC,垂足为N,由点O是等边三角形ABC的内心可以得到∠OBC=∠OCB=30°,结合条件BC=2即可求出△OBC的面积,由∠EOF =∠BOC,从而得到∠EOB=∠FOC,进而可以证到△EOB≌△FOC,因而阴影部分面积等于△OBC的面积.【解答】解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN=×1=,∴S△OBC=BC•ON=.∵∠EOF=∠AOB=120°,∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.【点评】此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.8.(3分)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A.存在实数k,使得△ABC为等腰三角形B.存在实数k,使得△ABC的内角中有两角分别为30°和60°C.任意实数k,使得△ABC都为直角三角形D.存在实数k,使得△ABC为等边三角形【分析】通过画图可解答.【解答】解:A、如图1,可以得△ABC为等腰三角形,正确;B、如图3,∠ACB=30°,∠ABC=60°,可以得△ABC的内角中有两角分别为30°和60°,正确;C、如图2和3,∠BAC=90°,可以得△ABC为直角三角形,正确;D、不存在实数k,使得△ABC为等边三角形,不正确;本题选择结论不正确的,故选:D.【点评】本题考查了二次函数和正比例函数图象,等边三角形和判定,直角三角形的判定,正确画图是关键.二、填空题:(本大题共8小题,每小题3分,共24分)请把答案直接填在答题卡对应题中横上。

相关文档
最新文档