集合基础练习题

合集下载

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(62)

高中数学必修一人教A版1.1 集合的概念练习(含答案及解析)(62)

1.1 集合的概念一、单选题1.已知3a =,{|2}A x x =≥,则( )A .a A ∈B .a A ∉C .{}a A =D .{}a a ∉答案:A解析:根据元素与集合的关系,即可求解.详解:由题意,集合{|2}A x x =≥,且3a =,因为32>,所以a A ∈.故选:A.2.设集合{1}A x Z x =∈-,则A .A ∅∉B .C .2A ∈D .{}2⊆A 答案:B详解:试题分析:集合A 表示大于1-的正数,因此B 项正确 考点:元素与集合的元素3.下列所给关系正确的个数是①π∈R 3Q ;③0∈*N ;④|−4|∉*N .A .1B .2C .3D .4 答案:B详解:由R(实数集)、Q(有理数集)、*N (正整数集)的含义知,①②正确,③④不正确.4.对于任意实数x x ,表示不小于x 的最小整数,如1.220.20=-=,.定义在R 上的函数()2f x x x =+,若集合(){}|10A y y f x x ==-,≤≤,则集合A 中所有元素的和为( )A .3-B .4-C .5-D .6-答案:B解析:根据x 的范围即可求出2x 的范围,根据x <>的定义即可求出2x x <>+<>的值,即得出集合A 的所有元素,从而得出集合A 的所有元素的和.详解:因为10x -,∴①1x =-时,22x =-,则:1x <>=-,22x <>=-;23x x ∴<>+<>=-;②10x -<时,220x -<,则:0x <>=,21x <>=-,或0; 21x x ∴<>+<>=-,或0;{3A ∴=-,1-,0};∴集合A 中所有元素和为4-.故选:B点睛:本题主要考查对x <>的定义的理解,以及不等式的性质,意在考查学生对这些.5.集合5793,,,,234⎧⎫⎨⎬⎩⎭用描述法可表示为( ) A .*21|,2n n x x n N +⎧⎫=∈⎨⎬⎩⎭ B .*23|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭ C .*21|,n x x n N n -⎧⎫=∈⎨⎬⎩⎭ D .*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭答案:D 解析:找出集合中元素的规律通式即可.详解: 由5793,,,,234,即3579,,,,1234,从中发现规律*21,n x n N n +=∈, 故可用描述法表示为*21|,n x x n N n +⎧⎫=∈⎨⎬⎩⎭. 故选:D.点睛:本题考查集合的描述法,属于基础题.6.已知集合A 中元素x 满足x x N *∈,则必有( )A .-1∈AB .0∈ACD .1∈A答案:D解析:利用列举法求解即可.详解:因为x ≤≤又x N *∈,所以x 的可能取值1,2.故选:D.点睛:本题主要考查了列举法.属于容易题.7.集合{1,2,3,5}A = ,当x A ∈时,若1,1x A x A -∉+∉,则称x 为A 的一个“孤立元素”,则A 中孤立元素的个数为( )A .1B .2C .3D .4答案:A解析:根据“孤立元素”的定义,依次研究各元素即可得答案.详解:解:对于元素1,112A +=∈,故不满足孤立元素的定义;对于元素2,213A +=∈,故不满足孤立元素的定义;对于元素3,312A -=∈,故不满足孤立元素的定义;对于元素5,514A -=∉,516A +=∉,故满足孤立元素的定义;故A 中孤立元素的个数为1个.故选:A.点睛:本题考查集合新定义问题,正确理解新定义是解题的关键,是基础题.8.已知集合{1,,1}A a a =-,若2A -∈,则实数a 的值为( )A .2-B .1-C .1-或2-D .2-或3-答案:C解析:由已知得2a =-或12a -=-,解之并代入集合中验证可得选项.详解:因为集合{1,,1}A a a =-,且2A -∈,所以2a =-或12a -=-,当2a =-时,{1,2,3}A =--,适合题意;当12a -=-时,1a =-,{1,1,2}A =--,也适合题意,所以实数a 的值为1-或2-.故选:C.点睛:本题考查元素与集合的关系,属于基础题.9.设集合222,3,3,7A a a a a⎧⎫=-++⎨⎬⎩⎭,{}|2|,0B a =-,已知4A ∈且4B ∉,则实数a 的取值集合为( )A .{}-1,-2B .{}-1,2C .{}-2,4D .{}4答案:D解析:由234a a -=或274a a ++=解出a 的值,再验证集合中元素的互异性.详解:当234a a -=时,可得4a =或1a =-,若1a =-,则274a a ++=,不合题意;若4a =,则2711.5a a ++=,|2|2a -=符合题意; 当274a a++=,可得1a =-或2a =-,若1a =-,则234a a -=,不合题意;若2a =-,则|2|0a -=,不合题意.综上所述:4a =.故选:D.点睛:本题考查了集合中元素的互异性,考查了分类讨论思想,属于基础题.二、填空题1.已知集合{}2|60A x x px =-+=,若3A ∈,则方程15x p -=的解为__________.答案:2x =解析:由题意可知,3是方程260x px -+=的根,解得5p =.方程15x p -=等价变形为155x -=,解得,即可.详解:3A ∈∴3是方程260x px -+=的根,即23360p -+=,解得5p =. 又方程155x p -==11x ∴-=,解得2x =.故答案为:2x =点睛:本题考查元素与集合的关系以及实数指数幂的运算,属于较易题.2.若-3∈x-2,2x 2-5x ,12},则x =________.答案:-1,32,1解析:由已知得x -2=-3或2x 2-5x =-3,解之再代入集合中检验集合的元素是否互异,可得答案.详解:由题意知,x -2=-3或2x 2-5x =-3.①当x -2=-3时,x =-1.把x =-1代入,得集合的三个元素为-3,7,12满足集合中元素的互异性;②当2x 2-5x =-3时,x =32或x =1,当x =32时,集合的三个元素为-12,-3,12,满足集合中元素的互异性;当x =1时,集合的三个元素为-1,-3,12,满足集合中元素的互异性,由①②知x =-1,32,1.故答案为:-1,32,1.点睛:本题考查由集合与元素的关系求参数的值,注意集合中的元素需互异,属于基础题.3.设集合{}2|20x x x a ++=有且只有两个子集,则a =______________.答案:1a =解析:本题先将条件“集合{}2|20x x x a ++=有且只有两个子集”转化为“方程220x x a ++=有且仅有1个解”,再建立方程求a 的值.详解:解:因为集合{}2|20x x x a ++=有且只有两个子集,所以集合{}2|20x x x a ++=有且只有一个元素,所以方程220x x a ++=有且仅有1个解,所以2240a ∆=-=,解得1a =.故答案为:1a =.点睛:本题考查根据集合中元素的个数求参数的值,是基础题.4.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________答案:12(,]23解析:由f (x )=x 2﹣(a+2)x+2﹣a <0可得x 2﹣2x+1<a (x+1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出.详解:f (x )=x 2﹣(a+2)x+2﹣a <0,即x 2﹣2x+1<a (x+1)﹣1,分别令y =x 2﹣2x+1,y =a (x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A =x∈Z|f(x )<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10{120 311a a a -≤--≤<,解得12<a 23≤故答案为(12,23]点睛:本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题5.设,a b ∈R ,集合{}{}2,0,a b a =,则b a -=_____________答案:1-解析:根据集合的互异性原则,可求得a 与b 的值,即可求得b a -的值.详解:因为集合{}{}2,0,a b a = 所以0a =或0b =当0a =时,集合20a =,因而元素重复,与集合的互异性原则相悖,所以舍去0a =当0b =时,可得2a a =,解得0a =(舍)或1a =综上可知, 1a =,0b =所以011b a -=-=-故答案为: 1-点睛:本题考查了集合的互异性原则及集合相等的应用,属于基础题.三、解答题1.写出集合2|,3n x x n ⎧⎫=∈⎨⎬⎩⎭N 中最小的3个元素.答案:240,,33解析:让n 取自然数集中最小3个数代入即可得.详解:0,1,2n =时,三个元素为24033,,. 点睛:根据集合中元素的性质,取n 为自然数集中最小3个数代入可求得集合A 中最小的三个元素.2.已知数集{}()1212,,,0,2n n A a a a a a a n =≤<<<≥具有性质P :对任意的i、()1j i j n ≤≤≤,i j a a +,与j i a a -两数中至少有一个属于A .(1)分别判断数集{}0,1,3,4与{}0,2,3,6是否具有性质P ,并说明理由;(2)证明:10a =,且()122n n na a a a =+++; (3)当5n =时,若22a =,求集合A .答案:(1)集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明见解析. (3){0,2,4,6,8}A =.解析:(1)利用i j a a +与j i a a -两数中至少有一个属于A .即可判断出结论.(2)先由0n na a A =-∈,得出10a =,令“,1j n i =>,由“i j a a +与j i a a -两数中至少有一个属于A ”可得n i a a -属于A .令1i n =-,那么1n n a a --是集合A 中某项,1a 不符合不符合题意,2a 符合.同理可得:令1i n =-可以得到21n n a a a -=+,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,倒序相加即可.(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P,5i a a A -∈,又1i =时,51a a A -∈,可得51i a a Ai -∈=51525354550a a a a a a a a a a ->->->->-=,则515533524a a a a a a a a a -=-=-= ,又34245a a a a a +>+=,可得34a a A +∉,则43a a A -∈,则有43221a a a a a -==-.可得即12345,,,,a a a a a 是首项为0,公差为22a =等差数列是首项为0,公差为22a =等差数列.详解:解:(1)在集合{}0,1,3,4中,设{}0,1,3,4A =①011,101A A +=∈-=∈,具有性质P②033,303A A +=∈-=∈,具有性质P③044,404A A +=∈-=∈,具有性质P④134,312A A +=∈-=∉,具有性质P⑤145,413A A +=∉-=∈,具有性质P⑥347,431A A +=∉-=∈,具有性质P综上所述:集合{}0,1,3,4具有性质P ;在集合{}0,2,3,6中,设{}0,2,3,6B =,①022,202B B +=∈-=∈,具有性质P②033,303B B +=∈-=∈,具有性质P③066,606B B +=∈-=∈,具有性质P④235,321B B +=∉-=∉,不具有性质P⑤267,624B B +=∉-=∉,具有性质P⑥368,633B B +=∉-=∈,具有性质P综上所述:集合{}0,2,3,6不具有性质P .故集合{}0,1,3,4具有性质P ,集合{}0,2,3,6不具有性质P .(2)证明:令,1j n i =>由于120n a a a ≤<<<,则n n n a a a +>,故2n a A ∉ 则0n n a a A =-∈,即10a =i j a a +与j i a a -两数中至少有一个属于A ,i j a a ∴+不属于A ,n i a a ∴-属于A .令1i n =-,那么1n n a a --是集合A 中某项,10a =不符合题意,2a 可以.如果是3a 或者4a ,那么可知31n n a a a --=那么231n n n a a a a a -->-=,只能是等于n a ,矛盾.所以令1i n =-可以得到21n n a a a -=+,同理,令2i n =-,3,....,2n -可以得到1n i n i a a a +-=+,∴倒序相加即可得到1232n n n a a a a a +++⋯+= 即()122n n na a a a a =+++⋯+(3)当5n =时,取5j =,当2i ≥时,55i a a a +>,由A 具有性质P ,5i a a A -∈,又1i =时,51a a A -∈,51,2,3,4,5i a a Ai ∴-∈=123451234500a a a a a a a a a a =<<<<=<<<<,51525354550a a a a a a a a a a ∴->->->->-=,则515524a a a a a a -=-=,533a a a -=,从而可得245532a a a a a +==,故2432a a a +=,即433230a a a a a <-=-<,又3424534a a a a a a a A +>+=∴+∈/ ,则43a a A -∈,则有43221a a a a a -==-又54221a a a a a -==-544332212a a a a a a a a a ∴-=-=-=-=,即12345,,,,a a a a a 是首项为0,公差为22a =等差数列,{0,2,4,6,8}A ∴=点睛:(1)本问采用举反例的方法证明A 不具有P 性质;(2)采用极端值是证明这类问题的要点,一个数集满足某个性质,则数集中的特殊的元素(比如最大值、最小值)也满足这个性质;本问的第二个要点是集合的元素具有互异性,由互异性及题中给的性质P ,可得出等式;(3)利用在(2)中得到的结论得出12345,,,,a a a a a 之间的关系,再结合A 中元素所具有的P 性质即可得到结论.3.分别用列举法和描述法表示方程x 2+x –2=0的所有实数解的集合.答案:1,–2},x|x=1或x=–2}解析:根据列举法和描述法的定义分别进行表示即可. 详解:由220x x +-= 得1x = 或2x =- ,所以用列举法表示解集为}{1,2- ,用描述法表示为}{{}22012.x x x x x x +-===-=-或点睛:本题主要考查集合表示的两种方法:列举法和描述法,比较基础,要注意两者之间的区别.。

集合基础练习题

集合基础练习题

集合基础练习题答案:D.无限性。

因为集合中的元素必须是有限个,而不是无限的。

答案:B.所有实数的倒数。

因为实数的倒数不一定存在,所以不能构成集合。

答案:D.分数法。

因为分数法不是集合的表示方法,而是数学中的一种运算方式。

如果集合A={1,2,3},则A的真子集为。

答案:{1},{2},{3},{1,2},{1,3},{2,3}。

如果集合A={x|x<4},集合B={x|x>2},则A∩B=。

如果集合A={x|x<5},集合B={x|x>3},则AUB=。

已知集合A={x|x<4},集合B={x|x>2},求A∩B和AUB。

答案:A∩B={x|2<x<4},AUB={x|x<4或x>2}。

已知集合A={1,2,3},集合B={3,4,5},求A∩B和AUB。

答案:A∩B={3},AUB={1,2,3,4,5}。

用列举法表示集合。

例如,给出{1,2,3}的集合。

用描述法表示集合。

例如,描述{小于10的正整数}的集合。

请解释为什么我们在日常生活中需要用到集合?举一些实际应用的例子。

在数学中,集合有哪些常见的应用?请举例说明。

什么是空集?什么是全集?它们在集合论中起到什么作用?什么是子集?什么是真子集?如何判断一个集合是否是另一个集合的子集或真子集?以上就是三年级上册集合练习题的主要内容。

通过这些练习题,我们可以更好地理解集合的基本概念、表示方法、运算和应用,同时也可以扩展我们的知识面,为后续的学习打下坚实的基础。

C语言是一种广泛应用的计算机编程语言,它有着广泛的应用领域,如操作系统、嵌入式系统、游戏开发等。

掌握C语言的基础知识是非常必要的,下面是一份C语言基础练习题,帮助初学者巩固基础。

变量是C语言中存储数据的基本单元,可以用来存储数字、字符、字符串等不同类型的数据。

例如,下面的代码声明了两个变量,一个整数类型和一个浮点数类型:int age = 20; //声明一个整数类型的变量float weight = 5; //声明一个浮点数类型的变量浮点型(float):用于存储带小数点的数值,如71等。

高一集合基础练习题

高一集合基础练习题

高一集合基础练习题1.已知集合 $A=\{x|3-3x>0\}$,则下列各式正确的是()A。

3∈A B。

1∈A C。

0∈A D。

-1∉A2.下列四个集合中,不同于另外三个的是()A。

{y|y=2} B。

{x=2} C。

{2} D。

{x|x^2-4x+4=0}3.下列关系中,正确的个数为________.①∈R;②2∉Q;③|-3|∉N*;④|-3|∈Q.答案:24.已知集合 $A=\{1,x,x^2-x\}$,$B=\{1,2,x\}$,若集合$A$ 与集合 $B$ 相等,求 $x$ 的值。

5.下列命题中正确的()①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程$(x-1)^2(x-2)=0$的所有解的集合可表示为{1,1,2};④集合$\{x|4<x<5\}$可以用列举法表示。

A。

只有①和④ B。

只有②和③ C。

只有② D。

以上语句都不对6.用列举法表示集合 $\{x|x^2-2x+1=0\}$ 为()A。

{1,1} B。

{1} C。

{x=1} D。

{x^2-2x+1=0}7.已知集合 $A=\{x\in N*|-5\leq x\leq 5\}$,则必有()A。

-1∈A B。

0∈A C。

3∈A D。

1∈A8.定义集合运算:$A*B=\{z|z=xy,x\in A,y\in B\}$。

设$A=\{1,2\}$,$B=\{0,2\}$,则集合 $A*B$ 的所有元素之和为() A。

0 B。

2 C。

3 D。

69.已知集合 $A=\{1,a^2\}$,实数 $a$ 不能取的值的集合是________。

10.已知 $P=\{x|2<x<a,x\in N\}$,已知集合 $P$ 中恰有 3个元素,则整数 $a=$________。

11.选择适当的方法表示下列集合集。

1) 由方程 $x(x^2-2x-3)=0$ 的所有实数根组成的集合;2) 大于 2 且小于 6 的有理数;3) 由直线 $y=-x+4$ 上的横坐标和纵坐标都是自然数的点组成的集合。

(完整版)集合练习题及答案-经典

(完整版)集合练习题及答案-经典

姓名 集合期末复习题 12.26班级、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是A 某班所有高个子的学生B 著名的艺术家C 一切很大的书 倒数等于它自身的实数 2、集合{a, b ,c }的真子集共有 C 9D 103、若{1 , 2} A {1 , 2, 3, 4, 5}则满足条件的集合A 的个数是 A. 6 B. 7 C. 8 D. 9Aa a 2Ba a 1C a a 1 Da a 29、 满足条件 MU 1 = 1,2,3的集合M 的个数是( )A 1B 2C 3D 410、集合P x | x 2k,kZ , Q x | x 2k 1,k Z ,R x| x 4k 1,k Z ,且a P,b Q ,则有( )A a b PB a b QC ab RDa b 不属于 P 、Q R 中的任意一个.填空题11、若A { 2,2,3,4}, B {x|x t2,t A},用列举法表示B8、设集合A= x1 x 2 , B= xx a ,若A B ,则a 的取值范围是 ( )4、若 U={1, 2, 3, 4} , M={1, 2}, N={2, 3},贝U C (MUN )= A . {1 , 2 , 3} B. {2} C. {1 ,3, 4} D. {4}5、方程组r x y 1 x y 1的解集是 A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或 y=1} &以下六个关系式:0 0,0 ,0.3 Q , 0a,bb,ax|x 22 0,x Z 是空集中,错误的个数是12、 ______________________________________________________________ 集合 A={x| x 2+x-6=0}, B={x| ax+1=0}, 若 B A ,则 a= ____________________ 13、 设全集 U= 2,3, a 2 2a 3 , A= 2,b , C U A= 5,则 a = ____ , b =_______ 。

1.3集合的基本运算基础练习题

1.3集合的基本运算基础练习题

1.3集合的基本运算基础练习题一、单选题1.已知集合{|11}M x x =-≤≤,2{|,}N y y x x M ==∈,则M N =( )A .[1,1]-B .[0,)+∞C .(0,1)D .[0,1]2.已知全集U =R ,集合{}24A x x =-<<,{}2B x x =≥,则()UA B ⋂=( )A .()2,4 B .()2,4- C .()2,2-D .(]2,2- 3.设集合{1,2,3,4,5},{1,2,3},{2,3,4,5}===U M N ,则()UM N =( )A .{2,3}B .{1,4,5}C .{2,3,4}D .{2,4,5}4.已知集合{}1,2,3A =,集合{}2B x x x ==,则AB =( )A .{}0,1,2,3B .{}1,0,1,2,3-C .{}1,2D .{}15.已知集合{}1,2,3,4,5,6U =,{}2,3,5M =,{}4,6N =.则()UM N ⋂=( )A .{}4,6B .{}1,4,6C .∅D .{}2,3,4,5,66.已知集合{}0,2,4A =,{}2,4,6B =,则A B =( )A .{}4B .{}0,6C .{}2,4D .{}0,2,4,67.已知集合{}1,2,3,4A =,{}2,4,6B =,{}1,2,3,4,5,6U =,则()()UUA B ⋃=( ) A .{}5B .{}1,3,5,6C .{}1,3,5D .{}2,4,68.已知集含U =R ,集合{0,1,2,3,4,5}A =,{|1}B x x =>,则图中阴影部分所表示的集合为( )A .{0}B .{0,1}C .{1,2}D .{0,1,2}9.设全集{()|}U x y x R y R =∈∈,,,集合{}(,)|20A x y x y m =-+>,集合{()|0}B x y x y n =+-≤,,那么点(23)()U P A B ∈,的充要条件是( ).A .1m >-,5n <B .1m <-,5n ≤C .1m >-,5n >D .1m <-,5n ≥ 10.已知集合{1,2,3},{3,4}A B ==,则A B =( )A .{1,2,3}B .{1,3}C .{3}D .∅二、填空题 11.已知集合(){}()|1{|3}A x y x y B x y x y =-==+=,,,,则A B =_________.12.已知集合{}{}0,1,2,3,4,0,1,2,U A ==则UA______.13.某班共38人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,16人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为______. 14.已知集合{1,3,5,7,9,10},{1,3,5}U A ==,则UA__________.三、解答题15.设已知全集U =R ,集合{{|3215},2A x x B x x =-<-<=≤-或}0x ≥,求A B ,()UAB ,()U A B ⋂16.全集U =R ,若集合A ={x |3≤x <8},B ={x |2<x ≤6}. (1)求A ∩B ,A ∪B ;(2)若集合C ={x |x >a },A ⊆C ,求a 的取值范围. 17.已知集合{}|22A x x =-<<,{}|1B x x =≥. (1)求A B ;(2)求()RAB .18.已知{}{}2,4,6,8,10,2,4,6,{|,4}U A B x x A x ===∈<,求: (1)UA 及UB ;(2)()UA B ∩;(3)()UA B .参考答案1.D 【分析】求出N 中y 的范围确定出N ,再求出M 与N 的交集即可. 【详解】 解:{|11}M x x =-≤≤,N 中2,y x x M =∈,则{|01}N y y =≤≤,[0,1]M N ∴=.故选:D . 2.C 【分析】先求出集合B 的补集,再求()UA B ⋂【详解】解:因为{}2B x x =≥,所以{}2UB x x =<,因为{}24A x x =-<<, 所以(){}22UAB x x =-<<故选:C. 3.B 【分析】先求出交集,再求补集. 【详解】 ∵{}2,3MN =,∴(){1,4,5}⋂=U M N .故选:B. 4.A 【分析】化简集合B ,再根据集合并的意义求解. 【详解】{}{}20,1B x x x ===,{}0,1,2,3A B ⋃=.故选:A 【点睛】此题为基础题,考查集合并运算. 5.A 【分析】根据补集与交集的定义进行运算即可. 【详解】{}1,2,3,4,5,6U =,{}2,3,5M =,{}4,6N = {}1,4,6U M ∴=,(){}4,6U M N ∴=故选:A. 6.D 【分析】利用并集的定义可求得集合A B .【详解】集合{}0,2,4A =,{}2,4,6B =,则{}0,2,4,6A B ⋃=. 故选:D. 7.B 【分析】先根据补集定义求出UA ,UB ,再由并集定义即可求出.【详解】 可得{}5,6UA =,{}1,3,5UB =,()(){}1,3,5,6UUA B ∴⋃=.故选:B. 8.B 【分析】根据Venn 图表示的集合运算结果求解.【详解】图中阴影部分表示()U A B ,{|1}UB x x =≤,∴(){0,1}U AB =.故选:B . 9.A 【分析】 先求得UB ,由此求得()U A B ∩满足的不等式组,将P 点坐标代入上述不等式组,解不等式组求得,m n 的取值范围. 【详解】 依题意(){},|0UB x y x y n =+->,所以()U A B ∩满足的不等式组为20x y m x y n -+>⎧⎨+->⎩,由于(23)()U P A B ∈,,故430230m n -+>⎧⎨+->⎩,解得1m >-,5n <.故选:A 10.C 【分析】根据交集的概念直接求解出A B 的结果.【详解】因为{}{}1,2,3,3,4A B ==,所以{}3A B ⋂=, 故选:C. 11.(){}2,1【分析】 联立13x y x y -=⎧⎨+=⎩即可求出.【详解】联立方程13x y x y -=⎧⎨+=⎩,解得2,1x y ==,(){}2,1A B ∴⋂=.故答案为:(){}2,1.12.{}3,4 【分析】由补集的定义直接计算. 【详解】{}{}0,1,2,3,4,0,1,2,U A =={}3,4U A ∴=.故答案为:{}3,4. 13.12 【分析】设两者都喜欢的人数为x 人,则只喜爱篮球的有(15)x -人,只喜爱乒乓球的有(10)x -人,由此可得(15)(10)1638x x x -+-++=,解之即可两者都喜欢的人数,然后即可得出喜爱篮球运动但不喜爱乒乓球运动的人数. 【详解】设两者都喜欢的人数为x 人,则只喜爱篮球的有(15)x -人,只喜爱乒乓球的有(10)x -人, 由此可得(15)(10)1638x x x -+-++=,解得3x =, 所以1512x -=, 即所求人数为12人, 故答案为:12. 14.{7,9,10} 【分析】直接利用补集的定义求出UA .【详解】集合{1,3,5,7,9,10},{1,3,5}U A ==,则{}7,9,10UA =故答案为:{7,9,10}. 15.{|03}A B x x ⋂=≤<,(){|21}UA B x x ⋃=-<≤-,(){2U A B x x ⋂=≤-或}3x ≥.【分析】先求出集合A ,再根据交并补定义计算即可. 【详解】由已知得{|13}A x x =-<<,∴{|03}A B x x ⋂=≤<,{|2A B x x ⋃=≤-或1}x >-, ∴(){|21}UA B x x ⋃=-<≤-,又{1UA x x =≤-或}3x ≥, ∴(){2UA B x x ⋂=≤-或}3x ≥.16.(1){}{}36,28A B x x A B x x ⋂=≤≤⋃=<<;(2)3a <. 【分析】(1)直接根据交集与并集的概念进行计算可得结果; (2)根据子集关系列式可得结果. 【详解】(1)A ∩B {|36}x x =≤≤,{|28}A B x x ⋃=<<; (2)因为集合C ={x |x >a },A ⊆C , 所以3a < 【点睛】关键点点睛:掌握交集、并集和子集的概念是解题关键. 17.(1)()2,A B ⋃=-+∞;(2)()RA B =()2,1- .【分析】(1)直接利用并集的定义求解即可; (2)先求出集合B 的补集,再求()RA B【详解】解:(1)因为{}|22A x x =-<<,{}|1B x x =≥, 所以()2,A B ⋃=-+∞,(2)因为{}|1B x x =≥,所以{}1RB x x =<,因为{}|22A x x =-<<, 所以()RAB =()2,1-18.(1){}{}8,10,4,6,8,10U U C A C B ==;(2)(){}4,6U A C B ⋂=;(3)(){}2,8,10U C A B ⋃=.【分析】(1)先求解出集合B ,然后根据补集的概念求解出结果; (2)根据(1)中UB 的结果,根据交集的概念求解出结果; (3)根据(1)中UA 的结果,根据并集的概念求解出结果.【详解】解:∵{}{}24,6,8,10,2,4,6U A ==,,∴{}{|,4}2B x x A x =∈<=, (1){}{}810,4,6,8,10U U C A C B ==,; (2)(){}{}{}2,4,64,6,8,104,6U A C B ⋂=⋂=;(3)(){}{}{}81022,8,10U C A B ⋃=⋃=,.。

高一集合基础练习题及答案

高一集合基础练习题及答案

高一集合基础练习题及答案A.{1,3}B.{3,7,9}C.{3,5,9} D.{3,9}解析:选D.?UA={3,9},故选D.2.集合A={x|-1≤x≤2},B={x|x<1},则A∩= A.{x|x>1} B.{x|x≥1}C.{x|1<x≤2} D.{x|1≤x≤2}解析:选D.∵B={x|x<1},∴?RB={x|x≥1},∴A∩?RB={x|1≤x≤2}.23. 已知全集U=Z,集合A={x|x=x},B={-1,0,1,2},则图中的阴影部分所表示的集合等于A.{-1,2} B.{-1,0}C.{0,1} D.{1,2}解析:选A.依题意知A={0,1},∩B表示全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若?UA ={x|2≤x≤5},则a=________. 解析:∵A∪?UA=U,∴A ={x|1≤x<2}.∴a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩等于A.{2} B.{5}C.{3,4}D.{2,3,4,5}解析:选C.?UB={3,4,5},∴A∩={3,4}.2.已知全集U={0,1,2},且?UA={2},则A=A.{0} B.{1}C.? D.{0,1}解析:选D.∵?UA={2},∴2?A,又U={0,1,2},∴A={0,1}.3.设集合A={4,5,7,9},B={3,4,7,8,9},全集U =A∪B,则集合?U中的元素共有A.3个 B.4个C.5个 D.6个解析:选A.U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴?U={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N ={2,4,5,6},则A.M∩N={4,6} B.M∪N=UC.∪M=U D.∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N ={2,4,5,6},得M∩N={4,5},∪M={3,4,5,7},∩N={2,6},M∪N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合?U中元素个数为A.1 B. C. D.4解析:选B.∵A={1,2},∴B={2,4},∴A∪B={1,2,4},∴?U={3,5}.6.已知全集U=A∪B中有m个元素,∪中有n个元素.若A∩B非空,则A∩B的元素个数为A.mn B.m+nC.n-m D.m-n解析:选D.U=A∪B中有m个元素,∵∪=?U中有n 个元素,∴A∩B中有m-n个元素,故选D.7.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则∩=________.解析:∵A∪B={2,3,4,5},?UC={1,2,5},∴∩={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}8.已知全集U={2,3,a2-a-1},A={2,3},若?UA ={1},则实数a的值是________.2解析:∵U={2,3,a-a-1},A={2,3},?UA={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或29.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且∩B=?,求实数m的取值范围为________.解析:由已知A={x|x≥-m},∴?UA={x|x<-m},∵B={x|-2<x<4},∩B=?,∴-m≤-2,即m≥2,∴m的取值范围是m≥2.答案:{m|m≥2}510.已知全集U=R,A={x|-4≤x<2},B={x|-1<x≤3},P={x|x≤0或x≥,求2A∩B,∪P,∩.解:将集合A、B、P表示在数轴上,如图.X k b 1 .c o m∵A={x|-4≤x<2},B={x|-1<x≤3},∴A∩B={x|-1<x<2}.∵?UB={x|x≤-1或x>3},5∴∪P={x|x≤0或x≥,5∩={x|-1<x<2}∩{x|0<x2={x|0<x<2}.11.已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足B∩={2},A∩={4},U=R,求实数a,b 的值.解:∵B∩={2},∴2∈B,但2?A.∵A∩={4},∴4∈A,但4?B.8a=2?7?4+4a+12b=0∴?2,解得. ?2-2a+b=012?b=7812∴a,b的值为.712.已知集合A={x|2a-2 ∵A?RB,∴分A=?和A≠?两种情况讨论.①若A=?,此时有2a-2≥a,∴a≥2.2a-2 ∴a≤1.综上所述,a≤1或a≥2.一、选择题1、下列四组对象,能构成集合的是 A 某班所有高个子的学生B 著名的艺术家 C 一切很大的书D 倒数等于它自身的实数2、集合{a,b,c }的真子集共有个 A BC D103、若{1,2}?A?{1,2,3,4,5}则满足条件的集合A 的个数是 A. B.7C. D.94、若U={1,2,3,4},M={1,2},N={2,3},则C U=A .{1,2,3} B. {2} C. {1,3,4} D. {4}x?y?15、方程组x?y??1的解集是A .{x=0,y=1} B. {0,1} C. {} D. {|x=0或y=1}、以下六个关系式:0??0?,?0,0.3?Q, 0?N, ?a,bb,a? , x|x220,xZ是空集中,错误的个数是A B C D 17、点的集合M={|xy≥0}是指 A.第一象限内的点集B.第三象限内的点集C. 第一、第三象限内的点集D. 不在第二、第四象限内的点集8、设集合A=x?x?2,B=xx?a,若A?B,则a的取值范围是 A aa?2Baa?1 Caa?1D aa?29、满足条件M?1?=1,2,3?的集合M的个数是 A 1 B2C D10、集合P??x|x?2k,k?Z?,Q??x|x?2k?1,k?Z?,R??x|x?4k?1,k?Z?,且a?P,b?Q,则有A a?b?PB a?b?QCa?b?R Da?b不属于P、Q、R中的任意一个二、填空题11、若A?{?2,2,3,4},B?{x|x?t,t?A},用列举法表示12、集合A={x| x+x-6=0}, B={x| ax+1=0}, 若B?A,则a=__________2213、设全集U=2,3,a?2a?3,A=?2,b,CUA=?5,则a,b214、集合A??x|x??3或x?3?,B??x|x?1或x?4?,A?B?____________.15、已知集合A={x|x?x?m?0}, 若A∩R=?,则实数m 的取值范围是16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人.三、解答题17、已知集合A={x| x+2x-8=0}, B={x| x-5x+6=0}, C={x| x-mx+m-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值218、已知二次函数f=x?ax?b,A=xf?2x?22?,试求 f的解析式2222219、已知集合A1,1?,B=xx2?2ax?b?0,若B??,且A?B?A 求实数a,b的值。

集合练习题及答案

集合练习题及答案

集合练习题及答案一、选择题1. 集合A={1,2,3},B={2,3,4},求A∪B。

A. {1,2,3,4}B. {1,2,3}C. {2,3}D. {1,4}2. 若集合A={x|x<5},B={x|x>3},则A∩B表示的集合是:A. {x|x<3}B. {x|3<x<5}C. {x|x>5}D. {x|x≤3}3. 集合A={1,2,3},B={4,5,6},A∩B等于:A. {1,2,3}B. {4,5,6}C. 空集D. {1,2,3,4,5,6}4. 集合A={x|x^2-5x+6=0},求A的元素。

A. {2,3}B. {1,6}C. {-1,6}D. {-2,3}5. 若集合A={x|-3≤x≤3},B={x|x>-2},求A-B。

A. {x|-3≤x≤-2}B. {x|-2<x≤3}C. {x|-3<x<-2}D. 空集二、填空题6. 集合{1,2,3}的补集(相对于全集U={1,2,3,4,5})是_________。

7. 若A={x|0<x<10},B={x|-5<x<5},则A∩B=_________。

8. 集合{a,b,c}的幂集含有的元素个数是_________。

9. 集合{1,2}的笛卡尔积{1,2}×{1,2}包含的元素个数是_________。

10. 若A={x|0<x<10},B={x|-5<x<5},且A⊆B,则A的元素个数最多是_________。

三、解答题11. 已知集合A={1,2,3},B={2,3,4},求A∩B,并说明交集的定义。

12. 集合C={x|x^2-4=0},求C,并解释补集的概念。

13. 给定集合D={x|-1<x<2},E={x|x>1},求D∪E,并解释并集的定义。

14. 若F={x|x^2+4x+3=0},求F,并求F相对于全集U={1,2,3,4,5,6}的补集。

集合基础练习题100个

集合基础练习题100个

集合基础练习题100个1. 设A={1,2,3},B={2,3,4},求并集A∪B。

2. 设A={1,2,3},B={3,4,5},求交集A∩B。

3. 设A={1,2,3},B={3,4,5},求差集A-B。

4. 设U={1,2,3,4,5},A={2,3},求A的补集。

5. 设U={1,2,3,4,5},A={2,3},B={3,4},判断A是否是B的子集。

6. 设U={1,2,3,4,5},A={2,3},B={3,4},判断A是否与B相等。

7. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的并集。

8. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的交集。

9. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的差集。

10. 设U={1,2,3,4,5},A={2,3},B={3,4},求A与B的对称差。

11. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的并集。

12. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的交集。

13. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的差集。

14. 设U={笔、纸、本、书、手机},A={笔、本、书},B={书、手机},求A与B的对称差。

15. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的并集。

16. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的交集。

17. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的差集。

18. 设U={男、女、学生、教师、工人},A={男、女、学生},B={学生、教师},求A与B的对称差。

19. 设U={苹果、香蕉、橙子、西瓜、葡萄},A={苹果、香蕉、橙子},B={橙子、西瓜},求A与B的并集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学第一章 集合基础练习题
知识框架
1.某些指定的对象集在一起就成为一个集合。

集合具有 性, 性和 性。

2.常用符号及其适用范围:
“∈”用于 与 之间,而“⊆”应用于 与 之间。

“ ”与“⊆”的区别在于 。

非负整数集记作 ;正整数集记作 ;整数集记作 ;
有理数集记作 ;实数集记作 ;空集记作 。

3.常用的集合表示方法有: , , 。

4.对于两个集合A 和 B ,如果 就称A 包含于B ,记 作 ,也说集合A 是集合B 的子集。

不含任何元素的集合叫做 ,记作 。

它是 的真子集。

5.一般地,由所有 的元素组成的集合,叫做A 与B 的交集,记作A
B ,即A B={x ∣ }。

(若用图示法表示,它指的是集合A 与B 的公共部分。

) 6.由所有 的元素所组成的集合,叫做集合A 与B 的并集,记作A B,即A B={x ∣ }。

(若用图示法表示,它
指的是集合A 与B 合并到一起得到的集合。


7.若集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。

设A 是S 的一个子集(即A ⊆B ),由 的元素组成的集合,叫做S
中子集A 补集(或余集),记作 。

实际就是集合S 中除去集合A 中元素之后余下来元素组成的集合。

8.若A B ,则A B = ;A B = ,()u C B A = .
集合部分习题:
A 组题
一. 选择:
1. 若集合A={(0,2),(0,4)},则集合A中元素的个数是 ( )
(A)1个 (B)2个 (C)3个 (D)4个
2.下列关系中正确的是 ( )
(1){0}=∅;(2)0∈∅;(3)∅⊆{a};(4){a}∈{a,b};(5){a}⊆{a}
(A )(1)(2)(3) (B)(3)(5) (C)(3)(4) (5) (D) (1)(2)(5)
3.适合条件{1,2} M ⊆{1,2,3,4}的集合M 的个数为 ( ) (A)2 (B)3 (C)4 (D)5
4.满足{1,2}{1,2,3}M =的所有集合M 有 ( )
(A)1个 (B)2个 (C)3个 (D)4个
5.集合A={1,2,3,4,},它的非空真子集的个数是 ( )
(A)15个 (B)14个 (C)3个 (D)4个
6.数集S={x ∣21,},{41,},x m m T y y n n =+∈Z ==±∈Z 则以下正确的是( )
(A)S T = (B) S T (C)S T (D)S T =∅
⊂ ≠
⊂ ≠ ⊂ ≠ ⊂ ≠
⊃ ≠
7.全集{,,,,},()(){,,},(){},u u u U a b c d e C A C B c d e C B c ==A = (){}u C A e B =则A B = ( ) (A){,,,}a b c d (B){,,,}a b c e (C) {,,}a b c (D){,,}a b e
二、填空:
1.设集合A=2{23}y y x x =--,B=2{67}y y x x =-++,则A B = ;
若集合A=2{(,)23}x y y x x =--,B=2{(,)67}x y y x x =-++,则
A B = ;
若集合A=2{230}x x x --=,B=2{670}x x x -++=,则A
B = 。

2.已知集合2{4},{430},x x x x x A =<B =-+>则集合
{}x x ∈A ∉A B 且x = 。

3.已知集合A={2,}x x x R ≤∈,B={}x x a ≥A ⊆B 且,则实数a 的范围 是 。

4.已知集合2{1,3,},{},a a A =B =且A B 那么实数a 的可能的值是 。

5.设I 是全集,非空集合,P Q 满足P Q I ,若求含,P Q 的一个集合运算表达式,
使运算结果为空集∅,则这个运算表达式可以是 。

三、解答
1.
集合2{{23},x y y y x x A ==B ==-+A B 求。

(23x ≤≤)
2. 已知集合2{1,1,12},{1,,},d d r r A =++B =当,d r 为何值时,A =B ?并求出此时的A 。

(1311,;{1,,}2442
r d =-=-A =-)
3. 已知集合2{320,},x x x x R A =-+=∈集合2{220,}x x ax x R B =-+=∈,若 ,A B =A 求实数a 的范围。

( 44a -<≤)
B 组题
1.集合A 中有m 个元素,若在A 中增加一个元素,则它的子集个数将增加 个。

⊂ ≠
⊂ ≠ ⊂ ≠
(2m 个)
2. 已知集合222{(1)(1)0},y y a a y a a A =-++++> 215{,03}22
y y x x x B ==-+≤≤,若A B =∅,求实数a 的范围。

(2a a ≤≤≤)
3.已知2{(2)10,},{0},x x p x x R x x A =+++=∈B =>若 A B =∅,求实数p 的取值范围。

(4p >-)。

相关文档
最新文档