圆锥曲线的离心率问题专题训练

合集下载

(完整版)圆锥曲线离心率专题历年真题

(完整版)圆锥曲线离心率专题历年真题

1.(福建卷)已知双曲线12222=-by a x (a >0,b <0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2]C.[2,+∞)D.(2,+∞)2.(湖南卷)过双曲线M:2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )3.(辽宁卷)方程22520x x -+=的两个根可分别作为()A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )325.(陕西卷)已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为A.2B. 3C.263D.2336. (全国卷)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A (B )12(C )2 (D 1 7. (广东卷)若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m=( )(B)32(C)83(D)238.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( ) A .324+B .13-C .213+D .13+9.[全国]设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5 B . 5 C .25 D .45 10.( 福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .33B .32 C .22 D .2311.( 重庆理)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53C .2D .7312.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3 C.(3,+∞)D.[)3,+∞13.(江西卷 7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=u u u u r u u u u r的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B .1(0,]2C .(0,2D .,1)2 14.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .B .C .(25),D .(215.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABC D16.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y +=17.(江苏卷12)在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = . 18.(全国一15)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e= .19、(全国2理11)设F 1,F 2分别是双曲线22221x y a b-=的左、右焦点。

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总(学生版)

重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总(学生版)

重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总题型1直接型题型2二级结论之通径型题型3双曲线渐近线相关题型4坐标法题型5二级结论之焦点弦定比分点题型6二级结论之焦点已知底角题型7焦点三角形已知顶角型题型8焦点三角形双余弦定理题型9利用图形求离心率题型10利用椭圆双曲线的对称性求离心率题型11点差法题型12二级结论之中点弦问题题型13角平分线相关题型14圆锥曲线与圆相关题型15内切圆相关题型16与立体几何相关题型17二级结论之切线方程题型18正切公式的运用题型19圆锥曲与内心结合题型1直接型椭圆与双曲线的离心率公式为:e =ca,注意椭圆的离心率范围(0,1),双曲线的离心率范围(1,+♾)1(2021·江西南昌·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2的直线l 交C 的右支于A ,B 两点,且AB ⋅AF 1 =0,12|AB |=5|AF 1|,则C 的离心率为1(2021·全国·高三开学考试)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|BF 1|,若cos ∠AF 2B =35,则椭圆E 的离心率为.2(2021·河北秦皇岛·统考二模)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆C 于A ,B 两点,已知AF 2 +F 1F 2 ⋅AF 1 =0,AF 1 =43F 1B,则椭圆C 的离心率为()A.57B.22C.53D.133(2023·江西九江·二模)青花瓷又称白地青花瓷,常简称青花,中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一,属釉下彩瓷.如图为青花瓷大盘,盘子的边缘有一定的宽度且与桌面水平,可以近似看成由大小两个椭圆围成.经测量发现两椭圆的长轴长之比与短轴长之比相等.现不慎掉落一根质地均匀的长筷子在盘面上,恰巧与小椭圆相切,设切点为P ,盘子的中心为O ,筷子与大椭圆的两交点为A 、B ,点A 关于O 的对称点为C .给出下列四个命题:①两椭圆的焦距长相等;②两椭圆的离心率相等;③PA =PB ;④BC 与小椭圆相切.其中正确的个数是()A.1B.2C.3D.44(22·23下·恩施·模拟预测)已知F 1,F 2分别为双曲线C :x 24-y 2b2=1b >0 的左右焦点,且F 1到渐近线的距离为1,过F 2的直线l 与C 的左、右两支曲线分别交于A ,B 两点,且l ⊥AF 1,则下列说法正确的为()A.△AF 1F 2的面积为2B.双曲线C 的离心率为2C.AF 1 ⋅BF 1=10+46D.1AF 2 +1BF 2=6+2题型2二级结论之通径型椭圆与双曲线的半通径是b 2a , 通径是2b 2a1(2023·重庆·模拟预测)如图,椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F 1,右顶点为A ,点Q 在y 轴上,点P 在椭圆上,且满足PQ ⊥y 轴,四边形F 1APQ 是等腰梯形,直线F 1P 与y 轴交于点N 0,34b,则椭圆的离心率为( ).A.14B.32C.22D.121(23·24高三上·湖北·阶段练习)已知A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)的左右顶点,P 是双曲线x 2a 2-y 2b 2=1在第一象限上的一点,直线PA ,PB 分别交椭圆于另外的点M ,N .若直线MN 过椭圆的右焦点F ,且tan ∠AMN =3,则椭圆的离心率为.2(2023·湖北武汉·三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,点A ,B 分别为椭圆C 的左右顶点,点F 为椭圆C 的右焦点,Р为椭圆上一点,且PF 垂直于x 轴.过原点О作直线PA 的垂线,垂足为M ,过原点О作直线PB 的垂线,垂足为N ,记S 1,S 2分别为△MON ,△PAB 的面积.若S 2S 1=409,则椭圆C 的离心率为.3(22·23·赣州·二模)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,点P 在E 上,满足△F 1PF 2为直角三角形,作OM ⊥PF 1于点M (其中O 为坐标原点),且有PM =2MF1,则E 的离心率为.4(2023·河北保定·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,B 为虚轴上端点,M 是BF 中点,O 为坐标原点,OM 交双曲线右支于N ,若FN 垂直于x 轴,则双曲线C 的离心率为() A.2B.2C.3D.233题型3双曲线渐近线相关双曲线的渐近线求离心率可以直接使用公式:e =1+b 2a2,1(2023·山东潍坊·二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,O 为坐标原点,过F 1作C 的一条浙近线的垂线,垂足为D ,且DF 2 =22OD ,则C 的离心率为()A.2B.2C.5D.31(2022·贵州毕节·统考模拟预测)已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A 是C 的左顶点,过点F 2作C 的一条渐近线的垂线,垂足为P ,过点P 作x 轴的垂线,垂足为M ,O 为坐标原点,且PO 平分∠APM ,则C 的离心率为()A.2B.2C.3D.32(多选)(2023·山东潍坊·三模)函数y =ax +bx(ab >0)的图象是双曲线,且直线x =0和y =ax 是它的渐近线.已知函数y =33x +1x,则下列说法正确的是()A.x ≠0,y ≥243B.对称轴方程是y =3x ,y =-33x C.实轴长为23D.离心率为2333(2020上·广西桂林·高三广西师范大学附属中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,左顶点为A ,过F 作C 的一条渐近线的垂线,垂足为M ,若tan ∠MAF =12,则C 的离心率为.4(2022·陕西咸阳·统考二模)已知双曲线C :(a >0,b >0)的左焦点为F ,过F 且与双曲线C 的一条渐近线垂直的直线l 与另一条渐近线交于点P ,交y 轴于点A ,若A 为PF 的中点,则双曲线C 的离心率为 .5(多选)(2023·河北唐山·模拟预测)已知双曲线C :x 2a2-y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 2作直线y =2a x 的垂线,垂足为P ,O 为坐标原点,且∠F 1PO =π6,过P 作C 的切线交直线y =-2ax 于点Q ,则()A.C 的离心率为213B.C 的离心率为133C.△OPQ 的面积为23D.△OPQ 的面积为43题型4坐标法相对运算较麻烦的一种方法,可以通过联立方程,求出点的坐标,构造等式求出离心率1(2023·河南·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左顶点为A ,P 为C 的一条渐近线上一点,AP 与C 的另一条渐近线交于点Q ,若直线AP 的斜率为1,且A 为PQ 的三等分点,则C 的离心率为.1(2023·山东潍坊·模拟预测)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 的直线交E 的左支于点P ,交E 的渐近线于点M ,N ,且P ,M 恰为线段FN 的三等分点,则双曲线E 的离心率为()A.2B.52C.5D.32(24·25高三上·浙江·开学考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过点F 作倾斜角为π4的直线交椭圆C 于A 、B 两点,弦AB 的垂直平分线交x 轴于点P ,若PF AB=14,则椭圆C 的离心率e =.3(2023·湖北襄阳·模拟预测)如图,已知有公共焦点P 1(-c ,0)、P 2(c ,0)的椭圆C 1和双曲线C 2相交于A 、B 、C 、D 四个点,且满足OA =OB =OC =OD =c ,直线AB 与x 轴交于点P ,直线CP 与双曲线C 2交于点Q ,记直线AC 、AQ 的斜率分别为k 1、k 2,若k 1⋅k 2=2,则椭圆C 1的离心率为.4(22·23高三上·河南洛阳·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1-c ,0 ,F 2c ,0 ,过点F 1的直线l 与双曲线C 的左支交于点A ,与双曲线C 的一条渐近线在第一象限交于点B ,且F 1F 2 =2OB (O 为坐标原点).下列四个结论正确的是()①BF 1 =4c 2-BF 2 2;②若AB =2F 1A ,则双曲线C 的离心率1+102;③BF 1 -BF 2 >2a ;④c -a <AF 1 <2c -a .A.①②B.①③C.①②④D.①③④5(22·23高三上·河北石家庄·期中)椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 1的直线交C 于A ,B 两点,若3OF 1 =OA +2OB ,AB =BF 2,其中O 为坐标原点,则椭圆的离心率为题型5二级结论之焦点弦定比分点1.点F 是椭圆的焦点,过F 的弦AB 与椭圆焦点所在轴的夹角为θ,θϵ0,π2,k 为直线AB 的斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1注:λ=AF BF 或者λ=BF AF ,而不是AF AB 或者BFAB点F 是双曲线焦点,2.过F 弦AB 与双曲线焦点所在轴夹角为θ,θϵ0,π2,k 为直线AB 斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1 1(23·24高三上·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2且倾斜角为60°的直线l 与C 交于A ,B 两点.若△AF 1F 2的面积是△BF 1F 2面积的2倍,则C 的离心率为.1(2022上·辽宁鞍山·高三鞍山一中校考期中)已知椭圆C :x 2a 2+y 2b2=1的左焦点为F ,过F 斜率为3的直线l 与椭圆C 相交于A 、B 两点,若AF BF =32,则椭圆C 的离心率e =.2(2022·全国·高三专题练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点为F ,过F 且斜率为3的直线交C 于A 、B 两点,若AF =4FB,则C 的离心率为()A.58B.65C.75D.953(2023·浙江温州·乐清市知临中学校考二模)已知椭圆x 2a 2+y 2b2=1的右焦点为F 2,过右焦点作倾斜角为π3的直线交椭圆于G ,H 两点,且GF 2 =2F 2H ,则椭圆的离心率为()A.12B.22C.23D.324(2023·贵州·统考模拟预测)椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为A ,F 是C 的一个焦点,点B 在C 上,若3AF +5BF =0,则C 的离心率为()A.12B.35C.22D.32题型6二级结论之焦点已知底角1. 已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =c a =sin (α+β)sin α+sin β2. 已知双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0)两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则e =ca =sin α+sin β|sin α-sin β|,1(2008·全国·高考真题)设△ABC 是等腰三角形,∠ABC =120°,则以A ,B 为焦点,且过点C 的双曲线的离心率为()A.1+22 B.1+32C.1+2D.1+31(2022秋·山东青岛·高二山东省青岛第五十八中学校考期中)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆C 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于()A.3-1B.2-1C.32D.222(2020秋·贵州贵阳·高二统考期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,焦距为2c .若直线y =33x +c 与椭圆的一个交点M 满足∠MF 2F 1=2∠MF 1F 2,则该椭圆的离心率等于()A.3-5B.5-3C.3+1D.3-13(2023·全国·高二专题练习)已知椭圆E 的两个焦点分别为F 1,F 2,点Р为椭圆上一点,且tan ∠PF 1F 2=23,tan ∠PF 2F 1=2,则椭圆E 的离心率为 .4(2023秋·江西吉安·高三吉安一中校考开学考试)点P 是双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)和圆C 2:x 2+y 2=a 2+b 2的一个交点,且2∠PF 1F 2=∠PF 2F 1,其中F 1,F 2是双曲线C 1的两个焦点,则双曲线C 1的离心率为.5(2023秋·湖南衡阳·高三衡阳市八中校考阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点A 是双曲线C 的右顶点,点P 在过点A 且斜率为334的直线上,△PF 1F 2为等腰三角形,∠PF 2F 1=120°,则双曲线的离心率为.题型7焦点三角形已知顶角型可以通过焦点三角形的特征进行解决1(20·21高二上·吉林白城·阶段练习)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,椭圆的离心率为e 1,双曲线的离心率e 2,则1e 21+3e 22=.1(2021·重庆·校联考三模)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左右焦点分别为F 1,F 2,过F 1的直线交双曲线C 的左支于P ,Q 两点,若PF 2 2=PF 2 ⋅QF 2,且△PQF 2的周长为12a ,则双曲线C 的离心率为() A.102B.3C.5D.222(2021·山东烟台·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若F 2A ⋅F 2B =0,且|F 2A |=|F 2B|,则C 的离心率为()A.2B.3C.6D.73(2021·浙江·模拟预测)已知F 1,F 2分别是双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,直线y =kx 与E 交于A ,B 两点,且∠F 1AF 2=60°,四边形F 1AF 2B 的周长C 与面积S 满足163S =C 2,则E 的离心率为()A.62B.52C.32D.34(2023·上海崇明·一模)已知椭圆Γ1与双曲线Γ2的离心率互为倒数,且它们有共同的焦点F 1、F 2,P是Γ1与Γ2在第一象限的交点,当∠F 1PF 2=π6时,双曲线Γ2的离心率等于 .5(2022上·江苏南京·高三南京师大附中校考期中)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点,过点F 2且斜率为1的直线l 与双曲线C 的右支交于P ,Q 两点,若△F 1PQ 是等腰三角形,则双曲线C 的离心率为.题型8焦点三角形双余弦定理1(22·23高二下·河南安阳·开学考试)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,过F 1的直线与椭圆C 交于M ,N 两点,MF 2 -MF 1 =a ,MF 1 +NF 1 =NF 2 ,则椭圆C 的离心率为()A.25B.105C.155D.641(22·23上·河南·模拟预测)双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,过F 2的直线与C 交于A ,B 两点,且AF 2 =2F 2B,∠ABF 1=60°,则双曲线C 的离心率为()A.73B.2C.53D.432(2023·浙江·一模)已知双曲线C :x 2a 2-y 2b2=1的左右焦点分别为F 1,F 2,O 为坐标原点,A ,B 为C 上位于x 轴上方的两点,且AF 1⎳BF 2,∠AF 1F 2=60°.记AF 2,BF 1交点为P ,过点P 作PQ ⎳AF 1,交x 轴于点Q .若OQ =2PQ ,则双曲线C 的离心率是.3(23·24高三上·江苏淮安·开学考试)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为A ,直线AF 1与椭圆C 交于另一点B ,若∠AF 2B =120°,则椭圆C 的离心率为.4(22·23高三下·山东菏泽·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左右焦点分别为F 1,F 2,点A 在C 上,点B 在y 轴上,F 1A ⋅F 1B =0,BF 2 =35BA,则C 的离心率为.5(2023·湖南株洲·一模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右焦点为F 1,F 2,过F 1的直线交椭圆C 于P ,Q 两点,若PF 1 =43F 1Q ,且PF 2 =F 1F 2,则椭圆C 的离心率为.题型9利用图形求离心率1(2023·安徽安庆·二模)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线C 的右支相交于点P ,过点O ,F 2作ON ⊥PF 1,F 2M ⊥PF 1,垂足分别为N ,M ,且M 为线段PN 的中点,ON =a ,则双曲线C 的离心率为()A.2B.5+12C.3+12D.1321(22·23·包头·二模)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1-c ,0 ,F 2c ,0 ,以C 的虚轴为直径的圆记为D ,过F 1作D 的切线与C 的渐近线y =-b a x 交于点H ,若△F 1HO 的面积为24ac ,则C 的离心率为.2(2023秋·江西宜春·高三江西省宜丰中学校考阶段练习)双曲线C :x 2a 2-y 2b2=1a ,b >0 的左焦点为F ,直线FD 与双曲线C 的右支交于点D ,A ,B 为线段FD 的两个三等分点,且OA =OB =22a (O为坐标原点),则双曲线C 的离心率为.3(2023·湖南邵阳·邵阳市第二中学校考模拟预测)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,A 是C 的上顶点,点P 在过A 且斜率为23的直线上,△PF 1F 2为等腰三角形,∠PF 1F 2=120°,则C 的离心率为()A.1010B.714C.39D.144(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知椭圆T :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,左顶点为A ,上顶点为B ,点P 是椭圆上位于第一象限内的点,且△ABO ∼△F 1PF 2,O 为坐标原点,则椭圆的离心率为.题型10利用椭圆双曲线的对称性求离心率1(22·23高二下·湖南·期末)如图,已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1的左、右焦点,P ,Q 为双曲线C 上两点,满足F 1P ∥F 2Q ,且F 2Q =F 2P =3F 1P ,则双曲线C 的离心率为()A.105B.52C.153D.1021(2023·河南商丘·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M ,N 是C 的一条渐近线上的两点,且MN =2MO(O 为坐标原点),MN =F 1F 2 .若P 为C 的左顶点,且∠MPN =135°,则双曲线C 的离心率为()A.3B.2C.5D.72(2023·福建宁德·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点是F ,直线y =kx 交椭圆于A ,B 两点﹐直线AF 与椭圆的另一个交点为C ,若OA OF=AF2CF =1,则椭圆的离心率为.3(23·24高三上·山西大同·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点P (3c ,0)作直线l 交椭圆C 于M ,N 两点,若PM =2NM ,F 2M =4F 2N则椭圆C 的离心率为4(2022·全国·校联考模拟预测)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别是F 1,F 2,过F 2的直线l 交双曲线C 于P ,Q 两点且使得PF 2 =λF 2Q 0<λ<1 .A 为左支上一点且满足F 1A +F 2P=0 ,F 1F 2 =23AF 2 +13AQ ,△AF 2P 的面积为b 2,则双曲线C 的离心率为()A.33B.2C.102D.35(2021下·山西·高三校联考阶段练习)如图,O 是坐标原点,P 是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)右支上的一点,F 是E 的右焦点,延长PO ,PF 分别交E 于Q ,R 两点,已知QF ⊥FR ,且|QF |=2|FR |,则E 的离心率为()A.174B.173C.214D.213题型11点差法1.根与系数关系法:联立直线方程和椭圆(或双曲线)方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;2.点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆(或双曲线)方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b2=1(a >b >0)上的两个不同的点M (x 0,y 0)是线段AB 的中点,x 21a 2+y 21b 2=1,=1\*GB 3\*MERGEFORMAT ①x 22a 2+y 22b 2=1,=2\*GB 3\*MERGEFORMAT ② 由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,(x 1-x 2≠0,x 1+x 2≠0)1(22·23·吉安·一模)椭圆E :x 2a 2+y 2b2=1a >b >0 的内接四边形ABCD 的对角线AC ,BD 交于点P 1,1 ,满足AP =2PC ,BP =2PD ,若直线AB 的斜率为-14,则椭圆的离心率等于()A.14B.32C.12D.131(2023·湖北·模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e ≠22,C 的左右焦点分别为F 1,F 2,点A 在椭圆C 上满足∠F 1AF 2=π2.∠F 1AF 2的角平分线交椭圆于另一点B ,交y 轴于点D .已知AB =2BD ,则e =.2(2022下·云南昭通·高二校联考期末)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)斜率为-18的直线与E 的左右两支分别交于A ,B 两点,P 点的坐标为(-1,2),直线AP 交E 于另一点C ,直线BP 交E 于另一点D ,如图1.若直线CD 的斜率为-18,则E 的离心率为()A.2B.72C.62D.523(22·23·河北·模拟预测)已知斜率为-2的直线l 1与双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右两支分别交于点A ,B ,l 2⎳l 1,直线l 2与E 的左、右两支分别交于点D ,C ,AC 交BD 于点P ,若点P 恒在直线l :y =-3x 上,则E 的离心率为.4(2023·云南·统考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (c ,0)(b >c )和上顶点B ,若斜率为65的直线l 交椭圆C 于P ,Q 两点,且满足FB +FP +FQ =0 ,则椭圆的离心率为.5(2020上·重庆沙坪坝·高三重庆八中校考阶段练习)如图,过原点O 的直线AB 交椭圆C :x 2a 2+y 2b2=1(a >b >0)于A ,B 两点,过点A 分别作x 轴、AB 的垂线AP ,AQ 分别交椭圆C 于点P ,Q ,连接BQ 交AP 于一点M ,若AM =34AP,则椭圆C 的离心率是.题型12二级结论之中点弦问题1.椭圆或者双曲线,已知中点时,当椭圆或双曲线的焦点在x 轴,K AB ∙K OM =e 2-12.P 为椭圆上一点,e 为离心率,①A 1,A 2为两个顶点,则k PA 1⋅k PA 2=e 2-1;②A 1,A 2为关于原点对称的两点,则k PA 1⋅k PA 2=e 2-1;以上结论也适用于双曲线.1(22·23上·徐州·期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,经过原点O 的直线交C 于A ,B 两点.P 是C 上一点(异于点A ,B ),直线BP 交x 轴于点D .若直线AP ,BP 的斜率之积为49,且∠BDO =∠BOD ,则椭圆C 的离心率为.1(22·23下·安徽·一模)已知直线l 与椭圆E :x 2a 2+y 2b2=1(a >b >0)交于M ,N 两点,线段MN 中点P 在直线x =-1上,且线段MN 的垂直平分线交x 轴于点Q -34,0 ,则椭圆E 的离心率是 .2(2023·贵州·模拟预测)设О为坐标原点,A 为椭圆C :x 2a 2+y 2b2=1a >b >0 上一个动点,过点A 作椭圆C 内部的圆E :x 2-2mx +y 2=0m >0 的一条切线,切点为D ,与椭圆C 的另一个交点为B ,D 为AB 的中点,若OD 的斜率与DE 的斜率之积为2,则C 的离心率为.3(2021·全国·模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长为4,上顶点为B ,O 为坐标原点,点D 为OB 的中点,双曲线E :x 2m 2-y 2n2=1(m >0,n >0)的左、右焦点分别与椭圆C 的左、右顶点A 1,A 2重合,点P 是双曲线E 与椭圆C 在第一象限的交点,且A 1,P ,D 三点共线,直线PA 2的斜率k PA 2=-43,则双曲线E 的离心率为()A.355B.32C.810-105D.5+41094(22·23下·南通·阶段练习)已知两点A ,M 在双曲C :x 2a 2-y 2b2=1(a >0,b >0)的右支上,点A 与点B 关于原点对称,BM 交y 轴于点N ,若AB ⊥AM ,且ON 2+8OA ⋅ON=0,则双曲线C 的离心率为()A.5B.6C.7D.22题型13角平分线相关1.角平分线“拆”面积:S △ABC =S △ACD +S △ABD2.角平分线定理性质:AB BD =ACCD1(22·23下·山西·模拟预测)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,P 是双曲线E 上一点,PF 2⊥F 1F 2,∠F 1PF 2的平分线与x 轴交于点Q ,S △PF 1Q S △PF 2Q=53,则双曲线E 的离心率为()A.2B.2C.52D.31(22·23下·湖北·模拟预测)已知F 1,F 2分别是双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点,过F 1的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,CB =3F 2A,BF 2平分∠F 1BC ,则双曲线Γ的离心率为()A.7B.5C.3D.22(22·23高三·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为A ,B ,右焦点为F ,P 为椭圆上一点,直线AP 与直线x =a 交于点M ,∠PFB 的角平分线与直线x =a 交于点N ,若PF ⊥AB ,△MAB 的面积是△NFB 面积的6倍,则椭圆C 的离心率是.3(2023·山东烟台·校考模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点为F 1-c ,0 ,F 2c ,0 ,点P 是C 与圆x 2+y 2=c 2的交点,∠PF 1F 2的平分线交PF 2于Q ,若PQ =12QF 2 ,则椭圆C 的离心率为()A.33B.2-1C.22D.3-14(2023春·江西赣州·高三统考阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2.椭圆C 在第一象限存在点M ,使得MF 1 =F 1F 2 ,直线F 1M 与y 轴交于点A ,且F 2A 是∠MF 2F 1的角平分线,则椭圆C 的离心率为()A.6-12B.5-12C.12D.3-12题型14圆锥曲线与圆相关1(2023·福建漳州·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM 与C 的焦距的比值为313,则C 的离心率为()A.3-12B.12C.3+14D.7-121(23·24高三上·福建福州·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM与C 的焦距的比值为313,则C 的离心率为()A.3+12B.32C.5+12D.7+122(2023·全国·二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右顶点分别是A 1,A 2,圆x 2+y 2=a 2与C 的渐近线在第一象限的交点为M ,直线A 1M 交C 的右支于点P .设△MPA 2的内切圆圆心为I ,A 2I ⊥x 轴,则C 的离心率为()A.2B.2C.3D.53(22·23·马鞍山·三模)已知F 1 , F 2分别是双曲线C :x 2a 2-y 2b2=1 (a >0 , b >0)的左,右焦点,点M 在双曲线上,MF 1⊥MF 2,圆O :x 2+y 2=32(a 2+b 2),直线MF 1与圆O 相交于A ,B 两点,直线MF 2与圆O 相交于P ,Q 两点,若四边形APBQ 的面积为27b 2,则C 的离心率为()A.62B.324C.32D.984(22·23上·全国·阶段练习)已知圆C 1:x 2+y -2332=163过双曲线C 2:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点F 1,F 2,曲线C 1与曲线C 2在第一象限的交点为M ,若MF 1 ⋅MF 2 =12,则双曲线C 2的离心率为()A.2B.3C.2D.3题型15内切圆相关1(22·23高三下·江西·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点P 在C 上且位于第一象限,圆O 1与线段F 1P 的延长线,线段PF 2以及x 轴均相切,△PF 1F 2的内切圆为圆O 2.若圆O 1与圆O 2外切,且圆O 1与圆O 2的面积之比为9,则C 的离心率为()A.12B.35C.22D.321(2023·山东潍坊·模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,点F 2与抛物线C 2:y 2=2px p >0 的焦点重合,点P 为C 1与C 2的一个交点,若△PF 1F 2的内切圆圆心的横坐标为4,C 2的准线与C 1交于A ,B 两点,且AB =92,则C 1的离心率为()A.94B.54C.95D.742(22·23下·宁波·阶段练习)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上不与顶点重合的任意一点,I 为△PF 1F 2的内心,记直线OP ,OI 的斜率分别为k 1,k 2,若k 1=32k 2,则椭圆E 的离心率为() A.13B.12C.33D.223(23·24高三上·云南昆明·期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1-c ,0 ,F 2c ,0(c >0),过F 1作倾斜角为π4的直线交椭圆于A ,B 两点,若△ABF 2的内切圆半径r =26c ,则该椭圆的离心率为.4(2023·山西·二模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),点M x 0,y 0 x 0>c 是C 上一点,点A 是直线MF 2与y 轴的交点,△AMF 1的内切圆与MF 1相切于点N ,若|MN |=2F 1F 2 ,则椭圆C 的离心率e =.5(22·23·红河·一模)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,若E 上存在点P ,满足OP =12F 1F 2 ,(O 为坐标原点),且△PF 1F 2的内切圆的半径等于a ,则E 的离心率为.题型16与立体几何相关1(2023·安徽安庆·一模).如图是数学家Ger min al Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O 1,球O 2的半径分别为4和1,球心距O 1O 2 =6,截面分别与球O 1,球O 2切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于()A.339B.63C.22D.161(22·23高三下·河北衡水·阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 2作直线AB ⊥F 1F 2交C 于A ,B 两点. 现将C 所在平面沿直线F 1F 2折成平面角为锐角α的二面角,如图,翻折后A ,B 两点的对应点分别为A ,B ,且∠A F 1B =β⋅若1-cos α1-cos β=2516,则C 的离心率为()A.3B.22C.3D.322(2023·云南大理·模拟预测)某同学所在的课外兴趣小组计划用纸板制作一个简易潜望镜模型(图甲),该模型由两个相同的部件拼接粘连制成,每个部件由长方形纸板NCEM (图乙)沿虚线裁剪后卷一周形成,其中长方形OCEF 卷后为圆柱O 1O 2的侧面.为准确画出裁剪曲线,建立如图所示的以O 为坐标原点的平面直角坐标系,设P x ,y 为裁剪曲线上的点,作PH ⊥x 轴,垂足为H .图乙中线段OH 卷后形成的圆弧OH (图甲),通过同学们的计算发现y 与x 之间满足关系式y =3-3cos x3(0≤x <6π),现在另外一个纸板上画出曲线y =1-cos x2(0≤x <4π),如图丙所示,把沿虚线裁剪后的长方形纸板卷一周,求该裁剪曲线围成的椭圆的离心率为()A.255B.55C.12D.533(2022·辽宁沈阳·一模)如图,在底面半径为1,高为6的圆柱内放置两个球,使得两个球与圆柱侧面相切,且分别与圆柱的上下底面相切.一个与两球均相切的平面斜截圆柱侧面,得到的截线是一个椭圆.则该椭圆的离心率为.4(22·23下·辽宁·阶段练习)如图所示圆锥,C 为母线SB 的中点,点O 为底面圆心,AB 为底面圆的直径,且SC ,OB ,SB 的长度成等比数列,一个平面过A ,C ,与圆锥面相交的曲线为椭圆,若该椭圆的短轴与圆锥底面平行,则该椭圆的离心率为.5(多选)(2023·江苏南通·模拟预测)如图,已知圆锥PO 的轴PO 与母线所成的角为α,过A 1的平面与圆锥的轴所成的角为ββ>α ,该平面截这个圆锥所得的截面为椭圆,椭圆的长轴为A 1A 2,短轴为B 1B 2,长半轴长为a ,短半轴长为b ,椭圆的中心为N ,再以B 1B 2为弦且垂直于PO 的圆截面,记该圆与直线PA 1交于C 1,与直线PA 2交于C 2,则下列说法正确的是()A.当β<α时,平面截这个圆锥所得的截面也为椭圆B.|NC 1|⋅|NC 2|=a 2sin β+α sin β-αcos 2αC.平面截这个圆锥所得椭圆的离心率e =cos βcos αD.平面截这个圆锥所得椭圆的离心率e =sin αsin β题型17二级结论之切线方程圆锥曲线切线方程的常用结论【结论1】(1)经过圆x 2+y 2=r 2上一点M x 0,y 0 的切线方程为x 0x +y 0y =r 2.(2)当M x 0,y 0 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为x 0x +y 0y =r 2.【结论2】(1)若圆心不在原点,圆的方程:x -a 2+y -b 2=r 2,若M x 0,y 0 为圆上一点,则过M x 0,y 0 切线方程:x 0-a x -a +y 0-b y -b =r2(2)若M x 0,y 0 在圆外,过M 点切线有两条:切点弦所在直线方程:x 0-a x -a +y 0-b y -b =r2方便记忆,求切线和切点弦的方法,统一称为“代一留一”.【结论3】(1)过圆x 2a 2+y 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为x 0x a 2+y 0y b2=1;(2)当M x 0,y 0 在椭圆x 2a 2+y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为x 0x a2+y 0yb 2=1.(3)设过椭圆x 2a 2+y 2b2=1a >b >0 外一点M x 0 , y 0 引两条切线,切点分别为A x 1,y 1 ,B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2+y 1yb 2=1,x 2x a 2+y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2+y 1y 0b 2=1,x 2x 0a 2+y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2+y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0xa 2+y 0yb 2=1.同理可得焦点在y 轴上的情形.【结论4】(1)过圆y 2a 2+x 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为y 0y a 2+x 0x b2=1;(2)当M x 0,y 0 在椭圆y 2a 2+x 2b2=1a >b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为y 0y a 2+x 0xb2=1.【结论5】(1)过双曲线x 2a 2-y 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为x 0x a 2-y 0y b2=1;(2)当M x 0,y 0 在双曲线x 2a 2-y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:x 0x a2-y 0yb2=1.(3)设过双曲线x 2a 2-y 2b2=1a >0,b >0 外一点M x 0,y 0 引两条切线,切点分别为A x 1,y 1 、B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2-y 1yb 2=1 , x 2x a 2-y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2-y 1y 0b 2=1 , x 2x 0a 2-y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2-y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0x a 2-y 0y b 2=1.同理可得焦点在y 轴上的情形.【结论6】(1)过双曲线y 2a 2-x 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为y 0y a 2-x 0x b2=1;(2)当M x 0,y 0 在双曲线y 2a 2-x 2b2=1a >0,b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:y 0y a 2-x 0xb2=1.1(2023·重庆·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A x 1,y 1 为双曲线C 在第一象限的右支上一点,以A 为切点作双曲线C 的切线交x 轴于点B ,若cos ∠F 1AF 2=12,且F 1B =2BF 2 ,则双曲线C 的离心率为()A.22B.5C.2D.31(22·23高三上·全国·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 上的一点M (异于顶点),过点M 作双曲线C 的一条切线l .若双曲线C 的离心率e =233,O 为坐标原点,则直线OM 与l 的斜率之积为()A.13B.23C.32D.32(2022·全国·统考二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 与椭圆x 24+y 23=1.过椭圆上一点P -1,32作椭圆的切线l ,l 与x 轴交于M 点,l 与双曲线C 的两条渐近线分别交于N 、Q ,且N 为MQ的中点,则双曲线C 的离心率为()。

圆锥曲线中的离心率的问题(含解析)

圆锥曲线中的离心率的问题(含解析)

圆锥曲线中的离心率的问题一、题型选讲题型一 、求离心率的值求离心率的值关键是找到等式关系,解出a 与c 的关系,进而求出离心率。

常见的等式关系主要有:1、题目中给出等式关系;2、通过几何关系如垂直或者夹角的关系得出等式关系;3、挖掘题目中的等式关系。

例1、【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为A BC .2D例2、(2020届山东省泰安市高三上期末)已知圆22:10210C x y y +-+=与双曲线22221(0,0)x y a b a b-=>>的渐近线相切,则该双曲线的离心率是( )A B .53C .52D例3、(2020届山东省九校高三上学期联考)已知直线1l ,2l 为双曲线M :()222210,0x y a b a b-=>>的两条渐近线,若1l ,2l 与圆N :2221x y 相切,双曲线M 离心率的值为( )A BCD .3例4、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2D .例5、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b-=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( ) A .15 B .21 C .53D .73例6、(2020·浙江省温州市新力量联盟高三上期末)已知双曲线22212x y a -=的一条渐近线的倾斜角为6π,则双曲线的离心率为( ) A .233B .263C .3D .2题型二、求离心率的范围求离心率的值关键是找到不等关系,解出a 与c 的关系,进而求出离心率的范围。

圆锥曲线专题[求离心率的值、离心率的取值范围]

圆锥曲线专题[求离心率的值、离心率的取值范围]

圆锥曲线专题 求离心率的值师生互动环节讲课内容:历年高考或模拟试题关于离心率的求值问题分类精析与方法归纳点拨。

策略一:根据定义式求离心率的值在椭圆或双曲线中,如果能求出c a 、的值,可以直接代公式求离心率;如果不能得到ca 、的值,也可以通过整体法求离心率:椭圆中221ab ac e -==;双曲线中221a b a c e +==.所以只要求出ab值即可求离心率. 例1.(2010年全国卷2)己知斜率为1的直线l 与双曲线C :()2222100x y a b a b-=>,>相交于D B 、两点,且BD 的中点为)3,1(M ,求曲线C 的离心率.解析:如图,设),(),(2211y x D y x B 、,则1221221=-b y a x ① 1222222=-by a x ② ①-②整理得0))(())((2212122121=+--+-b y y y y a x x x x ③又因为)3,1(M 为BD 的中点,则6,22121=+=+y y x x ,且21x x ≠,代入③得13222121==--=a b x x y y k BD,解得322=ab ,所以231122=+=+=a b e .方法点拨:此题通过点差法建立了关于斜率与a b 的关系,解得22ab 的值,从而整体代入求出离心率e .当然此题还可以通过联立直线与曲线的方程,根据韦达定理可得),(21b a x x ϕ=+,2),(=b a ϕ或者),(21b a y y ω=+,6),(=b a ω从而解出22a b 的值,最后求得离心率.【同类题型强化训练】1.(呼市二中模拟)已知中心在原点,焦点在x 轴上的双曲线的渐近线方程为032=±y x ,则双曲线的离心率为( ). 313.A 213.B 315.C 210.D 2.(衡水中学模拟)已知中心在原点,焦点在x 轴上的一椭圆与圆222)1()2(r y x =-+-交于B A 、两点,AB 恰是该圆的直径,且直线AB 的斜率21-=k ,求椭圆的离心率.3.(母题)已知双曲线)0(1:22>=-m y m x C ,双曲线上一动点P 到两条渐近线的距离乘积为21,求曲线C 的离心率. 【强化训练答案】1.答案:由双曲线焦点在x 上,则渐近线方程0=±ay bx ,又题设条件中的渐近线方程为032=±y x ,比较可得32=a b ,则313941122=+=+=a b e .2.答案:设椭圆方程为)0(12222>>=+b a by a x ,),(),,(2211y x B y x A ,则1221221=+b y a x ① 1222222=+by a x ② ①-②整理得0))(())((2212122121=+-++-b y y y y a x x x x ③因为AB 恰是该圆的直径,故AB 的中点为圆心)1,2(,且21x x ≠则2,42121=+=+y y x x ,代入③式整理得2221212ab x x y y k -=--=直线AB 的斜率21-=k ,所以21222-=-=a b k ,解得4122=a b所以离心率23411122=-=-==a b a c e .3.答案:曲线C 的渐近线方程分别为0:1=+y m x l 和0:2=-y m x l ,设),(00y x P ,则 点),(00y x P 到直线1l 的距离m y m x d ++=1001,点),(00y x P 到直线2l 的距离my m x d +-=1002,mmy x my m x y m x d d +-=+-⋅+=⋅11220000021因为),(00y x P 在曲线C 上,所以m my x =-2020,故21121=+=⋅m m d d ,解得1=m 所以2=e .策略二:构造c a ,的关系式求离心率根据题设条件,借助c b a ,,之间的关系,沟通c a 、的关系(特别是齐次式),进而得到关于e 的一元方程,从而解方程得出离心率e .例 2.已知21,F F 是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点P 在双曲线上,求双曲线的离心率.解析:如图1,1MF 的中点为P ,则点P 的横坐标为2c-.由c F F PF ==21121, 焦半径公式a ex PF p --=1有a ca c c --⨯-=)2(,即02222=--ac a c 有0222=--e e解得31+=e ,或31-=e (舍去).方法点拨:此题根据条件构造关于c a ,的齐次式,通过齐次式结合离心率的定义ace =整理成关于e 的一元方程,从而解出离心率的值.注意解出的结果要做验证,取符合离心率的范围的结果:),1(),1,0(+∞∈∈双曲线椭圆e e . 【同类题型强化训练】1.(2011新课标)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A 、B 两点,||AB 为C 的实轴长的2倍,则C 的离心率为( ).A 2.B 3.C 2 .D 32.(2008浙江)若双曲线12222=-b y a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ).A 3 .B 5 .C 3 .D 5 【同类题型强化训练答案】1.答案:依据题意a aa c AB 22222=-=,解得2=e .2.答案:依据题意2:3)(:)(22=-+c a c c a c ,整理得223a c =,所以3==ace .策略三:根据圆锥曲线的统一定义求离心率(第二定义)由圆锥曲线的第二定义,知离心率e 是动点到焦点的距离和动点到准线的距离之比,适用于条件含有焦半径的圆锥曲线问题,即e dMF =.例3.(2010年辽宁卷)设椭圆2222:1(0)x y C a b a b +=>>的左焦点为F ,过点F 的直线与椭圆C相交于B A ,两点,直线l 的倾斜角为︒60,2AF FB =,求椭圆C 的离心率.解法一:作椭圆的左准线B A '',过A 作B A ''的垂线,垂足为A ';过B 作B B '的垂线,垂足为B '.过B 作A A '的垂线,垂足为M .如图2.由图,由椭圆的第二定义,则e A A AF ='e AF A A ='⇒,e B B BF ='e BFB B ='⇒ 12::==''e BF e AF B B A A B B A A '='⇒2 且A A BM '⊥,所以M 是A A '的中点又因为直线l 的倾斜角为︒60,即︒=∠=∠60AFx BAM , 所以在BAM Rt ∆中,A A AM AB '==2,故3232=⋅='=AB AB A A AF e . 解法二:设1122(,),(,)A x y B x y ,由题意知10y <,20y >.直线l 的方程为 3()y x c =-,其中22c a b =-联立22223(),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)2330a b y b cy b ++-=解得221222223(2)3(2),33b c a b c a y y a b a b -+--==++因为2AF FB =,所以122y y -=.即 2222223(2)3(2)233b c a b c a a b a b +--=⋅++得离心率 23c e a ==. 方法点拨:该题对于课标地区选择第二种代数法处理,对于自主命题对圆锥曲线的第二定义要求的地区,两种方法都可以给学生讲讲。

(完整word版)圆锥曲线的离心率问题专题训练

(完整word版)圆锥曲线的离心率问题专题训练

圆锥曲线的离心率问题专题训练1.若椭圆1222=+m y x 的离心率等于21,则m = . 2.已知双曲线的渐近线方程为023=±y x ,则双曲线的离心率为 。

3. 过双曲线焦点且垂直于对称轴的直线与双曲线交于A 、B 两点,若|AB|为双曲线实轴长的2倍,则双曲线的离心率为 。

4.已知 F 1 、F 2是椭圆)0(12222>>=+b a by a x 的两个焦点,椭圆上存在一点P ,使得 S ⊿F 1PF 2=23b ,则该椭圆的离心率的取值范围是 。

5.若点P 为椭圆)0(12222>>=+b a by a x 上一点,F 1、F 2为左右两个焦点,且|PF 1|=6|PF 2|,则椭圆离心率的取值范围为 。

6.若点P 为双曲线)0,0(12222>>=-b a by a x 上一点,F 1、F 2为左右两个焦点,且|PF 1|=6|PF 2|,则双曲线离心率的取值范围为 。

7.分别过椭圆)0(12222>>=+b a by a x 的左右焦点F 1、F 2所作的两条直线21l l 、的交点总在椭圆内部,,则该椭圆的离心率的取值范围为 。

8.双曲线)0,0(12222>>=-b a by a x 左右两个焦点为F 1、F 2,以F 1F 2为一边向上作正三角形PF 1F 2,两边与双曲线的交点恰为所在边的中点,则双曲线的离心率为 。

9.若点P 为椭圆)0(12222>>=+b a by a x 上一点,A 、B 为长轴的左右顶点,PA 、PB 的斜率之积为32-,则椭圆的离心率是 。

10.抛物线x y 42=的焦点为F ,准线为l ,l 与双曲线)0(1222>=-a y ax 交于A 、B 两点。

若三角形FAB 为直角三角形,则双曲线的离心率为 。

11.已知椭圆)0(12222>>=+b a by a x 的左焦点为F ,过原点的直线与椭圆交于A 、B 两点,连接AF 、BF ,若|AF|=6,|AB|=10,co s ∠ABF=54,则椭圆的离心率是 。

圆锥曲线常用的二次结论专题练习

圆锥曲线常用的二次结论专题练习

圆锥曲线常用的二次结论专题练习圆锥曲线常用结论专题练一、椭圆的标准方程椭圆的标准方程为x^2/a^2+y^2/b^2=1,其中a>b>0.1.通径:过椭圆的一个焦点且与长轴垂直的弦的长为a,称为通径。

2.离心率:椭圆离心率e=a/sqrt(a^2-b^2)。

3.焦点弦:设过焦点F的直线的倾斜角为α,则焦点弦AB=2b^2/(a-cosα)。

4.垂径定理:对于弦AB的中点M,过M作弦的垂线,垂足为K,则MK^2=b^2-a^2cos^2θ。

5.焦三角形:设椭圆的焦点为F1和F2,点P为椭圆上一点,则焦三角形面积S=b^2tanθ/2,其中θ为角F1PF2的大小。

二、双曲线的标准方程双曲线的标准方程为x^2/a^2-y^2/b^2=1,其中a>0,b>0.1.离心率:双曲线离心率e=c/a,其中c=sqrt(a^2+b^2)。

2.焦点到渐近线的距离:焦点到渐近线的距离为b/sqrt(c^2-a^2)。

3.垂径定理:对于弦AB的中点M,过M作弦的垂线,垂足为K,则MK^2=b^2+a^2cos^2θ。

三、抛物线的标准方程抛物线的标准方程为y^2=2px,其中p>0.1.焦点坐标:抛物线的焦点为F(p,0)。

2.弦长公式:设抛物线上两点为P1(x1,y1)和P2(x2,y2),则弦P1P2的长度为|P1P2|=sqrt[(x1-x2)^2+(y1-y2)^2]。

3.垂足坐标公式:设抛物线上一点为P(x,y),则过点P作抛物线的准线垂线的垂足坐标为(x,y/2)。

四、点F是圆锥曲线一个焦点设焦点为F,离心率为e,焦点在x轴上,过F的弦AB与x轴夹角为θ,F分AB所成的比为λ,则有ecosθ=λ-1/λ+1,或者e^2=1+k^2/λ^2,其中k=AF。

练题:1.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为3.2.已知椭圆E的中心在坐标原点,离心率为2,E的右焦点与抛物线C:y^2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=9.3.已知椭圆x^2/4+y^2/3=1的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若|BF2|+|AF1|的最大值为5,则椭圆的长半轴为3.4.已知椭圆E:x^2/45+y^2/36=1,过点F的直线交E于A,B两点。

高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)

高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)

高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。

一、基础知识: 1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距) (1)椭圆:()0,1e ∈ (2)双曲线:()1,+e ∈∞2、圆锥曲线中,,a b c 的几何性质及联系 (1)椭圆:222a b c =+,① 2a :长轴长,也是同一点的焦半径的和:122PF PF a += ② 2b :短轴长 ③ 2:c 椭圆的焦距 (2)双曲线:222c b a =+① 2a :实轴长,也是同一点的焦半径差的绝对值:122PF PF a −=② 2b :虚轴长 ③ 2:c 椭圆的焦距3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距。

从而可求解 (2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。

如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、典型例题:例1:设12,F F 分别是椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( ) A .33 B .36C .13D .16思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角三角形12PF F 中,1212::2:1:3PF PF F F =,且12122,2a PF PF c F F =+=,所以12122323F F c c e a a PF PF ∴====+ 答案:A小炼有话说:在圆锥曲线中,要注意O 为12F F 中点是一个隐含条件,如果图中存在其它中点,则有可能与O 搭配形成三角形的中位线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的离心率问题专题训练
1.若椭圆1222=+m y x 的离心率等于2
1,则m = . 2.已知双曲线的渐近线方程为023=±y x ,则双曲线的离心率为 。

3. 过双曲线焦点且垂直于对称轴的直线与双曲线交于A 、B 两点,若|AB|为双曲线实轴长的2倍,则双曲线的离心率为 。

4.已知 F 1 、F 2是椭圆)0(122
22>>=+b a b
y a x 的两个焦点,椭圆上存在一点P ,使得 S ⊿F 1PF 2=23b ,则该椭圆的离心率的取值范围是 。

5.若点P 为椭圆)0(122
22>>=+b a b
y a x 上一点,F 1、F 2为左右两个焦点,且|PF 1|=6|PF 2|,则椭圆离心率的取值范围为 。

6.若点P 为双曲线)0,0(122
22>>=-b a b
y a x 上一点,F 1、F 2为左右两个焦点,且|PF 1|=6|PF 2|,则双曲线离心率的取值范围为 。

7.分别过椭圆)0(122
22>>=+b a b
y a x 的左右焦点F 1、F 2所作的两条直线21l l 、的交点总在椭圆内部,,则该椭圆的离心率的取值范围为 。

8.双曲线)0,0(122
22>>=-b a b
y a x 左右两个焦点为F 1、F 2,以F 1F 2为一边向上作正三角形PF 1F 2,两边与双曲线的交点恰为所在边的中点,则双曲线的离心率为 。

9.若点P 为椭圆)0(122
22>>=+b a b
y a x 上一点,A 、B 为长轴的左右顶点,PA 、PB 的斜率之积为3
2-,则椭圆的离心率是 。

10.抛物线x y 42=的焦点为F ,准线为l ,l 与双曲线)0(1222
>=-a y a
x 交于A 、B 两点。

若三角形FAB 为直角三角形,则双曲线的离心率为 。

11.已知椭圆)0(122
22>>=+b a b
y a x 的左焦点为F ,过原点的直线与椭圆交于A 、B 两点,连接AF 、BF ,若|AF|=6,|AB|=10,cos ∠ABF=5
4,则椭圆的离心率是 。

12.若点P 为椭圆)0(122
22>>=+b a b
y a x 上一点,F 1、F 2为左右两个焦点,则2212c =•PF PF ,则椭圆的离心率的取值范围为 。

13.若点P 为椭圆)0(122
22>>=+b a b
y a x 上一点,F 1、F 2为左右两个焦点,α=∠21F PF ,β=∠12F PF 则椭圆的离心率等于 。

14. 若点P 为双曲线)0,0(122
22>>=-b a b
y a x 上一点,F 1、F 2为左右两个焦点,且c
a sin sin 1221=∠∠F PF F PF ,则双曲线的离心率的取值范围为 。

15.已知双曲线)0,0(122
22>>=-b a b
y a x 的右焦点为F(c ,0),若直线)(3c x y -=与双曲线的右支有两个交点,则双曲线的离心率e 的取值范围是 。

16. 双曲线)0,0(122
22>>=-b a b
y a x 的右顶点为A ,在右支上存在点B 、C 使得⊿ABC 为正三角形,则双曲线的离心率e 的取值范围是 。

17.l 是双曲线)0,(122
22>=-b a b
y a x 过一、三象限的渐近线,F 是右焦点,过F 作直线l 的垂线,垂足为M ,若直线FM 与双曲线的两支各有一个交点,则双曲线的离心率的取值范围为 。

18.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为
(A )√5 (B )2 (C )√3 (D )√2
19.设椭圆)0(122
22>>=+b a b
y a x 的右顶点为A ,右焦点为F ,B 为椭圆上在第二象限内
的点,直线BO交椭圆于另一点C,直线BF平分线段AC,则椭圆的离心率为
20.已知双曲线)0,0(122
22>>=-b a b
x a y 的上下焦点分别为F 1和F 2,点P 为双曲线下支上一点,且5
3sin 21=
∠F PF ,若线段PF 1的垂直平分线恰好过点F 2,则双曲线的离心率为 。

21.已知圆16)2(:221=+-y x O 和圆)20(:2222<<=+r r y x O ,动圆M 和圆O 1、O 2都相切,动圆圆心M 的轨迹为圆锥曲线C 1和C 2,设圆锥曲线的离心率分别为e 1、e 2(e 1>e 2),则e 1+2e 2的最小值为 。

22.在△ABC 中,AB =2BC ,以A ,B 为焦点,经过C 的椭圆和双曲线的离心率分别为e 1,e 2,则
A .2111e e -=1
B .2111e e -=2
C .222111e e -=1
D .22
2111e e -=2 23.F 是双曲线C:22
221x y a b
-=(0a >,0b >)的右焦点,过点F 向C 的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B .若2F F A =B ,则C 的离心率是( )
A
B .2 C
.3 D
.3
24.12.,F F 分别为双曲线 22
22:1(0,)x y M a b a b
-=>>的左、右焦点,抛物线 2:2(0)N y px p =>的焦点为 2F ,点P 为双曲线M 与抛物线N 的一个交点,若线段 2PF 的中点在y 轴上,则该双曲线的离心率为
A .
1 B .
1 C .
12 D .
25.12.,F F 分别为双曲线 22
22:1(0,)x y M a b a b
-=>>的左、右焦点,P 是双曲线上一点且|OP|=3a ,|PF 1|、|F 1F 2|、|PF 2| 成等比数列,则双曲线的离心率等于 。

26.有共同焦点F 1、F 2的椭圆和双曲线一个公共点为P ,0
2160=∠PF F ,则它们离心率倒数和的最大值为
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档