2002年武汉大学数学分析(355)考研试题
考研数学:2002年考研数学三_真题及答案(精校版)

设
P
1
T T 1 ,则 B P A P PT AP 1 AP B
T
T
T
A PT BPT , A ( PT BPT )
T 两边左乘 P ,得 B ( P ) P
T T
1
1
故知 B ( P AP ) 的对应于特征值 的特征向量为 PT ,即应选(B).
T
1T
( PT ) PT A ( PT ) 成立.故应选(B).
(5)设随机变量 X 和 Y 都服从标准正态分布,则 (A) X Y 服从正态分布 (C) X 和 Y 都服从 分布
2 2
2
(
2 2
)
2
(B) X Y 服从 分布 (D) X 2 / Y 2 服从 F 分布
答案应填
二、选择题(本题共 5 小题,每小题 3 分,共 15 分,在每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内.) (1)设函数 f ( x) 在闭区间 [a, b] 上有定义,在开区间 (a, b) 内可导,则 (A)当 f (a) f (b) 0 时,存在 (a, b) ,使 f ( ) 0 . (B)对任何 (a, b) ,有 lim[ f ( x) f ( )] 0 .
x 1
x (1,1] x 1
f ( 1) f ( 1) ,但 1 f ( x) 1 (当 x (1,1) ),不满足罗
尔中值定理,当然也不满足拉格朗日中值定理的结论.
(2)设幂级数
an xn 与 bn x n 的收敛半径分别为
n 1 n 1
a2 n 5 1 与 ,则幂级数 2 n x 的收敛 3 3 i 1 b n
武汉大学近二十年数学分析考研真题

其中 N > 0 为一常数,且逐点有 fn (x) → f (x) (当 n → +∞ )。证明: (1) f (x) 在[a,b] 上连续。
(2) fn (x)→ f (x) 。
6.设
f
(x,
y)
=
⎪⎪⎧ g ( x, ⎨
y ) sin
⎪0,
⎪⎩
1, x2 + y2
(x, y) ≠ (0,0)
,证明
+
1 32
−
1 4
+
1 52
+"+
1 (2n −1)2
−
1 2n
+ " 是否收敛?为什么?
∑ 3.求级数 ∞ ⎜⎛1 + 1 ⎟⎞n(n+1) x n 的收敛区域。
n=1 ⎝ n ⎠ 4.求函数 f (x, y, z) = xyz 在条件 x + y = 1 及 x − y + z 2 = 1下的极值。
∫+∞⎡
lim
n→+∞
−∞⎢⎣
f
⎜⎛ ⎝
y
+
1 n
⎟⎞ − ⎠
f
⎤ ( y)⎥⎦dy
=
0。
3.设 f (x, y) 为连续函数,且当 (x, y) ≠ (0,0) 时,f (x, y) > 0 ,及满足 f (cx,cy) = cf (x, y) ,
∀c > 0 。证明存在α , β > 0 ,使得α x2 + y 2 ≤ f (x, y) ≤ β x2 + y 2 。
其中
∆u
=
∂2u ∂x 2
+
2002年湖北武汉大学管理学原理考研真题及答案

2002年湖北武汉大学管理学原理考研真题及答案一、判断说明(判断下列命题的对错,并且都要说明判断的理由。
每小题2分:判断正确1分,说明正确1分,共6分。
):1.对于一切都在快速变化的当今时代,计划赶不上变化,所以没有必要作长期计划。
答:错。
因为短期计划通常是指年度计划,是根据中长期计划规定的目标和当前的实际情况,对计划年度的各项活动所做出的总体安排。
在计划工作中应使坚持长期计划与短期计划相结合的原则,以长期计划指导短期计划,同时又用短期计划补充和丰富长期计划。
2.出现“三个和尚没水吃”的问题,主要是和尚太懒,应该加以帮助,提高他们热爱劳动的认识。
答:错。
因为这个问题的原因是由于缺乏激励。
麦克雷戈的X理论认为人是以一种合乎理性的、精打细算的方式行事的,人的行为是由经济因素推动和激发的,个人在组织中处于被动的、受控制的地位。
这是对人性的一种早期的、传统的认识。
在这样的认识指导下,管理者激励下属的主要手段就是运用奖励和惩罚“两手”,来激发和诱导人们以组织或管理者所期望的方式行事,或做出组织或管理者所要求的行为。
3.“岗位轮换”除了作为培训管理人员的重要手段之外,在我国还具有加强外部监督控制的作用。
答:错。
“岗位轮换”是人力资源管理的重要环节,是培训管理人员的重要手段,在我国,通过岗位轮换能够加强内部制约机制,而不是外部监督机制。
二、名词解释(先翻译成中文再解释,每小题3分,共9分):1.MBO:又称成果管理,或标的管理,是20世纪50年代出现于美国,以泰罗的科学和行为科学理论为基础形成的一套管理制度。
目标管理的主要内容:(1)目标管理是一个程序和过程,是一个全面的管理系统,它用系统的方法,使许多关键管理活动结合起来,将组织的整体目标转换为组织单位和成员的目标,通过层层落实和采取保证措施,有效而又高效地实现目标。
(2)目标管理能够很好地体现员工参与管理,由德鲁克提出,经由其它一些人发展,逐步成为西方许多国家所普遍采用的一种系统地制定目标并进行管理的有效方法。
2002考研数二真题及解析

2002年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上)(1) 设函数tan 21,0arcsin()2,xx e x x f x ae x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =处连续,则a = .(2) 位于曲线(0)xy xe x -=≤<+∞下方,x 轴上方的无界图形的面积是_______.(3) 微分方程20yy y '''+=满足初始条件011,2x x yy =='==的特解是_________.(4) 1limn n →∞=_____ . (5) 矩阵022222222--⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦的非零特征值是_________.二、选择题(本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设函数()f u 可导,2()y f x =当自变量x 在1x =-处取得增量0.1x ∆=-时,相应的函数增量y ∆ 的线性主部为0.1,则(1)f '=( )(A)-1 (B)0.1 (C)1 (D)0.5 (2) 设函数()f x 连续,则下列函数中,必为偶函数的是( )(A)20()xf t dt ⎰ (B)20()xf t dt ⎰(C)[()()]xt f t f t dt --⎰(D)0[()()]xt f t f t dt +-⎰(3) 设()y x =是二阶常系数微分方程3xy py qy e '''++= 满足初始条(0)(0)0y y '==的特解,则当0x →,函数2ln(1)()x y x +的极限( )(A)不存在 (B)等于1 (C)等于2 (D)等于3 (4) 设函数()y f x =在(0,)+∞内有界且可导,则( )(A)当lim ()0x f x →+∞=时,必有lim ()0x f x →+∞'=.(B)当lim ()x f x →+∞'存在时,必有lim ()0x f x →+∞'=.(C)当0lim ()0x f x +→=时,必有0lim ()0x f x +→'=. (D)当0lim ()x f x +→'存在时,必有0lim ()0x f x +→'=. (5) 设向量组123,,ααα线性无关,向量1β 可由123,,ααα线性表示,而向量2β 不能由123,,ααα线性表示,则对于任意常数k ,必有( )(A)123,,ααα , 12k ββ+线性无关; (B)123,,ααα , 12k ββ+线性相关; (C)123,,ααα,12k ββ+线性无关; (D)123,,ααα,12k ββ+线性相关三、(本题满分6分)已知曲线的极坐标方程是1cos r θ=- ,求该曲线上对应于6πθ=处的切线与法线的直角坐标方程.四、(本题满分7分)设2232,102(),01(1)xx x x x f x xe x e ⎧+-≤<⎪⎪=⎨⎪≤≤⎪+⎩求函数1()()xF x f t dt -=⎰的表达式.五、(本题满分7分)已知函数()f x 在(0,)+∞内可导()0f x >,lim ()1x f x →+∞= , 且满足110()lim()()hx h f x hx e f x →+=,求()f x .六、(本题满分8分)求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =, 与直线1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小.七、(本题满分7分)某闸门的性状与大小如图所示,其中直线l 为对 称轴,闸门的上部为矩形ABCD ,下部由二次抛物线 与线段AB 所围成,当水面与闸门的上端相平时,欲使 闸门矩形部分承受的水压力与闸门下部承受的水压力之 比为5:4,闸门矩形部分的高h 应为多少m (米)?八、(本题满分8分)设1103,1,2,)n x x n +<<==,证明数列{}n x 的极限存在,并求此极限.九、(本题满分8分)设0a b <<,证明不等式222ln ln a b a a b b a -<<+-十、(本题满分8分)设函数 ()f x 在0x =的某邻域内具有二阶连续导数,且(0)0,(0)0,f f '≠≠(0)0.f ''≠ 证明:存在惟一的一组实数123,,λλλ,使得当0h →时,123()(2)(3)(0)f h f h f h f λλλ++-是比2h 高阶的无穷小.十一、(本题满分6分)已知,A B 为3 阶矩阵,且满足124A B B E -=-,其中E 是3阶单位矩阵. (1) 证明:矩阵2A E -可逆;(2) 若120120002B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求矩阵.A十二、(本题满6分)已知4阶方阵1234(,,,),A αααα=1234,,,αααα均为4维列向量,其中234,,ααα线性无关,1232ααα=-.如果1234βαααα=+++,求线性方程组Ax β=的通解.D1m2002年全国硕士研究生入学统一考试数学二试题解析一、填空题(1)【答案】 -2【详解】如果分段函数()f x 连续,则()f x 在0点处的左右极限相等,从而确定a 的值. 当0x →+时,tan 1tan xex x ---;arcsin22x x,所以有 tan 00001tan lim ()lim lim lim 2arcsin222x x x x x e x xf x x x x++++→→→→---==-==; 20lim ()lim (0)xx x f x ae a f --→→=== 如果()f x 在0x =处连续,必有(0)(0)(0),f f f +-== 即 2.a =-(2)【答案】 1 【详解】面积00x x x xS xe dx xde xe e dx +∞+∞----+∞⎡⎤==-=--⎣⎦⎰⎰⎰lim 00x xx x b b xe e xe e ----→+∞+∞⎡⎤⎡⎤=--=--⎣⎦⎣⎦lim 11b bb be e --→+∞⎡⎤=---=⎣⎦ 其中 1lim limlim 0bb bb b b b bee e -→+∞→+∞→+∞==洛.(3)【答案】y =【详解】方法1:这是属于缺x 的(,)y f y y '''=类型. 命,dp dp dy dpy p y p dx dy dx dy'''====. 原方程20yy y '''+=化为20dpypp dy+=,得 0p =或0dpyp dy+= 0p =,即0dy dx =,不满足初始条件1'02y x ==,弃之;所以0p ≠所以,0dp yp dy +=,分离变量得dy dp y p =-,解之得1.C p y = 即1.C dy dx y= 由初始条件11,'2yy x x ====,可将1C 先定出来:1111,212C C ==. 于是得12dy dx y=解之得,22,y x C y =+=.以01x y ==代入,得1=,所以应取“+”号且21C =.于是特解是y =方法2:将20y y'''+=改写为()0yy ''=,从而得1yy C '=. 以初始条件1(0)1,(0)2y y '==代入,有1112C ⨯=,所以得12yy '=. 即21yy '=,改写为2()1y '=. 解得2,y x C =+y =1=""+且21C =. 于是特解y =(4)【答案】π【详解】利用定积分的概念将被积函数化为定积分求极限.因为1lim ...n n →∞ 11limnn i nππ→∞==11lim ()ni n i i f x nππ→∞==∆∑ 其中(),(1,2,,)i f x x i n nπ=∆==,所以根据定积分的定义,有1lim n n →∞+1cos 2x dx πππππ===⎰⎰(5)【答案】4【详解】记022222222A --⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,则02222222222222222E A λλλλλλλ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭(对应元素相减)两边取行列式,E A λ-22222222λλλ=---22230222λλλλ+-行行222011222λλλλ -把第行的公因子提出来0122011222λλλ-⨯ -行行11111(1)22λλλ+⋅⋅--按第行展开(其中11(1)+-指数中的1和1分别是λ所在的行数和列数)2(22)λλ=--2(4)λλ=-令0E A λ-=,解得1230,4λλλ===,故4λ=是矩阵的非零特征值.(另一个特征值是0λ=(二重))二、选择题 (1)【答案】(D)【详解】在可导条件下,0()x x dyy x o x dx=∆=∆+∆,当00x x dy dx=≠时x x dy x dx=⋅∆称为y ∆的线性主部.而2()2dy x f x x x dx '⋅∆=∆,以1,0.1x x =-∆=-代入得(1)0.2dyx f dx'⋅∆=⨯,由题设它等于0.1,于是(1)0.5f '=,应选(D).(2)【答案】(D)【详解】对与(D),令0()[()()]xF x t f t f t dt =+-⎰,则0()[()()]xF x t f t f t dt --=+-⎰,令t u =-,则dt du =-,所以()[()()]()[()()]xxF x t f t f t dt u f u f u du --=+-=--+-⎰⎰[()()](),xu f u f u du F x =-+=⎰所以(D)为偶函数.同理证得(A)、(C)为奇函数,而(B)不确定,如()1f t t =+.故应选(D).(3)【答案】(C)【详解】由3xy py qy e '''++=,且(0)(0)0y y '==,可知(0)1y ''=方法1:因为当20x →时,22ln(1)x x +,所以20ln(1)lim ()x x y x →+=2000222lim lim lim 2()()()1x x x x x y x y x y x →→→==='''=, 故选(C).方法2:由于(0)(0)0,(0)1y y y '''===. 将函数()y x 按麦克劳林公式展开22()00()2x y x o x =+++,代入2ln(1)()x y x +,有222000222ln(1)1lim lim lim 211()()()22x x x x x o x y x x o x x→→→+==++=.(4) 【详解】方法1:排斥法.令21()sin f x x x =,则()f x 在(0,)+∞有界,2221()sin 2cos f x x x x'=-+, lim ()0x f x →+∞=,但lim ()x f x →+∞'不存在,故(A)不成立;0lim ()0x f x +→=,但 0lim ()10x f x +→'=≠,(C)和(D)不成立,故选(B). 方法2:证明(B)正确. 设lim ()x f x →+∞'存在,记lim ()x f x A →+∞'=,证明0A =.用反证法,若0A >,则对于02Aε=>,存在0X >,使当x X >时,()2A f x A ε'-<=,即3()2222A A A AA f x A '=-<<+=由此可知,()f x '有界且大于2A.在区间[,]x X 上应用拉格朗日中值定理,有()()()()()()2Af x f X f x X f X x X ξ'=+->+-从而lim ()x f x →+∞=+∞,与题设()f x 有界矛盾.类似可证当0A <时亦有矛盾. 故0A =.(5)【答案】A【详解】方法1:对任意常数k ,向量组123,,ααα,12k ββ+线性无关. 用反证法,若123,,ααα,12k ββ+线性相关,因已知123,,ααα线性无关,故12k ββ+可由123,,ααα线性表出. 即存在常数123,,λλλ,使得 12112233k ββλαλαλα+=++又已知1β可由123,,ααα线性表出,即存在常数123,,l l l ,使得1112233l l l βααα=++代入上式,得121122332112233()k k l l l ββαααβλαλαλα+=+++=++⇒2111222333()()()kl kl kl βλαλαλα=-+-+-与2β不能由123,,ααα线性表出矛盾.故向量组123,,ααα,12k ββ+线性无关,选(A) 方法2:用排除法B 选项:取0k =,向量组123,,ααα,12k ββ+即123,,ααα,2β线性相关不成立,否则因为123,,ααα,2β线性相关,又123,,ααα线性无关,故2β可由123,,ααα线性表出.即存在常数123,,λλλ,使得 2112233βλαλαλα=++与已知矛盾,排除(B).C 选项:取0k =,向量组123,,ααα,12k ββ+,即123,,ααα,1β线性无关不成立,因为1β可由123,,ααα线性表出,123,,ααα,1β线性相关,排除(C).D 选项:0k ≠时,123,,ααα,12k ββ+线性相关不成立.若123,,ααα,12k ββ+线性相关,因已知123,,ααα线性无关,故12k ββ+可由123,,ααα线性表出.即存在常数123,,λλλ,使得 12112233k ββλαλαλα+=++. 又已知1β可由123,,ααα线性表出,即存在常数123,,l l l ,使得1112233l l l βααα=++代入上式,得121122332112233()k l l l k ββαααβλαλαλα+=+++=++ ⇒2111222333()()()k l l l βλαλαλα=-+-+-因为0k ≠,故3311222123l l l kkkλλλβααα---=++与2β不能由123,,ααα线性表出矛盾.故123,,ααα,12k ββ+线性相关不成立,排除(D). 故选(A).三【详解】由极坐标到直角坐标的变换公式cos sin x r y r θθ=⎧⎨=⎩,化极坐标曲线1cos r θ=-为直角坐标的参数方程为(1cos )cos (1cos )sin x y θθθθ=-⎧⎨=-⎩, 即 2c o s c o ss i nc o s s i n x y θθθθθ⎧=-⎨=-⎩ 曲线上6πθ=的点对应的直角坐标为31,2424-- 22666cos sin cos 1.sin 2cos sin dy dy d dx dxd ππθθπθθθθθθθθθ===+-===-+于是得切线的直角坐标方程为13()24y x -=--,即504x y -=.(这是由直线的点斜式得到的,直线的点斜式方程为00()y y k x x -=-,由导数的几何意义知在6πθ=时斜率为1,且该点的直角坐标为31,42), 法线方程为113(()),24124y x --=---即1044x y +-+=.(这是由直线的点斜式方程及在同一点切线斜率与法线斜率为负倒数的关系而得) 四【详解】当10x -≤<时1()()x F x f t dt -=⎰223131(2)()122x x t t dt t t -=+=+-⎰3211.22x x =+-当01x ≤<时,011()()()()x xF x f t dt f t dt f t dt --==+⎰⎰⎰232001()12(1)tx t te t t dt e =++-+⎰0112(1)x t td e =--+⎰010211x t tx t dt e e =--+++⎰01211tx x t x e dt e e --=--+++⎰1ln(1)021t x x x e e -=---++1ln ln 2211x xx x e e e =--++++ 所以3211,1022()1ln ln 2,01112xx x x x x F x e x x e e ⎧+--≤<⎪⎪=⎨⎪-+-≤<⎪++⎩当当五【详解】因为11()ln h ()()()f x hx hf x f x hx ef x ⎛⎫+ ⎪⎝⎭⎛⎫+= ⎪⎝⎭,又 001()1limln lim (ln ()ln ())()h h f x hx f x hx f x h f x h →→⎛⎫+=+- ⎪⎝⎭, 0x ≠ 0ln ()ln ()lim()h f x hx f x x hx→+-=⨯()(ln ())()xf x f x x f x ''=⨯=从而得到 1()1()0()lim ()xf x hf x x h f x hx e ef x '→⎛⎫+= ⎪⎝⎭由题设于是推得()1(ln ())()xf x f x x f x x ''==,即21(ln ())f x x'= 解此微分方程,得 11ln ()f x C x=-+,改写成 1()x f x Ce -=再由条件lim ()1x f x C →+∞==,于是得1().xf x e -=六【详解】这是一阶线性微分方程21y y x'-=-,由通解公式(如果一个一阶线性方程为()()y p x y q x '+=那么通解为()()[()]p x dx p x dxy e q x e dx C -⎰⎰=+⎰)有 22[]dx dx x x y e e dx C -⎰⎰=-+⎰221[]x dx C x =-+⎰221(),12x C x Cx x x=+=+≤≤由曲线2y x Cx =+与1,2x x ==及x 轴围成的图形绕x 轴旋转一周的旋转体的体积为2222131157()()523V x Cx dx C C ππ=+=++⎰ (旋转体的体积公式:设有连续曲线:()()y f x a x b Γ=≤≤,()0f x ≥与直线,x a x b ==及x 轴围成平面图形.该图形绕x 轴旋转一周产生旋转体的体积为2()ba V f x dx π=⎰)取C 使V 最小,由求最值的方法知先求函数的驻点,即0dVdC=的点, 6215()052dV C dC π=+= 解得75.124C =- 又()0V C ''>,故75124C =-为V 的惟一极小值点,也是最小值点,于是所求曲线为275.124y x x =-七【详解】方法1:建立坐标系如下图,由于底部是二次抛物线我们设此抛物线为2y px q =+,由坐标轴的建立知此抛物线过(0,0),(1,1)点,把这两点代入抛物线的方程,得220011p q p q⎧=⨯+⎨=⨯+⎩,所以0,1q p ==. 即底部的二次抛物线是2y x =,11x -≤≤.细横条为面积微元,按所建立的坐标系及抛物线的方程,得到面积微元2dA xdy =,因此压力微元2(1)dp gx h y dy ρ=+- (这是由压力的公式得到的:压力=压强⨯面积)平板ABCD 上所受的总压力为1112(1)hP gx h y dy ρ+=+-⎰其中以1x =代入,计算得21P gh ρ=.抛物板AOB 上所受的总压力为1202(1),P gx h y dy ρ=+-⎰其中由抛物线方程知x =2124()315P g h ρ=+,由题意12:5:4P P =,即251244()315h h =+ 解之得2h =(米)(13h =-舍去),即闸门矩形部分的高应为2m .D八【详解】由103x <<知1x 及13x -()均为正数,故211130(3).22x x x <≤+-= (2()2a b ab +≤,a b 为正数)假设302k x <≤,则再一次用不等式2()2a b ab +≤,得113(3).22k k k x x x +≤+-=由数学归纳法知,对任意正整数2n ≥有302n x <≤.另一方面,1n n n x x x +-20.≤=≥所以{}n x 单调增加.单调增加数列{}n x 有上界,所以lim n n x →∞存在,记为.a由1n x +=两边取极限,于是由极限的运算性质得a =即2230,a a -=解得32a =或0a =,但因10x >且单调增,故0a ≠,所以 3lim 2n n x →∞=.九【详解】左、右两个不等式分别考虑. 先证左边不等式, 方法1:由所证的形式想到用拉格朗日中值定理.ln ln 1(ln ),0.x b ax a b b aξξξ=-'==<<<-而22112a b a bξ>>+中第二个不等式来自不等式222a b ab +>(当0a b <<时),这样就证明了要证明的左边.方法2:用单调性证,将b 改写为x 并移项,命222()()ln ln a x a x x a a xϕ-=--+,有()0a ϕ=. 22222124()()()a ax x a x x a x a x ϕ-'=-+++222222()4()0()()x a ax x a x a x a x --=+>++(当0a x <<),所以,当0x a >>时()x ϕ单调递增. 所以()()0x a ϕϕ>=,故()0b ϕ>, 即222()()ln ln 0a b a b b a a b ϕ-=-->+⇒22ln ln 2b a ab a a b->-+再证右边不等式,用单调性证,将b 改写为x 并移项,命()ln ln ),x x a x aψ=---有()0a ψ=,及21()0,x x ψ'==<所以当0x a >>时,()0x ψ<,再以x b =代入,得ln ln ),b a b a-<-即ln ln b a b a -<-右边证毕.十【详解】从题目结论出发,要证存在唯一的一组123,,λλλ,使得1232()(2)(3)(0)lim0h f h f h f h f L h λλλ→++-==由极限的四则运算法则知,分子极限应为0,即[]1230lim ()(2)(3)(0)h f h f h f h f λλλ→++=由于()f x 在0x =连续,于是上式变形为123(0)()(0).f f λλλ++= 由(0)0,f ≠知123 1.λλλ++= (1)由洛必达法则,1232()(2)(3)(0)limh f h f h f h f L hλλλ→++-=1230()2(2)3(3)lim 2h f h f h f h hλλλ→'''++= (2) 由极限的四则运算法则知分子的极限应是0,即1230lim(()2(2)3(3))0h f h f h f h λλλ→'''++=由于()f x '在0x =连续,于是上式变形为123(23)(0)0f λλλ'++=,由(0)0,f '≠知123230λλλ++= (3)对(2)再用洛必达法则,和()f x ''在0x =连续1231230()4(2)9(3)1lim(49)(0)22h f h f h f h L f λλλλλλ→''''''++''==++ 由(0)0f ''≠,故应有123490λλλ++= (4)将(1)、(3)、(4)联立解之,由于系数行列式11112320,149=≠ 由克莱姆法则知,存在唯一的一组解满足题设要求,证毕.十一【详解】(1) 由题设条件124A B B E -=-,两边左乘A ,得124AA B AB A -=-,即24B AB A =-24AB B A ⇒-=所以 (2)A E B -2AB B =-4488A A E E ==-+4(2)8A E E =-+,⇒(2)4(2)8A E B A E E ---=⇒(2)(2)48A E B A E E E ---⋅=⇒(2)(4)8A E B E E --=⇒1(2)(4)8A EB E E --=根据可逆矩阵的定义知2A E -可逆,且11(2)(4)8A EB E --=-.(2) 由(1)结果知11(2)(4)8A EB E --=-,根据逆矩阵的性质111()kA k A ---=,其中k为不等于零的常数,有1112(4)8(4)8A E B E B E --⎡⎤-=-=-⎢⎥⎣⎦故 18(4)2A B E E -=-+又 1204003204120040120002004002B E ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦(对应元素相减) 因为若()()1A E E A - →初等行变换,对[]4B E E -进行初等行变换,[]3201004120010002001B E E ⎡--⎤⎢⎥-=-⎢⎥⎢⎥-⎣⎦13120010320100002001⎡-⎤⎢⎥→--⎢⎥⎢⎥-⎣⎦、行互换2131200100801300011002+⨯⎡⎤⎢⎥-⎢⎥→-⎢⎥⎢⎥-⎢⎥⎣⎦行行12()8010120130100880011002⨯-⎡⎤⎢⎥-⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦行12211044100130100880011002+⨯⎡⎤-⎢⎥⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦行行 故11104413(4)0881002B E -⎡⎤-⎢⎥⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,代入18(4)2A B E E -=-+中,则 18(4)2A B E E -=-+110442138028821002⎡⎤-⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥=--+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥⎣⎦(常数与矩阵相乘,矩阵的每一个元素都需要乘以该常数)220213020042-⎡⎤⎡⎤⎢⎥⎢⎥=--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦020110002⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦(对应元素相加)十二【详解】方法1:记[]1234,,,A αααα=,由234,,ααα线性无关,及123420,αααα=-+即1α可以由234,,ααα线性表出,故1234,,,αααα线性相关,及1234βαααα=+++即β可由1234,,,αααα线性表出,知[][][][]12341234123,,,,,,,(),,3r A r r r A r βααααβααααααα=====系数矩阵的秩与增广矩阵的秩相等,故Ax β=有解.对应齐次方程组0Ax =,其系数矩阵的秩为3,故其基础解系中含有4-3(未知量的个数-系数矩阵的秩)个线性无关的解向量,故其通解可以写成k ξ,η*是Ax β=的一个特解,根据非齐次线性方程组的解的结构定理,知Ax β=的通解为k ξη*+,其中k ξ是对应齐次方程组0Ax =的通解,η*是Ax β=的一个特解,因123420,αααα=-+故[]123412341220,,,010αααααααα⎡⎤⎢⎥-⎢⎥-+-==⎢⎥⎢⎥⎣⎦,故[]1,2,1,0Tξ=-是0Ax =的一个非零解向量,因为0Ax =的基础解系中只含有一个解向量,故[]1,2,1,0Tξ=-是0Ax =的基础解系.又[]1234123411,,,11βαααααααα⎡⎤⎢⎥⎢⎥=+++=⎢⎥⎢⎥⎣⎦,即1111A β⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦故[]1,1,1,1Tη*=是Ax β=的一个特解,根据非齐次线性方程组的解的结构定理,方程组的通解为[][]1,2,1,01,1,1,1T Tk -+.(其中k 是任意常数) 方法2:令[]1234,,,Tx x x x x =,则线性非齐次方程为[]1234,,,Ax x αααα=[]12123434,,,x x x x αααα⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦11223344x x x x ααααβ=+++=已知1234βαααα=+++,故11223344x x x x αααα+++=1234αααα+++将1232ααα=-代入上式,得23122334423234(2)(2)x x x x αααααααααα-+++=-+++⇒21312233442323424223x x x x x αααααααααααα-+++=-+++=+⇒12231334424(2)30x x x x x αααααα+-++--= ⇒12213344(23)()(1)0x x x x x ααα+-+-++-=由已知234,,ααα线性无关,根据线性无关的定义,不存在不全为零的常数使得2233440k k k ααα++=,上式成立当且仅当1213423010x x x x x +=⎧⎪-+=⎨⎪-=⎩ 其系数矩阵为210010100001⎛⎫⎪- ⎪ ⎪⎝⎭,因为3阶子式10001010001=≠,其秩为3,故其齐次线性方程组的基础解系中存在1个(4-3)线性无关的解向量,取自由未知量3x k =,则方程组有解431321,,,23x x k x x k x k =====-+故方程组Ax β=有通解123410232310101x k x k k x k x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦.(其中k 是任意常数)。
武汉大学《数学分析》《高等代数》历年考研真题(2009-2018汇总)

4
8! ( K 14 ©) lim an = +∞, y²:
n→∞
Ô! ( K 14 ©) ¼ê
1n
lim n→∞ n
ak = +∞.
k=1
(x2 + y2) sin f (x, y) =
0,
1 , x2 + y2 = 0; x2 + y2
x2 + y2 = 0.
1. ¦ fx(0, 0), fy(0, 0); 2. y²: fx(0, 0), fy(0, 0) 3 (0, 0) ØëY; 3. y²: f (x, y) 3 (0, 0) Œ‡, ¿¦ df (0, 0).
l! ( K 15 ©) z(x, y) ëY
Œ‡, 釩•§
1
∂2z
∂2z ∂2z
1
∂z ∂z
(x2 + y2)2
∂x2
+
2 ∂x∂y
+
∂y2
− (x2 + y2)3
+ ∂x ∂y
= 0.
ŠCþ“† u = xy, v = x − y. 1. ¦“† •§; 2. •ÑCþ“†” :8, ¿`²”
4. OŽ F (α), Ù¥:
eα
x+3α
F (α) = dx
f (x, y)dδ.
D
¦ f (x, y).
Ê! ( K 14 ©) f (x) ´ {(x, y)|x2 + y2 1} þ gëYŒ‡¼ê, …÷v
∂2f ∂x2
+
∂2f ∂y2
= (x2 + y2)2,
Á¦È©
x2+y2 1
x ∂f
武汉大学考研真题宏微观经济学2002【试题+答案】

武汉大学2002研2002年攻读硕士学位研究生入学考试试题科目名称:宏微观经济学科目代码:437一、名词解释(每题2分,共20分)1.折旧(depreciation)2.边际效用(marginal utility)3.公共品4.帕雷托效率5.风险回避6.消费者剩余7.菲利普斯曲线8.流动性陷阱9.消费价格指数10.财富效应二、计算说明题1.设供给函数为S=2+3P;需求函数为D=10-P。
(1)求解市场均衡的价格与产量水平。
(2)求在此均衡点的供给弹性与需求的价格弹性。
(3)若征收从量税t=1,求此时新的均衡价格与产量水平。
(4)求消费者和厂商各承受了多少税收份额。
(5)图示你的上述结论。
2.设一个宏观经济中已知以下参数或函数:I=35,G=25,C=100+(4/5)Y。
(1)求解此时的均衡收入与储蓄水平。
(2)若由于某种原因,此时的产出水平为850,则非愿意存货为多少?(3)在(1)的条件中,假设税收为T=0.1Y,则新的均衡收入、乘数为多少?(4)在(3)的条件中,假设转移支付为TR=vY,则此时乘数是怎样的,较(3)中的乘数大还是小?(5)在(3)的条件中,假设净出口函数为NX=10-0.1Y,求此时的均衡收入与乘数。
三、分析简答题1.分析无差异曲线具有哪些性质。
2.如何从消费者最优选择推导出需求曲线?吉芬品的需求曲线是怎样的?3.什么是平均成本,什么是边际成本?为什么当二者相等时,平均成本达到最小值?4.1990年某国的GNP为49 980亿元,而GDP为50 000亿元,这两个概念分别是什么含义?为什么会有差异?5.通货膨胀是怎样形成的?对经济活动有什么影响?四、问答题1.试比较分析完全竞争市场与完全垄断市场的特征和均衡机制。
为什么各国政府都对垄断行为采取一定的限制?2.试推导IS-LM模型,并借助它说明当政策采用财政政策时对均衡的收入与利率分别有何影响。
答案部分。
武汉大学图书馆学02-07年真题

科目名称:图书分类基础(含中文文献编目)一、名词解释(共5小题,每小题4分,共20分)1、分面分类法2、电子分类法3、复分表4、主题目录5、标目规范控制二、简答题(共5小题,每小题10分,共50分)1、确定分类标准的运用次序时,在哪些情况下可以不严格遵守概念的划分规则?2、试比较层累标记制、顺序标记制、分面标记制三者的优点与缺点。
3、简述DDC标记符号与标记制度的特点。
4、简述分类标引工作的程序。
5、《中国机读目录通讯格式》的数据字段区设置了哪些功能块?三、论述题(共2小题,每小题15分,共30分)1、试分析《中图法》第4版、《资料法》第4版两者在标记系统上的相同与不同之处。
2、试比较卡片式目录、书本式目录、缩微目录、机读目录四者的优点与缺点。
科目名称:图书馆学基础(含中国图书和图书馆史)一、名词解释(共10小题,每小题3分,共30分)1、情报意识2、词频统计3、引文分析4、客观知识5、复合图书馆6、杜定友7、弘文馆8、行款9、中华图书馆协会10、e-book二、简答题(共4小题,每小题10分,共40分)1、图书馆学理论基础与图书馆哲学有何联系?2、知识集合的主要功能是什么?3、衡量一个国家图书馆事业的整体水平要通过哪些指标?4、“五·四”以后我国图书的发展出现了哪些变化?三、论述题(共2小题,每小题15分,共30分)1、试论图书馆实现个性化服务的重要意义。
2、晚清藏书楼衰落的原因是什么?科目名称:目录学概论(含中文工具书)一、名词解释(每小题3分,共24分)1、综述2、辨章学术,考镜源流3、别裁4、国家书目控制5、电子工具书6、搜索引擎7、反切法8、文献检索二、简答题(每小题6分,共30分)1、简述评价国家书目的标准2、略述地方文献书目的作用3、简述文摘的特点4、简论类书、政书的特点5、略述历史人物传记资料的文献分布三、论述题(共46分)1、论述书目情报服务的发展趋势(15分)2、试论宋代史学家郑樵的目录学思想(15分)3、试述查找资料的基本方法(16分)科目名称:图书馆学基础(含中国图书和图书馆史、文献分类学)一、名词解释(共5小题,每小题4分,共20分)1、《请开献书之路表》2、施莱廷格3、“知识交流说”4、多重列类法5、电子分类法二、简答题(共7小题,每小题10分,共70分)1、我国古代活字印刷技术的种类有哪些?2、列宁对图书馆的论述都有哪些内容?3、客观知识具有哪些基本性质?4、概念逻辑原理在文献分类法中的应用主要体现在哪些方面?5、简述文献分类法中同位类的排列方法。
数学分析与高等代数考研真题详解--武汉大学卷

−
n+1
n
−
x x x x l xl x xl x =
−
n+ p
n+ p−1 +…+
-
n+1
< 2[
n
2 n+ p
1
+ ... +
−
] 2
1
n +1
l x x l l l x x <
2( − 2 l −1
)
1
1
n
=M
−n
(M=
2− 2 l −1
1)
显然由柯西收敛准则知,对于 ∀ε > 0 , ∃N > 0 ,使得 n>N 时
wwwboss163com博士家园二零一零年二月博士家园系列内部资料数学分析与高等代数考研真题详解武汉大学考研数学专卷目录9501年数学分析试题解答电子版在随书附赠的光盘中2002年招收硕士研究生入学考试数学分析试题2002年招收硕士研究生入学考试数学分析试题解答2002年招收硕士研究生入学考试高等代数试题2002年招收硕士研究生入学考试高等代数试题解答2003年招收硕士研究生入学考试数学分析试题及解答2003年招收硕士研究生入学考试高等代数试题及解答2004年招收硕士研究生入学考试数学分析试题及解答2004年招收硕士研究生入学考试高等代数试题及解答2005年招收硕士研究生入学考试高等代数试题及解答2005年招收硕士研究生入学考试数学分析试题及解答2006年招收硕士研究生入学考试数学分析试题及解答2007基础数学复试题2008年招收硕士研究生入学考试数学分析试题及解答2008年招收硕士研究生入学考试线性代数试题及解答2009年数学分析试题及解答电子版在随书附赠的光盘中2009年高等代数试题及解答电子版在随书附赠的光盘中2009博士家园系列内部资料武汉大学博士家园系列内部资料2002年数学分析答案由归纳法知n123