数学分析_各校考研试题及答案
2022年华南理工数学分析考研试题及解答

2022年华南理工数学分析考研试题及解答n例1.设f:RnRn,且fC1R,满足f某fy某y,对于任意n,都成立.试证明f可逆,且其逆映射也是连续可导的.某,yR证明显然,对于任意某,yRn,某y,有f某fy,f是单射,所以f1存在,由f1某f1y某y,知f1连续,由f某fy某y,得对任意实数t0,向量某,hRn,有f某thf某th,f某thf某h在中令t0,取极限,则有t得Jf(某)hh,任何某,hRn,从而必有|Jf(某)|0,Jf可逆,由隐函数组存在定理,所以f1存在,且是连续可微的。
例2.讨论序列fntinnt在0,上一致收敛性.nt11解方法一显然fnt,nt对任意t0,,有limfnt0,nfntinntntt,ntntt0limfnt0,关于n是一致的;对任意0,当t,时,fnt11,n于是fnt在,上是一致收敛于0的,综合以上结果,故fnt在0,上是一致收敛于0的.方法二由fntinntntinntntnt1,ntn即得fnt在0,上是一致收敛于0的例3、判断n1n在某1上是否一致收敛.某n例4.设f某在,上一致连续,且2f某d某收敛,证明limf某0.某2某yz例5.求有曲面21所围成的立体的体积其中常数a,b,c0.abc例6、设D为平面有界区域,f某,y在D内可微,在D上连续,在D的边界上f某,y0,在D内f满足方程试证:在D上f某,y0.fff.某y证明因为f某,y在D上连续,设Mma某f某,y,某,yD则M0,假若M0,则存在某0y0D,使得f某0y0M,于是有ff某0y00,某0y00,某yff这与某0y0f某0y00矛盾,某y假若M0,亦可得矛盾.同理,对mminf某,y,亦有m0,某,yD故f某,y0,某,yD.一.求解下列各题1、设,数列{某}满足lima0nn某na某na。
0,证明limn某na21、解由0lim某na2alim1,n某an某ann知lim2a1,所以lim某na.nn某anco某,当某为有理数f(某)2、设当某为无理数,0,证明f(某)在点某kk1(k为任意整数)处连续,而在其它点处不连续。
数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不一定连续D. f(x)在x=a处可微答案:A2. 极限lim(x→0)(sinx/x)的值为:A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-6x^2+11x-6的极值点为:A. 1B. 2C. 3D. 1和2答案:D4. 若函数f(x)在区间(a,b)上连续,则下列说法错误的是:A. f(x)在(a,b)上必有最大值B. f(x)在(a,b)上必有最小值C. f(x)在(a,b)上可以没有最大值D. f(x)在(a,b)上可以没有最小值答案:C二、填空题(每题5分,共20分)1. 设函数f(x)=x^2+3x+2,则f'(x)=_________。
答案:2x+32. 函数y=x^3-3x+1在x=1处的切线斜率为_________。
答案:13. 设函数f(x)=ln(x),则f'(x)=_________。
答案:1/x4. 若函数f(x)=x^2-4x+c在x=2处取得极小值,则c=_________。
答案:4三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。
答案:函数f(x)的导数为f'(x)=3x^2-12x+11。
令f'(x)>0,解得x<1或x>3;令f'(x)<0,解得1<x<3。
因此,函数f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减。
2. 求极限lim(x→0)(x^2sinx/x^3)。
答案:lim(x→0)(x^2sinx/x^3) = lim(x→0)(sinx/x^2) = 0。
3. 证明函数f(x)=x^3+3x^2-9x+1在x=-3处取得极小值。
数学分析专题研究试题及参考答案

数学分析专题研究试题及参考答案一、填空题(每小题3分,共18分)1.集合X 中的关系R 同时为反身的,对称的,传递的,则该关系R 为 . 2.设E 是非空数集,若存在实数β,满足1)E x ∈∀,有β≥x ;2) ,则称β是数集E 的下确界。
3.函数)(x f y =在点0x 的某个邻域内有定义,若 存在,则称函数)(x f 在点0x 可导。
4.若)(x f y =是对数函数,则)(x f 满足函数方程=)(xy f 。
5.若非零连续函数)(x f 满足方程)()()(y f x f y x f +=+,则函数)(x f 是 函数。
6.设函数)(x f 定义在区间),(b a 上,对于任意的),(,21b a x x ∈,)1,0(∈∀α,有 成立,则称)(x f 在),(b a 上为下凸函数。
二、单项选择题(每小题3分,共18分)1.设f :Y X →,X A ⊂∀,则A ( )))((1A f f-A. =B. ≠C. ⊃D. ⊂2.已知函数)(x f y =在区间),(b a 上可导,),(b a x ∈∀,有1)(0<<x f ,则( )。
A. )(x f '有界 B. )(x f '无界 C. )(x f 可积 D. )(x f 不可积3.已知函数)(x f 与)(x ϕ在[a,b]上可导,且)(x f < )(x ϕ,则( )。
A. )(x f '≠)(x ϕ' B. )(x f '<)(x ϕ' C )(x f '>)(x ϕ' D. 前三个结论都不对4.已知⎩⎨⎧∈∈=]2,1(2]1,0[1)(t t t f ,对于]2,0[∈x ,定义⎰=xtt f x F 0d )()(,则)(x F 在区间[0,2]上( )。
A. 连续B. 不连续C. 可导D. 前三个结论都不对 5.已知)(x f 是区间],[b a 上的严格下凸函数,则( )。
华南理工2001--2003年数学分析考研试题及解答

一.解答下列各题 1.求极限 lim
x→0
sin 2 x ; 1 + x sin x − cos x
− 1 4
2. 证明不等式 2e
∞
< ∫ ex
0
22ຫໍສະໝຸດ −xdx < 2e2 ;
3.判断级数 ∑
1 的敛散性; n = 2 ln ( n !)
⎧ 1 ,x ≥0 ⎪ 2 ⎪ x +1 4.设 f ( x ) = ⎨ x ,求 ∫ f ( x − 1) dx ; 0 ⎪ e ,x <0 x ⎪ ⎩1 + e
n −2
,
显然它的收敛区间为 ( −∞, +∞ ) ,
∞
∑ ( n + 1)! = ∑ ( n + 1)! = ∑ n ! − ∑ ( n + 1) !
n =1 n =1 n =1 n =1
n
∞
( n + 1) − 1
∞
1
∞
1
= ( e − 1) − ( e − 2 ) = 1 ; 6.解 f ( 0, y ) = y 2 sin 1 1 , f ( x, 0 ) = x 2 sin , y x
y . x
I = ∫ xzdydz + yzdzdx + z x2 + y 2 dxdy
∑
= ∫∫∫ z + z + x 2 + y 2 dxdydz
V
(
)
= ∫ dθ ∫ dϕ ∫
0
2π
π 4 0
2a
a
( 2r cos ϕ + r sin ϕ ) ⋅ r 2 sin ϕdr
考研数学试题及答案分析

考研数学试题及答案分析一、选择题1. 设函数f(x)=x^3-3x+1,求f'(x)的值。
A. 3x^2-3B. x^2-3xC. 3x^2-3x+1D. x^3-3答案:A分析:首先对函数f(x)进行求导,根据求导法则,我们有f'(x) =3x^2 - 3。
2. 求极限lim(x→0) (sin x)/x。
A. 1B. 0C. 2D. ∞答案:A分析:根据洛必达法则,当x趋近于0时,(sin x)/x的极限等于1。
二、填空题3. 已知数列{an}满足a1=1,an+1=2an+1,求a3的值。
答案:5分析:根据递推关系,我们有a2=2a1+1=3,然后a3=2a2+1=2*3+1=7。
4. 设矩阵A=\[\begin{matrix}1 & 2 \\ 3 & 4\end{matrix}\],求A的行列式值。
答案:-2分析:矩阵A的行列式值计算公式为ad-bc,代入得1*4-2*3=-2。
三、解答题5. 求函数y=x^2-4x+c的最小值。
答案:当x=2时,函数取得最小值c-4。
分析:首先对函数y求导得到y'=2x-4,令y'=0,解得x=2。
将x=2代入原函数,得到最小值y=c-4。
6. 证明:若a, b, c∈R,且a^2+b^2+c^2=1,则(a+b+c)^2≤3。
答案:证明如下:分析:首先展开(a+b+c)^2,得到a^2+b^2+c^2+2ab+2ac+2bc。
由于a^2+b^2+c^2=1,所以只需证明2ab+2ac+2bc≤2。
根据柯西-施瓦茨不等式,我们有(a^2+b^2+c^2)(1^2+1^2+1^2)≥(a+b+c)^2,即1*3≥(a+b+c)^2,从而证明了原不等式。
四、证明题7. 证明:若函数f(x)在区间[a, b]上连续,且f(a)f(b)<0,则至少存在一点c∈(a, b),使得f(c)=0。
答案:证明如下:分析:根据介值定理,如果函数f(x)在闭区间[a, b]上连续,且f(a)和f(b)异号,则至少存在一点c∈(a, b),使得f(c)=0。
华东师大数学分析《数学分析》考研2021考研真题库

华东师大数学分析《数学分析》考研2021考研真题库第一部分考研真题一、判断题1设级数收敛,则收敛。
[华东师范大学2008年研]【答案】对查看答案【解析】设b n=1/n,则{b n}单调有界;收敛,由Abel判别法,知收敛,或者设b n=1/n,则{b n}单调递减趋于0,收敛,有界,由Dirichlet判别法,知收敛。
2设f(x,y)在(x0,y0)的某个邻域内有定义且则f(x,y)在(x0,y0)处连续。
()[华东师范大学2008年研] 【答案】错查看答案【解析】反例设显然有但是即是否为0还要取决于θ的值,所以f(x,y)在点(0,0)处不连续。
1数列{a n}收敛的充要条件是对任意ε>0,存在正整数N,使得当n>N时,恒有|a2n-a n|<ε。
()[华东师范大学2008年研]【答案】错查看答案【解析】可举反例加以证明:设数列{a n}收敛,则对任意ε>0,存在正整数N,使得当n>N时,恒有|a2n-a n|<ε。
反之不真,例如设显然有但{a n}发散。
2对任意给定的x0∈R,任意给定的严格增加正整数列n k,k=1,2,…,存在定义在R上的函数f(x)使得f(k)(x0)表示f(x)在点x0处的k阶导数)。
()[华东师范大学2008年研] 【答案】对查看答案【解析】例如函数f(x)=(x-x0)n就满足条件。
3设f(x)在[a,b]上连续,且,则f(x)在[a,b]上有零点。
()[华东师范大学2008年研]【答案】对查看答案【解析】因为f(x)在[a,b]上连续,所以存在ξ∈(a,b),使得即f(x)在(a,b)内有零点。
4对数列{a n}和若{S n}是有界数列,则{a n}是有界数列。
()[北京大学研]【答案】对查看答案【解析】设|S n|<M,则|a n|=|S n-S n-1|≤2M。
数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。
12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。
考研数学分析试题及答案

考研数学分析试题及答案一、选择题(每题3分,共30分)1. 设函数f(x)在区间[a, b]上连续,且f(a) = f(b) = 0,若f(x)在区间(a, b)内至少有一个最大值点,则下列说法正确的是()。
A. f(x)在[a, b]上必有最大值B. f(x)在[a, b]上必有最小值C. 函数f(x)在[a, b]上单调递增D. 函数f(x)在[a, b]上单调递减2. 下列级数中,发散的是()。
A. ∑(-1)^n / nB. ∑1/n^2C. ∑(1/n - 1/(n+1))D. ∑sin(n)3. 已知函数F(x)在点x=c处可导,且F'(c)≠0,那么下列说法中正确的是()。
A. F(x)在x=c处连续B. 函数F(x)在x=c处一定取得最大值或最小值C. 可导性不能保证函数的连续性D. F(x)在x=c处取得极值4. 对于函数f(x) = x^3 - 6x^2 + 9x + 5,其在区间[1, 5]上的最大值是()。
A. 5B. 10C. 15D. 205. 设f(x)在[a, b]上可积,若∫[a, b] f(x) dx = 10,则下列说法中错误的是()。
A. f(x)在[a, b]上非负B. 存在x₀∈[a, b],使得f(x₀) > 0C. 存在x₀∈[a, b],使得f(x₀) = 10/b - aD. f(x)可以是负函数6. 函数f(x) = e^x / (1 + e^x)的值域是()。
A. (-∞, 0)B. (0, 1/2)C. (0, 1)D. (1/2, +∞)7. 下列选项中,不是有界函数的是()。
A. y = sin xB. y = e^xC. y = x^2D. y = 1/x8. 设函数f(x)在点x=1处可导,且f'(1) = 2,那么f(1 + h) - f(1)在h趋近于0时的表达式是()。
A. 2hB. 2h + o(h)C. h^2D. o(h)9. 对于函数f(x) = x^2,其在区间[-1, 1]上满足拉格朗日中值定理的条件,且存在ξ∈(-1, 1),使得()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2003南开大学年数学分析一、设),,(x y x y x f w-+=其中),,(z y x f 有二阶连续偏导数,求xy w解:令u=x+y ,v=x-y ,z=x 则z v u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w二、设数列}{n a 非负单增且a a nn =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim解:因为an 非负单增,故有n n n nnn n n n na a a a a 1121)(][≤+++≤由a a n n =∞→lim ;据两边夹定理有极限成立。
三、设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x)分别满足:(1) 极限)(lim 0x f x +→存在(2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nn x x o nx x x x +-++--→+α极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f(x)在0可导则1->α四、设f(x)在R 连续,证明积分ydy xdx y x f l ++⎰)(22与积分路径无关解;令U=22y x+则ydy xdx y x f l ++⎰)(22=21du u f l )(⎰又f(x)在R 上连续故存在F (u )使dF(u)=f(u)du=ydy xdx y x f ++)(22所以积分与路径无关。
(此题应感谢小毒物提供思路) 五、设f(x)在[a,b]上可导,0)2(=+ba f 且Mx f ≤')(,证明2)(4)(a b Mdx x f b a -≤⎰ 证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f bab a)2)(()(+-'=⎰⎰ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba a ba-=+-+-+≤+-'≤⎰⎰⎰++ξ六、设}{n a 单减而且收敛于0。
∑n a n sin 发散a) 证明∑收敛n an sinb) 证明1lim=∞→n nn v u 其中)sin sin (k ak k a u k n +=∑;)sin sin (k ak k ak v n -=∑证:(1)因为21sin 1sin ≤∑k 而}{n a 单减而且收敛于0据狄利克莱判别法知∑收敛n an sin(2)因为正项级数∑n a n sin 发散则∑∞→∞→)(sin n k ak 又由上题知∑有界k ak sin 故有1lim=∞→nnn v u七、设dx xxe t F txsin )(1⎰∞+-= 证明 (1)dx xxe tx sin 1⎰∞+-在),0[+∞一致收敛 (2))(t F 在),0[+∞连续证:(1)因dx xx ⎰∞+1sin 收敛(可由狄利克莱判别法判出)故在t>=0上一致收敛;又txe -在x>=1,t>=0 单调且一致有界)0,1(10≥≥∀≤≤-t x e tx由阿贝尔判别法知一致收敛(2)],[0,),,0[00βαβα∈≥∃+∞∈∀t t 使由上题知,F (t )在],[βα一致收敛,且由xxetxsin -在(x,t )],[),1[βα⨯+∞∈上连续知F (t )在],[βα连续所以在0t 连续,由0t 的任意性得证八、令)}({x f n 是[a,b]上定义的函数列,满足 (1)对任意0x ],[b a ∈)}({0x f n 是一个有界数列 (2)对任意>ε,存在一个εδδ<-<-∈>)()(,],[,,0y f x f n ,y x b a y x n n 有对一切自然数时且当求证存在一个子序列)}({x f kn在[a,b]上一致收敛证:对任意x ],[b a ∈,)}({x f n 是一个有界数列故由致密性定理存在一收敛子列,设为)}({x f kn ,又令U=]},[),({b a x x u x ∈δ则U 为[a,b]的一个开覆盖集,由有限覆盖定理,存在有限个开区间覆盖[a,b],不妨设为),(),(11mx m x x u x u δδ于是对N能找到一,0>∀ε>0,),,2,1(,,21m i x N ,n n i k k =∀>∀有3)()(22ε<-i n i n x f x f k k 令},,min{1mx x δδδ =则由条件(2)知对上述0>∀ε3)()(,],,[,0εδδ<-<-∃∈∀>∃l n n l l x f x f n ,x x x b a x 有对一切自然数使于是有有],[],,[,,,,0,0b a x b a x N n n K t k K l t k ∈∃∈∀>>∀>∃>∀ε)()()()()()()()(x f x f x f x f x f x f x f x f kkklttktn l n l n l n l n n n n -+-+-=-≤)()(l n n x f x f tt-+)()(l n l n x f x f kl-+)()(x f x f kkn l n -ε<由柯西准则得证。
2004年南开大学数学分析试题答案1. 1lim )()(lim )()(')()(ln1===⎪⎪⎭⎫⎝⎛-→-→a f a f ax a f x f ax ax a x eea f x f2.y x f xyy f x z 2-=∂∂, yy yx y xy xx x f x y f x y f x f x y yxf f y x z 3221---++=∂∂∂=yy y xx x f xyf x yxf f 321--+ 3.即证明x x x ++<+111)1ln(2,即证xx x +-+<+111)1ln(2 设=)(x f xx x ++--+111)1ln(2,0)0(=f ,2)1(1112)('x x x f +--+=0)1(22<+-=x x ,0)0()(=<f x f ,证完。
4.⎰⎰+Ddxdyy x y x )ln(2222=⎰⎰1252022ln cos sin drr r d πθθθ=⎰⎰15222ln cos sin 8rdr r d πθθθ= 72π-5.设P=22y x -,Q=xy 2-,yPy x Q ∂∂=-=∂∂2,积分与路径无关,则 ⎰==ππ0323dx x J6.ααnen n nnn1ln 1-=-1ln +≈αn n,又当0>α时,∑∞=+11ln n n n α收敛,当0≤α时,级数∑∞=+11ln n n n α发散,原题得证 7.由拉格朗日定理,nf n f n f n )(')()2(ξ=-,其中n n n 2<<ξ0)()2(lim)('lim =-=∞→∞→nn f n f f n n n ξ,原题得证 8.(1)应用数学归纳法,当1=n 时命题成立, 若当kn =时命题也成立,则当1+=k n 时,2)(},min{1111++++--+==k k k k k k k f F f F f F F ,由归纳假设1+k F 连续。
(2) (3)由)}({1x F k +单调递减趋于)(x F ,)}({1x F k +与)(x F 都连续,由地尼定理,该收敛为一致收敛。
9.(1)证明:2100),,(x x x b a x <<∀∈∀取02210201,,x x x x x x x x ==--=λ,代入式中得,)]()([)()(02020101x f x f x x x x x f x f ---+≤即02020101)()()()(x x x f x f x x x f x f --≤--,所以函数0)()()(x x x f x f x g --=单调递增有下界,从而存在右极限,则=+)(0'x f 00)()(lim0x x x f x f x x --+→;4321x x x x <<<∀,由题设可得32322121)()()()(x x x f x f x x x f x f --≤--4343)()(x x x f x f --≤,即2121)()(x x x f x f --4343)()(x x x f x f --≤从而2121)()(lim 12x x x f x f x x --→4343)()(lim 34x x x f x f x x --≤→,所以导函数递增。
(2)参考实变函数的有关教材。
2005年南开大学数学分析试题答案0D .1为成奇函数,所以该积分轴对称,被积函数关于关于由于y x2.x z f x y f f dx du z y x ∂∂+∂∂+=,其中xz x y ∂∂∂∂,由=∂∂+∂∂+=∂∂+∂∂+xz h x y h h x z g x y g g z y x z yx 求出 =∂∂--=∂∂x z h g h g g h g h x y y z z y x z z x ,y z z y xy y x h g h g g h g h -- 3.⎰∑+=-=-=∞→12123234)(411lim πx dx nkn nk n 4.tx dt t M+≤⎰1,2sin 0在),0(+∞∈x 上单调一致趋于0,则)(x f 在),0(+∞∈x 上一致收敛,又tx t+sin 在),0(+∞∈x 上连续,则)(x f 在),0(+∞∈x 上连续。
5.由泰勒公式)!1(!1!21!111+++++=n e n e ξ,则)!1()!1(!1!21!111+≤+=+++-n en e n e ξ ,后者收敛,则原级数收敛。
6.由拉格朗日中值定理,,)('1)(122n Mn Mx nx f n n xf n ≤≤=ξ后者收敛,由魏尔特拉斯定理,原级数一致收敛。