高中数学选修4-4极坐标与参数方程练习题

合集下载

高中数学选修4-4《坐标系与参数方程》练习题(含详解)[1](优选.)

高中数学选修4-4《坐标系与参数方程》练习题(含详解)[1](优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改数学选修4-4 坐标系与参数方程[基础训练A 组]一、选择题1.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2B .31(,)42- C . D .3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或 B .1x = C .201y +==2x 或x D .1y =5.点M 的直角坐标是(-,则点M 的极坐标为( )A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线34()45x tt y t =+⎧⎨=-⎩为参数的斜率为______________________。

2.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________。

3.已知直线113:()24x tl t y t =+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_______________。

选修4-4 极坐标与参数方程练习

选修4-4  极坐标与参数方程练习

选修4-4 极坐标与参数方程练习(每小题20分,共100分,考试时间50分钟)1. 已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。

(2)设l 与圆422=+y x 相交与两点A 、B ,求点P 到A 、B 两点的距离之积。

2. 已知曲线C 1:4cos ,3sin ,x t y t =-+⎧⎨=+⎩ (t 为参数), C 2:8cos ,3sin ,x y θθ=⎧⎨=⎩(θ为参数)。

(Ⅰ)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C 1上的点P 对应的参数为2t π=,Q 为C 2上的动点,求PQ 中点M 到直线332,:2x t C y t =+⎧⎨=-+⎩(t 为参数)距离的最小值。

3. 已知圆锥曲线θθθ(sin 22cos 3⎩⎨⎧==y x 是参数)和定点⎪⎪⎭⎫ ⎝⎛33,0A ,F 1、F 2是圆锥曲线的左、右焦点。

(1)求经过点F 2且垂直地于直线AF 1的直线l 的参数方程;(2)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求直线AF 2的极坐标方程。

4.已知曲线C 的极坐标方程 是ρ=1,以极点为原点,极轴为x 轴的正半轴建立平面直角坐 标系,直线l 的参数方程为t t y t x (232,21⎪⎪⎩⎪⎪⎨⎧+=+=为参数)。

(1)写出直线l 与曲线C 的直角坐标方程;(2)设曲线C 经过伸缩变换⎩⎨⎧='='y y x x ,2得到曲线C ',设曲线C '上任一点为),(y x M ,求y x 32+的最小值。

5. 已知直线l 的参数方程为21222x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程是2sin 1sin θρθ=-,以极点为原点,极轴为x 轴正方向建立直角坐标系,点(1,2)M ,直线l 与曲线C 交于A 、B 两点.(1)写出直线l 的极坐标方程与曲线C 的普通方程;(2) 线段MA ,MB 长度分别记为|MA|,|MB|,求||||MA MB ⋅的值.1. 解:(1)直线的参数方程是是参数)t t y t x (;211,231⎪⎪⎩⎪⎪⎨⎧+=+=………………5分 (2)因为点A,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A,B 的坐标分别为 以直线L 的参数方程代入圆的方程422=+y x 整理得到 02)13(2=-++t t ① ……………………8分因为t 1和t 2是方程①的解,从而t 1t 2=-2。

高中数学选修44极坐标与参数方程试题

高中数学选修44极坐标与参数方程试题

高中数学选修44极坐标与参数方程试题————————————————————————————————作者:————————————————————————————————日期:高中数学选修4-4综合试题一、选择题1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 2.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上,则||PF 等于( ). A .2 B .3 C .4 D .53.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点M 的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5π B 、⎪⎭⎫ ⎝⎛34,5πC 、⎪⎭⎫⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π 4.极坐标系中,下列各点与点P (ρ,θ)(θ≠k π,k ∈Z )关于极轴所在直线对称的是( )A .(-ρ,θ)B .(-ρ,-θ)C .(ρ,2π-θ)D .(ρ,2π+θ)5.点()3,1-P ,则它的极坐标是( )A 、⎪⎭⎫ ⎝⎛3,2πB 、⎪⎭⎫ ⎝⎛34,2πC 、⎪⎭⎫⎝⎛-3,2π D 、⎪⎭⎫ ⎝⎛-34,2π 6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ).A.1B.2C.3D.47.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线8.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( ) A.-6 B.16-C.6D.169.极坐标方程4cos ρθ=化为直角坐标方程是( )A .22(2)4x y -+= B.224x y += C.22(2)4x y +-= D.22(1)(1)4x y -+-=10.柱坐标(2,32π,1)对应的点的直角坐标是( ). A.(1,3,1-) B.(1,3,1-) C.(1,,1,3-) D.(1,1,3-)11.点(1,2)在圆18cos 8sin x y θθ=-+⎧⎨=⎩的( ).A .内部B .外部C .圆上D .与θ的值有关12.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( )。

(完整版)高中数学选修4-4习题(含答案)

(完整版)高中数学选修4-4习题(含答案)

统考作业题目——4-46.21.在平面直角坐标系中,直线的参数方程为为参数),以原点xOy l 12,(2x t t y t =+⎧⎨=-⎩为极点,以轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。

曲线O x 的极坐标方程为 .C 22cos 4sin 40ρρθρθ+++=(1)求的普通方程和的直角坐标方程;l C (2)已知点是曲线上任一点,求点到直线距离的最大值.M C M l 2.已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长O x 度单位相同。

直线的极坐标方程为:,点,参数l ρ=102sin (θ‒π4)P (2cosα,2sinα+2).α∈[0,2π](I )求点轨迹的直角坐标方程;P (Ⅱ)求点到直线距离的最大值.P l1、【详解】(1)12,2x t y t =+⎧⎨=-⎩10x y ∴+-=因为,222,cos ,sin x y x y ρρθρθ=+==所以,即222440x y x y ++++=22(1)(2)1x y +++=(2)因为圆心到直线,(1,2)--10x y +-==所以点到直线距离的最大值为M l 1.r +=+2、解:(Ⅰ)设,则,且参数,P (x ,y ){x =2cosαy =2sinα+2 α∈[0,2π]消参得:x 2+(y ‒2)2=4所以点的轨迹方程为P x 2+(y ‒2)2=4(Ⅱ)因为ρ=102sin (θ‒π4)所以ρ2sin (θ‒π4)=10所以,ρsinθ‒ρcosθ=10所以直线的直角坐标方程为l x ‒y +10=0法一:由(Ⅰ)点的轨迹方程为P x 2+(y ‒2)2=4圆心为(0,2),半径为2.,d =|1×0‒1×2+10|12+12=42点到直线距离的最大值等于圆心到直线距离与圆的半径之和,P l l 所以点到直线距离的最大值.P l 42+2法二:d =|2cosα‒2sinα‒2+10|12+12=2|cosα‒sinα+4|=2|2cos (α+π4)+4|当时,,即点到直线距离的最大值为.a =74πd max =42+2P l 42+26.33.在平面直角坐标系xOy 中,已知曲线的参数方程为(为参数),曲C 1{x =cosθy =3sinθθ线的参数方程为(,t 为参数).C 2{x =4‒22ty =4+22tt ∈R(1)求曲线的普通方程和曲线的极坐标方程;C 1C 2(2)设P 为曲线上的动点,求点P 到上点的距离的最小值,并求此时点P 的坐标.C 1C 24.在直角坐标系中曲线的参数方程为(为参数,以坐标原xOy 1C cos x y αα=⎧⎪⎨=⎪⎩α点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为x 2C .sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出的普通方程和的直角坐标方程;1C 2C (2)设点在上,点在上,求的最小值及此时的直角坐标.P 1C Q 2C ||PQ P3、【详解】(1)对曲线:,,C 1cos 2θ=x 2sin 2θ=y 23∴曲线的普通方程为.C 1x 2+y 23=1对曲线消去参数可得且C 2t t =(4‒x )×2,t =(y ‒4)×2,∴曲线的直角坐标方程为. C 2x +y ‒8=0又,∵x =ρcosθ,y =ρsinθ∴ρcosθ+ρsinθ‒8=2ρsin (θ+π4)‒8=0从而曲线的极坐标方程为。

高二文科选修4-4坐标系与参数方程测试题及答案

高二文科选修4-4坐标系与参数方程测试题及答案

高二级数学选修4-4《极坐标与参数方程》考试卷一、选择题(共10题,各4分,共32分)1.曲线的极坐标方程化为直角坐标为()。

A B C D2.已知点P的极坐标是(1,),则过点P且垂直极轴的直线方程是()。

A B C D3.在同一坐标系中,将曲线变为曲线的伸缩变换是()4.直线的参数方程是()A (t为参数)B (t为参数)C (t为参数)D (t为参数)5.方程(t为参数)表示的曲线是()。

A 一条直线B 两条射线C 一条线段D 抛物线的一部分6.参数方程(为参数)化为普通方程是()。

A B CD7.设点P对应的复数为-3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为()A (,)B (,)C (3,)D (-3,)8.在符合互化条件的直角坐标系和极坐标系中,直线l:与曲线C:相交,则k的取值范围是()。

A B C D 但9.已知过曲线上一点P原点O的直线PO的倾斜角为,则P点坐标是A (3,4)BC (-3,-4) D10.若圆的方程为(为参数),直线的方程为(t为参数),则直线与圆的位置关系是()。

A 相交过圆心B 相交而不过圆心C 相切D 相离二、填空题(共4题,各4分,共16分)11.在极坐标系中,以为圆心,为半径的圆的方程是。

12.在极坐标中,若过点(3,0)且与极轴垂直的直线交曲线于A、B两点,则|AB|= 。

13.设直线参数方程为(为参数),则它的斜截式方程为。

14.三、解答题(共4题,共44分)15(12分)把下列参数方程化为普通方程,并说明它们各表示什么曲线:(6分)⑴(为参数);⑵(为参数)16(12分)已知直线经过点P(1,1),。

(1)写出直线的参数方程;(2)设与圆相交于两点A、B,求点P到A,B两点的距离之积(8分)17(10分)已知x、y满足,求的最值。

(6分)18(10分)在气象台A正西方向300千米处有一台风中心,它以每小时40千米的速度向东北方向移动,距台风中心250千米以内的地方都要受其影响。

数学北师大版高中选修4-4极坐标与参数方程近五年专题训练

数学北师大版高中选修4-4极坐标与参数方程近五年专题训练

极坐标与参数方程专题训练1、已知椭圆C :221169x y +=与x 正半轴、y 正半轴的交点分别为,A B ,动点P 是椭圆上任一点,求PAB ∆面积的最大值.2、在极坐标系中,已知点P 为圆22sin 70ρρθ+-=上任一点.求点P 到直线 cos sin 70ρθρθ+-=的距离的最小值与最大值.3、求圆3cos ρθ=被直线22,14x t y t=+⎧⎨=+⎩(t 是参数)截得的弦长.4、已知曲线1C 的参数方程为⎩⎨⎧+==ααsin 22cos 2y x (其中α为参数),M 是曲线1C 上的动点,且M 是线段OP 的中点,(其中O 点为坐标原点),P 点的轨迹为曲线2C ,直线的方程为2)4sin(=+πρx ,直线与曲线2C 交于,A B 两点。

(1)求曲线2C 的普通方程; (2)求线段AB 的长。

5、已知圆C 的极坐标方程为ρ=4cos(θ-π6),点M 的极坐标为(6,π6),直线l 过点M ,且与圆C 相切,求l 的极坐标方程.6、已知曲线1C 的极坐标方程为cos 13πρθ⎛⎫-=- ⎪⎝⎭,曲线2C 的极坐标方程为4πρθ⎛⎫=- ⎪⎝⎭,判断两曲线的位置关系.7、坐标系与参数方程在直角坐标系xOy 内,直线l 的参数方程为22,14,x t y t =+⎧⎨=+⎩(t 为参数).以Ox 为极轴建立极坐标系,圆C 的极坐标方程为)4πρθ=+.判断直线l 和圆C 的位置关系.8、已知曲线C 的参数方程,2sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l 的极坐标方程:sin()14πρθ-=.直线l 与曲线C 交于M ,N 两点,求MN 的长.9、已知极坐标系的极点O 与直角坐标系的原点重合,极轴与x 轴的正半轴重合,曲线1224:sin():(),.44x tC p C t R A B y tπθ=⎧+=∈⎨=⎩交于两点求证:OA⊥OB.10、在极坐标系中,曲线C的极坐标方程为)4πρθ=-,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为415315x t y t⎧=+⎪⎪⎨⎪=--⎪⎩(t 为参数),求直线l 被曲线C 所截得的弦长.11、在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin(θ-π6)=a 截得的弦长为23,求实数a 的值.12、在平面直角坐标xOy 中,已知圆221:4C x y +=,圆222:(2)4C x y -+=.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别求圆12,C C 的极坐标方程及这两个圆的交点的极坐标;(2)求圆12C C 与的公共弦的参数方程.13、在平面直角坐标xOy 中,已知圆221:4C x y +=,圆222:(2)4C x y -+=.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别求圆12,C C 的极坐标方程及这两个圆的交点的极坐标; (2)求圆12C C 与的公共弦的参数方程.14、在极坐标系中, A 为曲线22cos 30ρρθ+-=上的动点, B 为直线cos sin 70ρθρθ+-=上的动点, 求AB 的最小值.15、已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为2222cos 3sin 3+=ρθρθ,直线l 的参数方程为,1x y t ⎧=⎪⎨=+⎪⎩(t 为参数,t ∈R).试在曲线C 上求一点M ,使它到直线l 的距离最大.16、在平面直角坐标系xOy 中,椭圆221164x y +=的右顶点为A ,上顶点为B ,点P 是第一象限内在椭圆上的一个动点,求PAB ∆面积S 的最大值.17、在极坐标中,已知圆C 经过点()4P π,,圆心为直线sin 3ρθπ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.18、已知在极坐标系下,圆C:p= 2cos(2πθ+)与直线l :ρsin(4πθ+点M 为圆C 上的动点.求点M 到直线l 距离的最大值.19、在直角坐标系xoy 中,直线l的参数方程为12x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox为极轴,且长度单位相同,建立极坐标系,得曲线C 的极坐标方程为2cos()4πρθ=-.直线l 与曲线C 交于,A B两点,求AB .20、在平面直角坐标系xOy 中,圆C 的参数方程为θθθ(sin 22,cos 22⎪⎪⎩⎪⎪⎨⎧+-=+-=r y r x 为参数,)0>r ,以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为,1)4sin(=+πθρ若圆C 上的点到直线l 的最大距离为3,求r 的值.21、在极坐标系中,圆C 是以点C (2,-π6)为圆心、2为半径的圆. (1)求圆C 的极坐标方程;(2)求圆C 被直线l :θ=-5π12所截得的弦长.22、已知曲线C的参数方程是cos x a y ϕϕ=⎧⎪⎨=⎪⎩(ϕ为参数,0a >),直线l 的参数方程是31x t y t =+⎧⎨=--⎩(t 为参数),曲线C 与直线l 有一个公共点在x 轴上,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系. (Ⅰ)求曲线C 普通方程;(Ⅱ)若点12324(,),(,),(,)33A B C ππρθρθρθ++在曲线C 上,求222111||||||OA OB OC ++的值.23、已知直线的参数方程21x ty =-⎧⎪⎨=+⎪⎩(为参数),圆C 的极坐标方程:2sin 0ρθ+=.(1)将直线的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)在圆C 上求一点P ,使得点P 到直线的距离最小.24、在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=ty t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标.25、已知直线1C :1cos .sin ,x t y t αα=+⎧⎨=⎩ (t 为参数),圆2C :cos ,sin ,x y θθ=⎧⎨=⎩ (θ为参数),(Ⅰ)当α=3π时,求1C 与2C 的交点坐标; (Ⅱ)过坐标原点O 作1C 的垂线,垂足为A ,P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线;26、在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP OM =uu u v uuu v,P 点的轨迹为曲线C 2(Ⅰ)求C 2的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .27、已知动点P ,Q 都在曲线C :()2cos 2sin x y βββ=⎧⎨=⎩为参数 上,对应参数分别为β=α与α=2π为(0<α<2π)M 为PQ 的中点。

高二数学选修4-4---极坐标练习题含答案

高二数学选修4-4---极坐标练习题含答案

高二数学选修4-4 《极坐标》练习题一.选择题 1.已知⎪⎭⎫⎝⎛-3,5πM ,下列所给出的不能表示点M的坐标的是( ) A .⎪⎭⎫⎝⎛-3,5π B.⎪⎭⎫ ⎝⎛34,5π C.⎪⎭⎫ ⎝⎛-32,5π D.⎪⎭⎫ ⎝⎛--35,5π 2.点()3,1-P ,则它的极坐标是( ) A .⎪⎭⎫ ⎝⎛3,2π B.⎪⎭⎫⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫⎝⎛-34,2π 3.极坐标方程⎪⎭⎫⎝⎛-=θπρ4cos 表示的曲线是( ) A.双曲线 B.椭圆 C.抛物线 D .圆 4.圆)sin (cos 2θθρ+=的圆心坐标是A .⎪⎭⎫ ⎝⎛4,1π B .⎪⎭⎫ ⎝⎛4,21π C.⎪⎭⎫ ⎝⎛4,2π D.⎪⎭⎫⎝⎛4,2π5.在极坐标系中,与圆θρsin 4=相切的一条直线方程为A .2sin =θρB .2cos =θρC .4cos =θρ D.4cos -=θρ6、 已知点()0,0,43,2,2,2O B A ⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛--ππ则ABO ∆为 A、正三角形 B 、直角三角形 C 、锐角等腰三角形 D 、直角等腰三角形 7、)0(4≤=ρπθ表示的图形是A.一条射线 B .一条直线 C.一条线段 D.圆8、直线αθ=与1)cos(=-αθρ的位置关系是A 、平行B 、垂直C 、相交不垂直 D、与有关,不确定9.两圆θρcos 2=,θρsin 2=的公共部分面积是 A.214-πB.2-π C.12-π D.2π 10.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A.一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D.一个圆二.填空题(每题5分共25分)11、曲线的θθρcos 3sin -=直角坐标方程为_ 12.极坐标方程52sin 42=θρ化为直角坐标方程是13.圆心为⎪⎭⎫⎝⎛6,3πC ,半径为3的圆的极坐标方程为 14.已知直线的极坐标方程为22)4sin(=+πθρ,则极点到直线的距离是 15、在极坐标系中,点P ⎪⎭⎫⎝⎛611,2π到直线1)6sin(=-πθρ的距离等于____________。

高中数学选修4极坐标与参数方程专题练习(附解答过程)

高中数学选修4极坐标与参数方程专题练习(附解答过程)

极坐标与参数方程一.选择题(共16小题)1.化极坐标方程ρ2cosθ﹣ρ=0为直角坐标方程为()A.x2+y2=0或y=1 B.x=1 C.x2+y2=0或x=1 D.y=12.在极坐标方程中,曲线C的方程是ρ=4sinθ,过点(4,)作曲线C的切线,则切线长为()A.4 B.C.2D.23.已知点M的极坐标为,那么将点M的极坐标化成直角坐标为()A.B.C.D.4.点M的直角坐标是,则点M的极坐标为()A.B.C.D.5.极坐标方程分别是ρ=cosθ和ρ=sinθ的两个圆的圆心距是()A.2 B.C.1 D.6.曲线的极坐标方程ρ=4sinθ化为直角坐标为()A.x2+(y+2)2=4 B.x2+(y﹣2)2=4 C.(x﹣2)2+y2=4 D.(x+2)2+y2=47.在极坐标系中,圆ρ=﹣2sinθ的圆心的极坐标是()A.B.C.(1,0)D.(1,π)8.过点(2,)且平行于极轴的直线的坐标方程为()A.ρsinθ= B.ρcosθ= C.ρsinθ=2D.ρcosθ=29.在极坐标系中,圆ρ=2cosθ的半径为()A.B.1 C.2 D.410.与参数方程为(t为参数)等价的普通方程为()A.x2+=1 B.x2+=1(0≤x≤1)C.x2+=1(0≤y≤2)D.x2+=1(0≤x≤1,0≤y≤2)11.若直线,(t为参数)与圆,(θ为参数)相切,则b=()A.﹣4或6 B.﹣6或4 C.﹣1或9 D.﹣9或112.已知直线l的参数方程为(t为参数),则其直角坐标方程为()A.x+y+2﹣=0 B.x﹣y+2﹣=0 C.x﹣y+2﹣=0 D.x+y+2﹣=013.若直线y=x﹣b与曲线(θ∈[0,2π))有两个不同的公共点,则实数b的取值范围为()A.B.C.D.14.参数方程(θ为参数)化为普通方程是()A.2x﹣y+4=0 B.2x+y﹣4=0C.2x﹣y+4=0,x∈[2,3]D.2x+y﹣4=0,x∈[2,3]15.直线y=2x+1的参数方程是()A.(t为参数)B.(t为参数)C.(t为参数)D.(θ为参数)16.把方程xy=1化为以t参数的参数方程是()A. B.C.D.二.解答题(共12小题)17.已知圆O1和圆O2的极坐标方程分别为ρ=2,.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.18.在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.19.在极坐标系中,已知圆C的圆心C(,),半径r=.(Ⅰ)求圆C的极坐标方程;(Ⅱ)若α∈[0,),直线l的参数方程为(t为参数),直线l交圆C于A、B两点,求弦长|AB|的取值范围.20.已知直线l的参数方程是(t为参数),圆C的极坐标方程为ρ=2cos(θ+).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.21.在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos()=2.(Ⅰ)求C1与C2交点的极坐标;(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为(t∈R为参数),求a,b的值.22.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos()=1,M,N分别为C与x轴,y轴的交点.(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.23.已知P为半圆C:(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O为坐标原点,点M在射线OP上,线段OM与C的弧的长度均为.(1)以O为极点,x轴的正半轴为极轴建立极坐标系,求点M的极坐标;(2)求直线AM的参数方程.24.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.25.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.26.在平面直角坐标系中,曲线C1的参数方程为(ϕ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线与曲线C2交于点.(1)求曲线C1,C2的普通方程;(2)是曲线C1上的两点,求的值.27.在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.参考答案与解析一.选择题解:∵ρ2cosθ﹣ρ=0,∴ρcosθ﹣1=0或ρ=0,∵,∴x2+y2=0或x=1,故选C.2.解:ρ=4sinθ化为普通方程为x2+(y﹣2)2=4,点(4,)的直角坐标是A(2 ,2),圆心到定点的距离及半径构成直角三角形.由勾股定理:切线长为.故选C.3.解:由点M的极坐标为,∴x M=5=﹣,=,∴M.故选:D.4.解:由于ρ2=x2+y2,得:ρ2=4,ρ=2,由ρcosθ=x得:cosθ=,结合点在第二象限得:θ=,则点M的极坐标为.故选C.5.解:由ρ=cosθ,化为直角坐标方程为x2+y2﹣x=0,其圆心是A(,0),由ρ=sinθ,化为直角坐标方程为x2+y2﹣y=0,其圆心是B(0,),由两点间的距离公式,得AB=,故选D.6.解:曲线的极坐标方程ρ=4sinθ 即ρ2=4ρsinθ,即x2+y2=4y,化简为x2+(y﹣2)2=4,故选:B.7.解:将方程ρ=﹣2sinθ两边都乘以p得:ρ2=﹣2ρsinθ,化成直角坐标方程为x2+y2+2y=0.圆心的坐标(0,﹣1).∴圆心的极坐标故选B.8.解:由点(2,)可得直角坐标为,即.设P(ρ,θ)为所求直线上的任意一点,则,即.故选:A.9.解:由ρ=2cosθ,得ρ2=2ρcosθ,化为直角坐标方程得x2+y2=2x,即(x﹣1)2+y2=1.∴圆ρ=2cosθ的半径为1.故选:B.10.解:由参数方程为,∴,解得0≤t≤1,从而得0≤x≤1,0≤y≤2;将参数方程中参数消去得x2+=1.因此与参数方程为等价的普通方程为.故选D.11.解:把直线,(t为参数)与圆,(θ为参数)的参数方程分别化为普通方程得:直线:4x+3y﹣3=0,圆:x2+(y﹣b)2=9,∵此直线与该圆相切,∴,解得b=﹣4,或6.故选A.12.解:因为直线l的参数方程为(t为参数),消去参数t,得直线l的直角坐标方程为y﹣2=(x﹣1),即x﹣y+2﹣=0.故选:B.13.解:化为普通方程(x﹣2)2+y2=1,表示圆,因为直线与圆有两个不同的交点,所以解得法2:利用数形结合进行分析得,∴同理分析,可知.故选D.14.解:由条件可得cos2θ=y+1=1﹣2sin2θ=1﹣2(x﹣2),化简可得2x+y﹣4=0,x∈[2,3],故选D.15.解:∵y=2x+1,∴y+1=2(x+1),令x+1=t,则y+1=2t,可得,即为直线y=2x+1的参数方程.故选:B.16.解:xy=1,x可取一切非零实数,而A中的x的范围是x≥0,不满足条件;B中的x的范围是﹣1≤x≤1,不满足条件;C中的x的范围是1≤x≤1,不满足条件;故选D二.解答题17.解:(1)ρ=2⇒ρ2=4,所以x2+y2=4;因为,所以,所以x2+y2﹣2x﹣2y﹣2=0.(5分)(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即.(10分)18.解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.19.解:(Ⅰ)∵C(,)的直角坐标为(1,1),∴圆C的直角坐标方程为(x﹣1)2+(y﹣1)2=3.化为极坐标方程是ρ2﹣2ρ(cosθ+sinθ)﹣1=0 …(5分)(Ⅱ)将代入圆C的直角坐标方程(x﹣1)2+(y﹣1)2=3,得(1+tcosα)2+(1+tsinα)2=3,即t2+2t(cosα+sinα)﹣1=0.∴t1+t2=﹣2(cosα+sinα),t1•t2=﹣1.∴|AB|=|t1﹣t2|==2.∵α∈[0,),∴2α∈[0,),∴2≤|AB|<2.即弦长|AB|的取值范围是[2,2)…(10分)20.解:(I)∵,∴,∴圆C的直角坐标方程为,即,∴圆心直角坐标为.(5分)(II)∵直线l的普通方程为,圆心C到直线l距离是,∴直线l上的点向圆C引的切线长的最小值是(10分)21.解:(I)圆C1,直线C2的直角坐标方程分别为x2+(y﹣2)2=4,x+y﹣4=0,解得或,∴C1与C2交点的极坐标为(4,).(2,).(II)由(I)得,P与Q点的坐标分别为(0,2),(1,3),故直线PQ的直角坐标方程为x﹣y+2=0,由参数方程可得y=x﹣+1,∴,解得a=﹣1,b=2.22.解:(Ⅰ)由从而C的直角坐标方程为即θ=0时,ρ=2,所以M(2,0)(Ⅱ)M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,ρ∈(﹣∞,+∞)23.解:(Ⅰ)由已知,M点的极角为,且M点的极径等于,故点M的极坐标为(,).(5分)(Ⅱ)M点的直角坐标为(),A(1,0),故直线AM的参数方程为(t为参数)(10分)24.解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.25.解:(1)∵曲线C的极坐标方程为ρ=2(cosθ+sinθ)∴ρ2=2ρcosθ+2ρsinθ∴x2+y2=2x+2y即(x﹣1)2+(y﹣1)2=2﹣﹣﹣﹣﹣﹣(5分)(2)将l的参数方程代入曲线C的直角坐标方程,得t2﹣t﹣1=0,所以|EA|+|EB|=|t1|+|t2|=|t1﹣t2|==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)26.解:(1)曲线C1的参数方程为(ϕ为参数),普通方程为.曲线C2是圆心在极轴上且经过极点的圆,射线与曲线C2交于点,曲线C2的普通方程为(x﹣2)2+y2=4﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2)曲线C1的极坐标方程为,所以=+=﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)27.解:直线l的参数方程为(为参数),由x=t+1可得t=x﹣1,代入y=2t,可得直线l的普通方程:2x﹣y﹣2=0.曲线C的参数方程为(t为参数),化为y2=2x,联立,解得,,于是交点为(2,2),.28.解:(Ⅰ)由得直线l的普通方程为x+y﹣3﹣=0﹣﹣﹣﹣﹣﹣﹣﹣2分又由得ρ2=2ρsinθ,化为直角坐标方程为x2+(y﹣)2=5;﹣﹣﹣﹣﹣﹣﹣﹣﹣5分(Ⅱ)把直线l的参数方程代入圆C的直角坐标方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣10分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标与参数方程单元练习1一、选择题(每小题5分,共25分)1、已知点M 的极坐标为⎪⎭⎫ ⎝⎛35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。

A. B.C.D. ⎪⎭⎫ ⎝⎛-355π,2、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3、在参数方程⎩⎨⎧+=+=θθsin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是( )4、曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线 5、实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( )A 、27 B 、4 C 、29D 、5 二、填空题(每小题5分,共30分)1、点()22-,的极坐标为 。

2、若A,B ⎪⎭⎫⎝⎛-64π,,则|AB|=___________,___________。

(其中O 是极点)3、极点到直线()cos sin 3ρθθ+=________ _____。

4、极坐标方程2sin 2cos 0ρθθ-⋅=表示的曲线是_______ _____。

5、圆锥曲线()为参数θθθ⎩⎨⎧==sec 3tan 2y x 的准线方程是 。

6、直线l 过点()5,10M ,倾斜角是3π,且与直线032=--y x 交于M ,则0MM 的长为 。

三、解答题(第1题14分,第2题16分,第3题15分;共45分) 1、求圆心为C,半径为3的圆的极坐标方程。

2、已知直线l 经过点P(1,1),倾斜角6πα=,(1)写出直线l 的参数方程。

(2)设l 与圆422=+y x 相交与两点A 、B ,求点P 到A 、B 两点的距离之积。

3、求椭圆14922=+y x )之间距离的最小值,与定点(上一点01P 。

极坐标与参数方程单元练习1参考答案【试题答案】一、选择题:1、D 2、D 3、B 4、D 5、B二、填空题:1、⎪⎭⎫⎝⎛-422π,或写成⎪⎭⎫⎝⎛4722π,。

2、5,6。

3、。

4、()22sin 2cos 02y x ρθρθ-==,即,它表示抛物线。

5、13139±=y 。

6、3610+。

三、解答题1、1、如下图,设圆上任一点为P (),则((((2366OP POA OA πρθ=∠=-=⨯=,,((((cos Rt OAP OP OA POA ∆=⋅∠中, 6cos 6πρθ⎛⎫∴=- ⎪⎝⎭而点O )32,0(π A )6,0(π符合2、解:(1)直线的参数方程是是参数)t t y t x (;211,231⎪⎪⎩⎪⎪⎨⎧+=+= (2)因为点A,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A,B 的坐标分别为),211,231(11t t A ++)211,231(22t t B ++ 以直线L 的参数方程代入圆的方程422=+y x 整理得到02)13(2=-++t t ① 因为t 1和t 2是方程①的解,从而t 1t 2=-2。

所以|PA|·|PB|= |t 1t 2|=|-2|=2。

3、(先设出点P 的坐标,建立有关距离的函数关系)()()3cos 2sin 10P P d θθθ=设,,则到定点(,)的距离为3cos )5d θθ=(当时,极坐标与参数方程单元练习21.已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线极坐标方程是 .2.在极坐标系中,曲线)3sin(4πθρ-=一条对称轴的极坐标方程 .3.在极坐标中,若过点(3,0)且与极轴垂直的直线交曲线θρcos 4=于A 、B 两点.则|AB|= .4.已知三点A(5,2π),B(-8,π611),C(3,π67),则ΔABC 形状为 . 5.已知某圆的极坐标方程为:ρ2–42ρcon(θ-π/4)+6=0则:①圆的普通方程 ;②参数方程 ;③圆上所有点(x,y )中xy 的最大值和最小值分别为 、 . 6.设椭圆的参数方程为()πθθθ≤≤⎩⎨⎧==0sin cos b y a x ,()11,y x M ,()22,y x N 是椭圆上两点,M 、N 对应的参数为21,θθ且21x x <,则12,θθ大小关系是 .7.直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是 .8.经过点M 0(1,5)且倾斜角为3π的直线,以定点M 0到动 点P 的位移t 为参数的参数方程是 . 且与直线032=--y x 交于M ,则0MM 的长为 .9.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的图形是 .10.方程⎩⎨⎧-=+=12322t y t x (t 是参数)的普通方程是 .与x 轴交点的直角坐标是 11.画出参数方程⎪⎩⎪⎨⎧-==1112t t y t x (t 为参数)所表示的曲线.12.已知动园:),,(0sin 2cos 222是参数是正常数θθθb ,a b a by ax y x ≠=--+, 则圆心的轨迹是 .13.已知过曲线()⎩⎨⎧≤≤==πθθθθ0sin 4cos 3,y x 为参数上一点P ,原点为O ,直线PO 的倾斜角为4π,则P 点坐标是 . 14.直线221x ty t=+⎧⎨=-+⎩ (t 为参数)上对应t=0, t=1两点间的距离是 .15.直线03sin 201cos 20x t y t ⎧=+⎨=-+⎩(t 为参数)的倾斜角是 . 16.设0>r ,那么直线()是常数θθθr y x =+sin cos 与圆()是参数ϕϕϕ⎩⎨⎧==sin cos r y r x 的位置关系是 .17.直线()为参数t ty tx ⎩⎨⎧+=--=2322上与点()32,P -距离等于2的点的坐标是 . 18.过抛物线y 2=4x 的焦点作倾斜角为的弦,若弦长不超过8,则的取值围是________________________________.19.若动点(x ,y )在曲线14222=+by x (b >0)上变化,则x 2 + 2y 的最大值为 . 20.曲线⎩⎨⎧==ααtan sec b y a x (α为参数)与曲线⎩⎨⎧==ββsec tan b y a x (β为参数)的离心率分别为e 1和e 2,则e 1+e 2的最小值为_______________.极坐标与参数方程单元练习2参考答案答案:1.ρcos θ= -1;2.56πθ=;3.3 4.等边三角形;5.(x-2)2+(y-2)2=2; ()22{22x y θθθ=+=为参数;9、1;6.θ1>θ2;7.相交;8. ()112352x t t y ⎧=+⎪⎪⎨⎪=+⎪⎩为参数 10+639.两条射线;10.x-3y=5(x ≥2);(5, 0);12.椭圆;13.1212,55⎛⎫⎪⎝⎭;515.700;16.相切;17.(-1,2)或(-3,4);18.3,44ππ⎡⎤⎢⎥⎣⎦;19.216(04)2(4)4b b b b +<≤>或;20.22极坐标与参数方程单元练习3一.选择题(每题5分共60分)1.设椭圆的参数方程为()πθθθ≤≤⎩⎨⎧==0sin cos b y a x ,()11,y x M ,()22,y x N 是椭圆上两点,M ,N 对应的参数为21,θθ且21x x <,则A .21θθ<B .21θθ>C .21θθ≥D .21θθ≤2.直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心 3.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动 点P 的位移t 为参数的参数方程是( ) A.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 B. ⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C. ⎪⎪⎩⎪⎪⎨⎧-=-=t y t x 235211 D. ⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 2352114.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是 ( )A.一条射线B.两条射线C.一条直线D.两条直线5.若动点(x ,y )在曲线14222=+by x (b >0)上变化,则x 22y 的最大值为 (A) ⎪⎩⎪⎨⎧≥<<+)4(2)40(442b b b b ; (B) ⎪⎩⎪⎨⎧≥<<+)2(2)20(442b bb b ;(C) 442+b (D) 2b 。

6.实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( )A 、27 B 、4 C 、29D 、5 7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是A 、线段 B 、双曲线的一支 C 、圆 D 、射线 8. 已知动园:),,(0sin 2cos 222是参数是正常数θθθb ,a b a by ax y x ≠=--+,则圆心的轨迹是A 、直线B 、圆C 、抛物线的一部分D 、椭圆9. 在参数方程⎩⎨⎧+=+=θθsin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、t 2,则线段BC 的中点M 对应的参数值是10.设0>r,那么直线()是常数θθθryx=+sincos 与圆()是参数ϕϕϕ⎩⎨⎧==sincosryrx的位置关系是A、相交B、相切C、相离D、视的大小而定11.下列参数方程(t为参数)中与普通方程x2-y=0表示同一曲线的是12.已知过曲线()⎩⎨⎧≤≤==πθθθθsin4cos3,yx为参数上一点P,原点为O,直线PO的倾斜角为4π,则P点坐标是A、(3,4) B、⎪⎪⎭⎫⎝⎛22223, C、(-3,-4) D、⎪⎭⎫⎝⎛512512,二.填空题(每题5分共25分)13.过抛物线y2=4x的焦点作倾斜角为的弦,若弦长不超过8,则的取值围是__________。

14.直线()为参数ttytx⎩⎨⎧+=--=2322上与点()32,P-距离等于2的点的坐标是15.圆锥曲线()为参数θθθ⎩⎨⎧==sec3tan2yx的准线方程是16.直线l过点()5,10M,倾斜角是3π,且与直线032=--yx交于M,则MM的长为17.曲线⎩⎨⎧==ααtansecbyax(α为参数)与曲线⎩⎨⎧==ββsectanbyax(β为参数)的离心率分别为e1和e2,则e1+e2的最小值为_______________.三.解答题(共65分18.上截得的弦长。

相关文档
最新文档