集合基础练习题
集合基础练习题

集合基础练习题答案:D.无限性。
因为集合中的元素必须是有限个,而不是无限的。
答案:B.所有实数的倒数。
因为实数的倒数不一定存在,所以不能构成集合。
答案:D.分数法。
因为分数法不是集合的表示方法,而是数学中的一种运算方式。
如果集合A={1,2,3},则A的真子集为。
答案:{1},{2},{3},{1,2},{1,3},{2,3}。
如果集合A={x|x<4},集合B={x|x>2},则A∩B=。
如果集合A={x|x<5},集合B={x|x>3},则AUB=。
已知集合A={x|x<4},集合B={x|x>2},求A∩B和AUB。
答案:A∩B={x|2<x<4},AUB={x|x<4或x>2}。
已知集合A={1,2,3},集合B={3,4,5},求A∩B和AUB。
答案:A∩B={3},AUB={1,2,3,4,5}。
用列举法表示集合。
例如,给出{1,2,3}的集合。
用描述法表示集合。
例如,描述{小于10的正整数}的集合。
请解释为什么我们在日常生活中需要用到集合?举一些实际应用的例子。
在数学中,集合有哪些常见的应用?请举例说明。
什么是空集?什么是全集?它们在集合论中起到什么作用?什么是子集?什么是真子集?如何判断一个集合是否是另一个集合的子集或真子集?以上就是三年级上册集合练习题的主要内容。
通过这些练习题,我们可以更好地理解集合的基本概念、表示方法、运算和应用,同时也可以扩展我们的知识面,为后续的学习打下坚实的基础。
C语言是一种广泛应用的计算机编程语言,它有着广泛的应用领域,如操作系统、嵌入式系统、游戏开发等。
掌握C语言的基础知识是非常必要的,下面是一份C语言基础练习题,帮助初学者巩固基础。
变量是C语言中存储数据的基本单元,可以用来存储数字、字符、字符串等不同类型的数据。
例如,下面的代码声明了两个变量,一个整数类型和一个浮点数类型:int age = 20; //声明一个整数类型的变量float weight = 5; //声明一个浮点数类型的变量浮点型(float):用于存储带小数点的数值,如71等。
高一集合基础练习题

高一集合基础练习题1.已知集合 $A=\{x|3-3x>0\}$,则下列各式正确的是()A。
3∈A B。
1∈A C。
0∈A D。
-1∉A2.下列四个集合中,不同于另外三个的是()A。
{y|y=2} B。
{x=2} C。
{2} D。
{x|x^2-4x+4=0}3.下列关系中,正确的个数为________.①∈R;②2∉Q;③|-3|∉N*;④|-3|∈Q.答案:24.已知集合 $A=\{1,x,x^2-x\}$,$B=\{1,2,x\}$,若集合$A$ 与集合 $B$ 相等,求 $x$ 的值。
5.下列命题中正确的()①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程$(x-1)^2(x-2)=0$的所有解的集合可表示为{1,1,2};④集合$\{x|4<x<5\}$可以用列举法表示。
A。
只有①和④ B。
只有②和③ C。
只有② D。
以上语句都不对6.用列举法表示集合 $\{x|x^2-2x+1=0\}$ 为()A。
{1,1} B。
{1} C。
{x=1} D。
{x^2-2x+1=0}7.已知集合 $A=\{x\in N*|-5\leq x\leq 5\}$,则必有()A。
-1∈A B。
0∈A C。
3∈A D。
1∈A8.定义集合运算:$A*B=\{z|z=xy,x\in A,y\in B\}$。
设$A=\{1,2\}$,$B=\{0,2\}$,则集合 $A*B$ 的所有元素之和为() A。
0 B。
2 C。
3 D。
69.已知集合 $A=\{1,a^2\}$,实数 $a$ 不能取的值的集合是________。
10.已知 $P=\{x|2<x<a,x\in N\}$,已知集合 $P$ 中恰有 3个元素,则整数 $a=$________。
11.选择适当的方法表示下列集合集。
1) 由方程 $x(x^2-2x-3)=0$ 的所有实数根组成的集合;2) 大于 2 且小于 6 的有理数;3) 由直线 $y=-x+4$ 上的横坐标和纵坐标都是自然数的点组成的集合。
1.1集合的基本概念练习题(含答案)

集合的基本概念练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.集合M={(x,y)|xy>0,x+y<0,x∈R,y∈R}是()A.第一象限的点集B.第二象限的点集C.第三象限的点集D.第四象限的点集【答案】C【分析】利用不等式的性质可得x<0,y<0,进而判断出集合的意义.【详解】由xy>0,x+y<0⇔x<0,y<0,故集合M={(x,y)|xy>0,x+y<0,x∈R,y∈R}是第三象限的点集.故选:C.2.集合{x∈N|x−2<2}用列举法表示是()A.{1,2,3}B.{1,2,3,4}C.{0,1,2,3,4}D.{0,1,2,3}【答案】D【分析】解不等式x−2<2,结合列举法可得结果.【详解】{x∈N|x−2<2}={x∈N|x<4}={0,1,2,3}.故选:D.3.已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.4【答案】A【分析】根据x,y为整数,分析所有可能的情况求解即可【详解】当x=−1时,y2≤2,得y=−1,0,1,当x=0时,y2≤3,得y=−1,0,1当x=1时,y2≤2,得y=−1,0,1即集合A中元素有9个,故选:A.4.已知集合M={x∣x2+x=0},则()A.{0}∈M B.∅∈M C.−1∉M D.−1∈M 【答案】D【分析】先求得集合M,再根据元素与集合的关系,集合与集合的关系可得选项.【详解】因为集合M={x∣x2+x=0}={0,−1},所以−1∈M,故选:D.5.已知集合A={−1,0,1},B={a+b|a∈A,b∈A},则集合B=()A.{−1,1}B.{−1,0,1}C.{−2,−1,1,2}D.{−2,−1,0,1,2}【答案】D【分析】根据A={−1,0,1}求解B={a+b|a∈A,b∈A}即可【详解】由题,当a∈A,b∈A时a+b最小为(−1)+(−1)=−2,最大为1+1=2,且可得(−1)+0=−1,0+0=0,0+1=1,故集合B={−2,−1,0,1,2}故选:D6.若集合A={1,m2},集合B={2,4},若A∪B={1,2,4},则实数m的取值集合为()A.{−√2,√2}B.{2,√2}C.{−2,2}D.{−2,2,−√2,√2}【答案】D【分析】由题中条件可得m2=2或m2=4,解方程即可.【详解】因为A={1,m2},B={2,4},A∪B={1,2,4},所以m2=2或m2=4,解得m=±√2或m=±2,所以实数m的取值集合为{−2,2,−√2,√2}.故选:D.二、多选题7.下列结论不正确的是()A.1∈N B.√2∈Q C.0∈N∗D.−3∈Z【答案】BC【分析】根据N、Q、N∗、Z表示的数集,结合元素与集合之间的关系即可做出判断.【详解】由N表示自然数集,知1∈N,故A正确;由√2为无理数且Q表示有理数集,知√2∉Q,故B错;由N∗表示正整数集,知0∉N∗,故C错;由Z表示整数集,知−3∈Z,故D正确.故选:BC.8.已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆A B.A⊆B C.0∉A D.1∈A【答案】ACD【解析】求出集合A,利用元素与集合、集合与集合的包含关系可得出结论.【详解】∵A={y|y=x2+1}={y|y≥1},B={x|x>2},所以,B⊆A,0∉A,1∈A.故选:ACD.三、填空题9.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]= {5n+k|n∈Z},k=0,1,2,3,4;给出下列四个结论:①2015∈[0];①−3∈[3];①Z=[0]∪[1]∪[2]∪[3]∪[4];①“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.【答案】3【分析】根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断①;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断①;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明①的真假.【详解】①由2015÷5=403,所以2015∈[0],故①正确;①由−3=5×(−1)+2,所以−3∉[3],故①错误;①整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故①正确;①假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,①正确;故答案为:3【点睛】本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.10.已知集合A={12,a2+4a,a−2},且−3∈A,则a=_________.【答案】-3【分析】由集合A={12,a2+4a,a−2},且−3∈A,得a2+4a=−3或a−2=−3,由此能求出结果.【详解】解:∵集合A={12,a2+4a,a−2},且−3∈A,∴a2+4a=−3或a−2=−3,解得a=−1,或a=−3,当a=−1时,A={12,−3,−3},不合题意,当a=−3时,A={12,−3,−5},符合题意.综上,a=−3.故答案为:−3.11.用∈或∉填空:0________N【答案】∈【解析】可知0是自然数,即可得出.【详解】∵0是自然数,∴0∈N.故答案为:∈.12.集合{2a,a2−a}中实数a的取值范围是________【答案】{a|a≠0且a≠3}【分析】由2a≠a2−a得结论.【详解】由题意2a≠a2−a,a≠0且a≠3,故答案为{a|a≠0且a≠3}.【点睛】本题考查集合中元素的性质:互异性,属于基础题.四、解答题13.已知集合A={x|x=m+√6n,其中m,n∈Q}.(1)试分别判断x1=−√6,x2=√2−√3√2+√3与集合A的关系;(2)若x1,x2∈A,则x1x2是否一定为集合A的元素?请说明你的理由.14.试分别用描述法和列举法表示下列集合:(1)方程x2−2=0的所有实数根组成的集合A;(2)由大于10且小于20的所有整数组成的集合B.{11,12,13,14,15,16,17,18,19}.【解析】(1)用描述法表示集合A,再解方程求出对应根,用列举法表示即可;(2)用描述法表示集合B,再列举出大于10且小于20的所有整数,用列举法表示集合B即可.【详解】(1)设x∈A,则x是一个实数,且x2−2=0.因此,用描述法表示为A={x∈R|x2−2=0}.方程x2−2=0有两个实数根√2,−√2,因此,用列举法表示为A={√2,−√2}.(2)设x∈B,则x是一个整数,即x∈Z,且10<x<20.因此,用描述法表示为B={x∈Z|10<x<20}.大于10且小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为B={11,12,13,14,15,16,17,18,19}.【点睛】本题主要考查了用描述法以及列举法表示集合,属于基础题.15.已知集合A={x∈R|ax2−3x+1=0,a∈R}.(1)若1∈A,求实数a的值;(2)若集合A中仅含有一个元素,求实数a的值;(3)若集合A中仅含有两个元素,求实数a的取值范围.【答案】(1)a=2(2)a=0或a=94,a≠0}(3){a|a<94【分析】(1)将x=1代入方程求解即可;(2)分a=0、a≠0两种情况求解即可;(3)由条件可得a≠0,且Δ=(−3)2−4a>0,解出即可.(1)①1∈A,①a×12−3×1+1=0,①a=2;(2)当a=0时,x=13,符合题意;当a≠0时,Δ=(−3)2−4a=0,①a=94.综上,a=0或a=94;(3)集合A中含有两个元素,即关于x的方程ax2−3x+1=0有两个不相等的实数解,①a≠0,且Δ=(−3)2−4a>0,解得a<94且a≠0,①实数a的取值范围为{a|a<94,a≠0}.16.用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(x+1)(x2−4)=0的所有实数根组成的集合;(3)一次函数y=2x与y=x+1的图象的交点组成的集合.【答案】(1){0,2,4,6,8,10};(2){−2,−1,2}(3){(1,2)}【分析】(1)根据偶数的定义即可列举所有的偶数,(2)求出方程的根,即可写出集合,(3)联立方程求交点,进而可求集合.(1)11以内的非负偶数有0,2,4,6,8,10,所以构成的集合为{0,2,4,6,8,10},(2)(x+1)(x2−4)=0的根为x1=−1,x2=2,x3=−2,所以所有实数根组成的集合为{−2,−1,2},(3)联立y=x+1和y=2x,解得{x=1y=2,所以两个函数图象的交点为(1,2),构成的集合为{(1,2)}。
集合简单的练习题

集合简单的练习题题目一:集合的定义与性质1. 假设集合A={1,2,3,4,5},请列举出A的所有子集。
2. 用集合的形式表示以下集合:a) 所有小于10的正整数。
b) 所有女性学生。
c) 所有大于0小于1的实数。
3. 已知集合A={1,2,3,4,5},集合B={4,5,6,7,8},求A与B的交集和并集。
题目二:集合的运算1. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},求A与B的差集。
2. 已知集合A={2,4,6,8},集合B={1,3,5,7},求A与B的并集。
题目三:集合的特殊运算1. 设集合A={x | x是偶数且1 ≤ x ≤ 10},请列举出A的所有元素。
2. 设集合B={x | x是奇数或x是负数},请列举出B的所有元素。
3. 设集合C={x | x是素数且x < 20},请列举出C的所有元素。
题目四:集合的关系1. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A是否是B的子集。
2. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A是否与B相等。
3. 集合A={1,2,3,4,5},集合B={4,5,6,7,8},判断A与B是否有交集。
题目五:特殊集合1. 设全集为U={1,2,3,4,5,6,7,8,9,10},集合A={2,4,6,8},求A的补集。
2. 设全集为U={a,b,c,d,e,f,g,h,i,j},集合A={a,b,c,f,g},集合B={a,c,d,g,i},求A与B的并集的补集。
答案:题目一:1. 集合A的所有子集为:{},{1},{2},{3},{4},{5},{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3, 5},{4,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2, 4,5},{3,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5},{1,2,3,4,5}2. 集合的表示形式:a) {1,2,3,4,5,6,7,8,9}b) {女性学生的姓名}c) {x | 0 < x < 1, x为实数}3. A与B的交集为{4,5},并集为{1,2,3,4,5,6,7,8}题目二:1. A与B的差集为{1,2,3}2. A与B的并集为{1,2,3,4,5,6,7,8}题目三:1. A={2,4,6,8,10}2. B={x | x为奇数,x为负数}3. C={2,3,5,7,11,13,17,19}题目四:1. A是B的子集。
高中数学集合练习题及答案

高中数学集合练习题及答案一、单选题1.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,52.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( )A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,4 3.已知集合{}11A x Z x =∈-≤≤,{}1,2B =,则A B ⋃=( )A .{}1B .{}0,1,2C .1,0,1,2D .{}1,1,2-4.已知集合{}lg 0A x x =≤,{}22320B x x x =+-≤,则A B ⋃=( ) A .122x x ⎧⎫-≤≤⎨⎬⎩⎭ B .{}21x x -≤≤ C .102x x ⎧⎫-≤≤⎨⎬⎩⎭ D .102x x ⎧⎫<≤⎨⎬⎩⎭ 5.设{}13A x x =-<≤,{}B x x a =>,若A B ⊆,则a 的取值范围是( ) A .{}3a a ≥ B .{}1a a ≤- C .{}3a a > D .{}1a a <- 6.已知集合22{(,)|3,Z,Z}A x y x y x y =+≤∈∈,则A 中元素的个数为( ) A .9 B .8 C .5 D .47.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( ) A .[]1,3- B .[]2,4- C .{}1,2,3 D .{}0,1,2,3 8.已知集合{|12}A x x =-≤≤,{}0B x x =>,则A B ⋃=( )A .{|2}x x ≤B .{|1}x x ≥-C .{}|1x x >D .{}0x x 9.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3- B .[2,3)- C .(2,2)- D .[2,2)- 10.已知集{}23A x x =+≥合,{}3,1,1,3B =--,则A B =( )A .{}3B .{}1,3C .{}3,1--D .{}1,1,3-11.已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( ) A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,112.记2{|log (1)3}A x x =-<,N A B =,则B 的元素个数为( )A .6B .7C .8D .9 13.集合A ={x |y =log 2(x +12)},B ={y |y =x 2-2x ,x ∈[0,2]}.则A ∩B =( )A .1,02⎡⎤-⎢⎥⎣⎦B .1,02⎛⎤- ⎥⎝⎦C .1,02⎡⎫-⎪⎢⎣⎭D .(102-,) 14.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}3 15.已知集合A ={1,2,3,4,5},集合B ={1,2},若集合C 满足:B C A ⊆,则集合C的个数为( )A .6个B .7个C .8个D .9个 二、填空题16.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________ 17.若全集U =R ,集合{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,则U B A =___________.18.已知{}21,,3A a =,{}22,1,1B a a =+-.若A B =,则=a ______.19.已知集合{}2,1,2A =-,}1,B a =,且B A ⊆,则实数a 的值是___________. 20.若集合(){}2381x A x ==,集合(){}23log 1B x x ==,则A B =_________. 21.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________.22.已知T 是方程()22040x px q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.23.若{}231,13a a ∈--,则=a ______.24.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______. 25.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.三、解答题26.已知集合*N M ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a ,b ,c ,d ,使得a b c d +=+,则称集合M 是“关联的”,并称集合{,,,}a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”.(1)分别判断集合{2,4,6,8,10}与{1,2,3,5,8}是“关联的”还是“独立的”?(2)写出(1)中“关联的”集合的所有的“关联子集”;(3)已知集合{}12345,,,,M a a a a a =是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的“关联子集”A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:1a ,2a ,3a ,4a ,5a 是等差数列.27.设集合{}53A x x =-≤≤,{2B x x =<-或}4x >.(1)求A B ;(2)求R R ()()A B ⋃.28.集合{}30?180120?180,Z A k k k αα︒︒=︒+<<+︒∈,集合{}45?360135?360,Z B k k k ββ=-+<<+∈. (1)求A B ;(2)若全集为U ,求U ()A B ⋂.29.记E 为平面上所有点组成的集合并且A E ∈,B E ∈,说明下列集合的几何意义: (1){}5P E PA ∈<; (2){}P E PA PB ∈=.30.已知集合6|32M x x ⎧⎫=>⎨⎬+⎩⎭,{|53}N x t x t =<<+. (1)当1t =-时,求M N ⋂;(2)若M N ⊆,求实数t 的取值范围.【参考答案】一、单选题1.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C2.A【解析】【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得;【详解】 解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =.故选:A3.C【解析】【分析】首先用列举法表示集合A ,再根据并集的定义计算可得;【详解】 解:因为{}{}111,0,1A x Z x =∈-≤≤=-,{}1,2B =,所以{}1,0,1,2A B ⋃=-; 故选:C4.B【解析】【分析】解对数不等式以及一元二次不等式,求出集合A,B ,根据集合的并集运算求得答案.【详解】解22320x x +-≤ 可得122x -≤≤ , 故{}{}lg 001A x x x x =≤=<≤,122B x x ⎧⎫=-≤≤⎨⎬⎩⎭, 所以{}21A B x x ⋃=-≤≤,故选:B .5.B【解析】【分析】根据集合的包含关系,列不等关系,解不等式即可.【详解】由题:(,)B a =+∞,A B ⊆,则1a ≤-.故选:B6.A【解析】【分析】根据x ,y 满足的关系式求得x ,y 的可能值,从而求得集合元素个数.【详解】由223x y +≤,得x ≤≤y ≤又Z x ∈,Z y ∈,所以{1,0,1}x ∈-,{1,0,1}∈-y ,易知x 与y 的任意组合均满足条件,所以A 中元素的个数为339⨯=.故选:A.7.D【解析】【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可.【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=, 因为{}14A x x =-≤≤所以A B ={}0,1,2,3故选:D8.B【解析】【分析】进行并集的运算即可.【详解】{|12}A x x =-≤≤,{}0B x x =>,{|1}A B x x ∴⋃=≥-.故选:B .9.D【解析】【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答.【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-,所以[2,2)A B ⋂=-.故选:D10.B【解析】【分析】化简集合A ,由交集定义直接计算可得结果.【详解】化简可得{|1}A x x =≥,又{}3,1,1,3B =--所以{1,3}A B =.故选:B.11.C【解析】【分析】求出集合M ,N ,然后进行并集的运算即可.【详解】 ∵{}02M x x =<<,{}11N x x =-≤≤,∴[1,2)M N ⋃=-.故选:C .12.B【解析】【分析】解对数不等式化简A ,求出B 可得答案.【详解】由()22log 1log 8x -<,得19x <<,即{|19}A x x =<<,所以N B A ={2,3,4,5,6,7,8}=,则B 中元素的个数为7.故选:B13.B【解析】【分析】分别解出A 、B 集合,再求交集即可.【详解】集合A :11 022x x +>⇒>-; 集合B :222(1)1,[0,2]y x x x x =-=--∈,[1,0]y ∈- 所以:1(,0]2A B -=故选:B.【点睛】本题考查集合的交集运算.属于基础题.正确解出A 、B 集合是本题的基础.14.D【解析】【分析】利用补集和交集的定义可求得结果.【详解】由已知可得{}0,3U A =,因此,(){}U 3A B ⋂=,故选:D.15.B【解析】【分析】根据集合间的关系写出所有满足条件的集合C 可得出答案.【详解】根据B C A ⊆,集合C 可写成如下形式: {}{}{}{}{}{}{}12312412512341235124512345,,,,,,,,,,,,,,,,,,,,,,, 所以满足条件的集合C 的个数为7个,选项B 正确.故选:B.二、填空题16.[)1,+∞【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞17.{}12x x <≤##(]1,2【解析】【分析】由集合A ,以及集合A 与集合B 的并集确定出集合B ,以及求出集合A 的补集,再根据交集运算即可求出结果.【详解】 因为{}31A x x =-≤≤,{}32A B x x ⋃=-≤≤,所以{3U x x A =<-或}1x >,{}{}1232x x x B x ⊆<≤⊆-≤≤,所以{}12U B A x x =<≤.故答案为:{}12x x <≤.18.2【解析】【分析】根据集合A 与集合B 相等列式即可求解【详解】因为A B =所以22213a a a ⎧=+⎨-=⎩解之得:2a = 故答案为:219.1【解析】【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:120.{1,2,33} 【解析】【分析】求解集合,根据集合的并集运算即可.【详解】(){}{}23812x A x ===,(){}231log 13,3B x x ⎧⎫===⎨⎬⎩⎭,则A B ={1,2,33}. 故答案为:{1,2,33}. 21.1,1,22⎧⎫-⎨⎬⎩⎭ 【解析】【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】 因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 故答案为:1,1,22⎧⎫-⎨⎬⎩⎭22.26【解析】【分析】由题知{}4,10T =,再结合韦达定理求解即可.【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根, 因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q =所以26p q +=故答案为:2623.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去;若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去.故4a =-.故答案为:4-.24.3【解析】【分析】根据题意21a a -+7=,结合7A =,即可求得a .【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-.当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去.当3a =时,满足题意.故答案为:3.25.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 三、解答题26.(1){2,4,6,8,10}是“关联的”,{1,2,3,5,8}是“独立的”;(2){2,4,6,8},{2,4,8,10},{4,6,8,10};(3)证明见解析.【解析】【分析】(1)根据给定定义直接判断作答.(2)由(1)及所给定义直接写出“关联子集”作答.(3)写出M 的所有4元素子集,再利用反证法确定“关联子集”,然后推理作答.(1)集合{2,4,6,8,10}中,因2846+=+,所以集合{2,4,6,8,10}是“关联的”,集合{1,2,3,5,8}中,不存在某两个数的和等于另外两个数的和,所以集合{1,2,3,5,8}是“独立的”.(2)由(1)知,有2846+=+,21048+=+,41068+=+,所以{2,4,6,8,10}的“关联子集”有:{2,4,6,8},{2,4,8,10},{4,6,8,10}.(3)集合M 的4元素子集有5个,分别记为:1234521345{,,,},{,,,}A a a a a A a a a a ==, 312454123551234{,,,},{,,,},{,,,}A a a a a A a a a a A a a a a ===,因此,集合M 至多有5个“关联子集”,若21345{,,,}A a a a a =是“关联子集”,则12345{,,,}A a a a a =不是“关联子集”,否则12a a =,矛盾,若21345{,,,}A a a a a =是“关联子集”,同理可得31245{,,,}A a a a a =,41235{,,,}A a a a a =不是“关联子集”,因此,集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾,于是得21345{,,,}A a a a a =一定不是“关联子集”,同理41235{,,,}A a a a a =一定不是“关联子集”,即集合M 的“关联子集”至多为12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =, 若12345{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾,若31245{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾,若51234{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾,因此,12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =都是“关联子集”, 即有25345432a a a a a a a a +=+⇔-=-,15245421a a a a a a a a +=+⇔-=-,14234321a a a a a a a a +=+⇔-=-,从而得54433221a a a a a a a a -=-=-=-,所以1a ,2a ,3a ,4a ,5a 是等差数列.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){}52x x -≤<-; (2){5x x <-或}2x ≥-.【解析】【分析】(1)根据给定条件利用交集的定义直接计算作答.(2)利用补集的定义求出R A ,R B ,再利用并集的定义求解作答. (1) 因集合{}53A x x =-≤≤,{2B x x =<-或}4x >,所以{|52}A B x x ⋂=-≤<-.(2) 依题意,R {5A x x =<-或3}x >,{}R 24B x x =-≤≤,所以{R R ()()5A B x x ⋃=<-或}2x ≥-.28.(1){}30?360120?360,Z A B k k k αα⋂=+<<+∈ (2)U ()A B ⋂ {}210?360300?360,Z k k k αα=+<<+∈ 【解析】【分析】(1)先变形集合A ,再求交集;(2)先求补集,再求交集.(1) 解:因为{}30?180120?180,Z A k k k αα︒︒=+<<︒+︒∈ {}30?360120?360210?360300?360,Z k k k k k ααα︒︒︒=︒+︒<<︒+︒+<<+︒∈或所以 {}30?360120?360,Z A B k k k αα︒︒︒⋂=+︒<<+∈; (2)解:由(1),知U B {}135?360315?360,Z k k k γγ︒︒=+≤≤︒+︒∈ 故U ()A B ⋂{}210?360300?360,Z k k k αα=+<<+∈ 29.(1)以A 为圆心,5为半径的圆内部分(2)线段AB 的垂直平分线【解析】【分析】(1)由圆的定义可得;(2)由线段垂直平分线的定义可得.(1)表示到A 点距离小于5的点组成的集合,即以A 为圆心,5为半径的圆内部分;(2)P 到,A B 距离相等,即线段AB 的垂直平分线.30.(1){}|20x x -<< (2)23,5⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)解不等式得M ,再求,M N 交集(2)由题意列不等式组求解(1) 由632x >+化简得302x x <+,解得20x -<<,故{}|20M x x =-<<, 当1t =-时,{}52N x x =-<<,因此{}|20MN x x =-<<.(2) 因{}|20M x x =-<<,{}53N x t x t =<<+,M N ⊆, 所以355230t t t t +>⎧⎪≤-⎨⎪+≥⎩,经计算得235t-≤≤-,故实数t的取值范围是2 3.5⎡⎤--⎢⎥⎣⎦,。
第一章集合基础练习题及答案

集合练习题一.选择题1.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A 、8 B 、7 C 、6 D 、52.若集合{}0|2≤=x x A ,则下列结论中正确的是( )A 、A=0B 、0A ⊆C 、∅=AD 、A ∅⊆ 3.下列五个写法中①{}{}2,1,00∈,②{}0≠⊂∅,③{}{}0,2,12,1,0⊆,④∅∈0,⑤∅=∅ 0,错误的写法个数是( )A 、1个 B 、2个 C 、3个 D 、4个4.方程组⎩⎨⎧-=-=+11y x y x 的解集是 ( )A 、{}0,1x y ==B 、{}1,0C 、{})1,0(D 、{}(,)|01x y x y ==或 5.设A 、B 是全集U 的两个子集,且A ⊆B ,则下列式子成立的是( )A 、C U A ⊆C UB B 、C U A ⋃C U B=U C 、A ⋂C U B=φD 、C U A ⋂B=φ 6.已知全集⎭⎬⎫⎩⎨⎧∈∈-=Z a N a a M 且56|,则M=( ) A 、{2,3} B 、{1,2,3,4} C 、{1,2,3,6} D 、{-1,2,3,4}7.集合},02{2R x a x x x M ∈=-+=,且φM ,则实数a 的X 围是()A 、1-≤aB 、1≤aC 、1-≥aD 、1≥a8. 设集合P 、S 满足P ⋂S=P ,则必有( )A 、P S ;B 、P ⊆S ;C 、S P ;D 、S=P 。
9. 设全集},,,,{e d c b a U =,A 、B 都是U 的子集}{e B A =⋂,}{d B A C U =⋂,},{b a B C A C U U =⋂,则下列判断中正确的是( )A 、c A 且cB ; B 、c A 且cB ;C 、c A 且cB ; D 、c A 且c B 。
10. 若C A B A ⋃=⋃,则一定有( )A 、B=C ;B 、C A B A ⋂=⋂; C 、C C A B C A U U ⋃=⋂;D 、C A C B A C U U ⋂=⋂ 。
集合练习题及答案

集合练习题及答案一、选择题1. 集合A={1,2,3},B={2,3,4},求A∪B。
A. {1,2,3,4}B. {1,2,3}C. {2,3}D. {1,4}2. 若集合A={x|x<5},B={x|x>3},则A∩B表示的集合是:A. {x|x<3}B. {x|3<x<5}C. {x|x>5}D. {x|x≤3}3. 集合A={1,2,3},B={4,5,6},A∩B等于:A. {1,2,3}B. {4,5,6}C. 空集D. {1,2,3,4,5,6}4. 集合A={x|x^2-5x+6=0},求A的元素。
A. {2,3}B. {1,6}C. {-1,6}D. {-2,3}5. 若集合A={x|-3≤x≤3},B={x|x>-2},求A-B。
A. {x|-3≤x≤-2}B. {x|-2<x≤3}C. {x|-3<x<-2}D. 空集二、填空题6. 集合{1,2,3}的补集(相对于全集U={1,2,3,4,5})是_________。
7. 若A={x|0<x<10},B={x|-5<x<5},则A∩B=_________。
8. 集合{a,b,c}的幂集含有的元素个数是_________。
9. 集合{1,2}的笛卡尔积{1,2}×{1,2}包含的元素个数是_________。
10. 若A={x|0<x<10},B={x|-5<x<5},且A⊆B,则A的元素个数最多是_________。
三、解答题11. 已知集合A={1,2,3},B={2,3,4},求A∩B,并说明交集的定义。
12. 集合C={x|x^2-4=0},求C,并解释补集的概念。
13. 给定集合D={x|-1<x<2},E={x|x>1},求D∪E,并解释并集的定义。
14. 若F={x|x^2+4x+3=0},求F,并求F相对于全集U={1,2,3,4,5,6}的补集。
集合基础练习题100个

集合基础练习题100个1. 设A={1,2,3},B={2,3,4},求并集A∪B。
2. 设A={1,2,3},B={3,4,5},求交集A∩B。
3. 设A={1,2,3},B={3,4,5},求差集A-B。
4. 设U={1,2,3,4,5},A={2,3},求A的补集。
5. 设U={1,2,3,4,5},A={2,3},B={3,4},判断A是否是B的子集。
6. 设U={1,2,3,4,5},A={2,3},B={3,4},判断A是否与B相等。
7. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的并集。
8. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的交集。
9. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的差集。
10. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的对称差。
11. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的并集。
12. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的交集。
13. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的差集。
14. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的对称差。
15. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的并集。
16. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的交集。
17. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的差集。
18. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的对称差。
19. 设U={苹果、香蕉、橙子、西瓜、葡萄},A={苹果、香蕉、橙子},B={橙子、西瓜},求A与B的并集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
^
高一数学第一章 集合基础练习题
知识框架
1.某些指定的对象集在一起就成为一个集合。
集合元素具有 性, 性和
性。
2.常用符号及其适用范围:
“∈”用于 与 之间,而“⊆”应用于 与 之间。
#
“ ”与“⊆”的区别在于 。
非负整数集记作 ;正整数集记作 ;整数集记作 ;
有理数集记作 ;实数集记作 ;空集记作 。
3.常用的集合表示方法有: , , 。
4.对于两个集合A 和 B ,如果 就称A 包含于B ,记
作 ,也说集合A 是集合B 的子集。
不含任何元素的集合叫做 ,记作 。
它是 的真子集。
5.一般地,由所有 的元素组成的集合,叫做A 与B 的交集,记作A B ,即A B={x ∣ }。
(若用图示法表示,它指的是集合A 与B 的公共部分。
)
)
6.由所有 的元素所组成的集合,叫做集合A 与B 的并集,记作A B,即A B={x ∣ }。
(若用图示法表示,它指的是集合A 与B 合并到一起得
到的集合。
)
7.若集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,
全集通常用U 表示。
设A 是S 的一个子集(即A ⊆S ),由 的元素组成的集合,
叫做A 在集合S 中的补集(或余集),记作
实际就是集合S 中除去集合A 中元素之后余下来元素组成的集合。
8.若A B ,则A B = ;A B = ,()u C B A = .
集合部分习题:
A 组题
一. :
二. 选择:
1. 若集合A={(0,2),(0,4)},则集合A中元素的个数是 ( )
(A)1个 (B)2个 (C)3个 (D)4个
2.下列关系中正确的是 ( )
(1){0}=∅;(2)0∈∅;(3)∅⊆{a};(4){a}∈{a,b};(5){a}⊆{a}
(A )(1)(2)(3) (B)(3)(5) (C)(3)(4) (5) (D) (1)(2)(5)
》
3.适合条件{1,2} M ⊆{1,2,3,4}的集合M 的个数为 ( )
(A)2 (B)3 (C)4 (D)5
4.满足{1,2}{1,2,3}M =的所有集合M 有 ( )
(A)1个 (B)2个 (C)3个 (D)4个
5.集合A={1,2,3,4,},它的非空真子集的个数是 ( )
(A)15个 (B)14个 (C)3个 (D)4个
6.数集S={x ∣21,},{41,},x m m T y y n n =+∈Z ==±∈Z 则以下正确的是( )
(A)S T = (B) S T (C)S T (D)S T =∅
7.全集{,,,,},()(){,,},(){},u u u U a b c d e C A C B c d e C B c ==A =
(){}u C A e B =则A B = ( ) (A){,,,}a b c d (B){,,,}a b c e (C) {,,}a b c (D){,,}a b e
、
二、填空:
1.设集合A=2{23}y y x x =--,B=2{67}y y x x =-++,则
A B = ; 若集合A=2{(,)23}x y y x x =--,B=2{(,)67}x y y x x =-++,
则A
B = ;若集合A=2{230}x x x --=,B=2{670}x x x -++=,则A B = 。
2.已知集合2{4},{430},x x x x x A =<B =-+>
则集合{}x x ∈A ∉A B 且x = 。
3.已知集合A={2,}x x x R ≤∈,B={}x x a ≥A ⊆B 且,则实数a 的范围 是 。
4.已知集合2{1,3,},{},a a A =B =且A B 那么实数a 的可能的值是 。
5.设I 是全集,非空集合,P Q 满足P Q I ,若求含,P Q 的一个集合运算表达式,使运算结果为空集∅,则这个运算表达式可以是 。
三、解答
1.
集合2{{23},x y y y x x A ==B ==-+A B 求。
2. 已知集合2
{1,1,12},{1,,},d d r r A =++B = 当,d r 为何值时,A =B 并求出此
时的A 。
…
~
3. 已知集合2{320,},x x x x R A =-+=∈集合2{220,}x x ax x R B =-+=∈,若,A
B =A 求实数a 的范围。
<
B 组题
1.集合A 中有m 个元素,若在A 中增加一个元素,则它的子集个数将增加 个。
2. 已知集合222{(1)(1)0},y y a a y a a A =-++++>
@
215{,03}22
y y x x x B ==-+≤≤,若A B =∅,求实数a 的范围。
3.已知2{(2)10,},{0},x x p x x R x x A =+++=∈B =>若
A B =∅,求实数p 的取值范围。