化工热力学答案(3章)
化工热力学马沛生第一版第三章习题答案

习题3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。
V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -=(2)Helmholtz 方程,即能量的导数式pV S H S U T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂= T S V A V U p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=- TS p G p H V ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂= p V T G T A S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ p S S V p T ⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ TV V S T p ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响?答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。
3-3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:),(),(p T M p T M M ig R -=M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。
需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。
化工热力学第3章解答

化工热力学第3章解答第3章均相封闭体系热力学原理及其应用一、是否题1. 体系经过一绝热可逆过程,其熵没有变化。
(对。
dS Q 0 rev)(错。
如一个吸热的循环,熵2. 吸热过程一定使体系熵增,反之,熵增过程也是吸热的。
变为零)(错。
不需要可逆条件,适用于只 3. 热力学基本关系式dH=TdS+VdP只适用于可逆过程。
有体积功存在的封闭体系)(错。
能于任4. 象dU=TdS-PdV等热力学基本方程只能用于气体,而不能用于液体或固相。
何相态)5. 当压力趋于零时,M T,P Mig。
=V时,不恒T,P 0(M是摩尔性质)6.S Sig7. G G0RTln8. 程。
9. 当P10. 因为(错。
从积分0。
RTP T TB(对)11. 逸度与压力的单位是相同的。
ig(错G(T,P) G(T, 12. 吉氏函数与逸度系数的关系是G T,P G T,P 1 RTln 。
igP 1) RTlnf)故不可能用偏离函数来计算性质随着温度的13. 由于偏离函数是两个等温状态的性质之差,变化。
(错。
因为:M T2,P2 M T1,P1 M T2,P2 MigT2,P0 M T1,P1 M T1,P0 M T2,P0 M T1,P0igigig)故我们不能用偏离函数来计算汽化过程的热14. 由于偏离函数是在均相体系中引出的概念,力学性质的变化。
(错。
可以解决组成不变的相变过程的性质变化)(错。
还15. 由一个优秀的状态方程,就可以计算所有的均相热力学性质随着状态的变化。
ig需要CP T 模型)二、选择题1. 对于一均匀的物质,其H和U的关系为(B。
因H=U+PV)A. H UB. HUC. H=UD. 不能确定2. 一气体符合P=RT/(V-b)的状态方程从V1等温可逆膨胀至V2,则体系的S为(C。
V2SV1SdV V TV2V1PdV T VV2V1VR bRlnV2 bV1 b )A.RTlnV2 bB. 0C. RlnV2 b3.P VT T V P4.)A.V TB.T VC.T SD.PT Vigx5. 吉氏函数变化与P-V-T关系为G T,P G RTlnP,则Gx的状态应该为(C。
化工热力学第三版(完全版)课后习题答案

化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。
(错)2. 封闭体系中有两个相βα,。
在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。
(对)3. 理想气体的焓和热容仅是温度的函数。
(对)4. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。
3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。
B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。
C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig P C R igPP P R V P R C ,H =1121T P P C igP C R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。
化工热力学(山东联盟)智慧树知到答案章节测试2023年中国石油大学(华东)

第一章测试1.热力学起源于热功及物理学科。
()A:错B:对答案:B2.热力学的四个基本定律不包括()。
A:热力学第零定律B:动量传递定律C:热力学第一定律D:热力学第三定律答案:B3.化工热力学是化学工程学科重要的专业基础课和核心课程。
()A:错B:对答案:B4.热力学定律具有普遍性,不但能解决生产实际的问题,还能用于宇宙问题的研究。
()A:对B:错答案:A5.经典热力学原理本身不能独立地解决实际问题,而需要与表达系统特征的模型相结合。
()A:错B:对答案:B6.计算机的应用,深化和拓宽了化工热力学的研究范畴,促进了化工热力学学科的发展,也更充分地发挥了热力学理论在化学工程中的作用。
()A:错B:对答案:B7.化工热力学的主要任务是研究物质和能量有效利用的极限,给出可能性、方向和限度的判断,能预测其推动力并给出过程变化的速率。
()A:错B:对答案:A8.化工热力学中着重研究热力学函数在工程中的应用,不包括()。
A:Gibbs自由能B:焓C:熵答案:D9.化工热力学在研究实际问题时,通常将实际过程变成“理想模型+校正”的处理问题方法,即共性加个性的方法。
理想模型不包括()。
A:理想溶液B:活度系数C:理想气体D:可逆过程答案:B10.()不属于经典热力学。
A:化学热力学B:统计热力学C:工程热力学D:化工热力学答案:B第二章测试1.流体的p、V、T是物质最基本的性质之一,是研究热力学的基础,而且流体的p、V、T是可以直接测量的性质。
()A:对B:错答案:A2.纯物质p-V图上,临界等温线在临界点处的曲率等于()。
A:1B:0C:不确定答案:B3.某压力下的纯物质,当温度高于该压力下的饱和温度时,物质的状态为()。
A:液体B:饱和蒸汽C:超临界流体D:过热蒸汽答案:D4.在p→0或者V→∞时,任何的状态方程都还原为理想气体方程。
()A:错B:对答案:B5.RK方程能成功地用于气相 p-V-T 关系的计算,但应用于液相效果较差,不能预测饱和蒸汽压和汽液平衡。
《化工热力学》(第二、三版_陈新志)课后习题答案

《化⼯热⼒学》(第⼆、三版_陈新志)课后习题答案第1章绪⾔⼀、是否题3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想⽓体的焓和热容仅是温度的函数。
(对)5. 理想⽓体的熵和吉⽒函数仅是温度的函数。
(错。
还与压⼒或摩尔体积有关。
)第2章P-V-T关系和状态⽅程⼀、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。
(错。
可以通过超临界流体区。
)3. 当压⼒⼤于临界压⼒时,纯物质就以液态存在。
(错。
若温度也⼤于临界温度时,则是超临界流体。
)4. 由于分⼦间相互作⽤⼒的存在,实际⽓体的摩尔体积⼀定⼩于同温同压下的理想⽓体的摩尔体积,所以,理想⽓体的压缩因⼦Z=1,实际⽓体的压缩因⼦Z<1。
(错。
如温度⼤于Boyle温度时,Z>1。
)7. 纯物质的三相点随着所处的压⼒或温度的不同⽽改变。
(错。
纯物质的三相平衡时,体系⾃由度是零,体系的状态已经确定。
)8. 在同⼀温度下,纯物质的饱和液体与饱和蒸汽的热⼒学能相等。
(错。
它们相差⼀个汽化热⼒学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同⼀温度下,纯物质的饱和液体与饱和蒸汽的吉⽒函数相等。
(对。
这是纯物质的汽液平衡准则。
)10. 若⼀个状态⽅程能给出纯流体正确的临界压缩因⼦,那么它就是⼀个优秀的状态⽅程。
(错。
)11. 纯物质的平衡汽化过程,摩尔体积、焓、热⼒学能、吉⽒函数的变化值均⼤于零。
(错。
只有吉⽒函数的变化是零。
)12. ⽓体混合物的virial系数,如B,C…,是温度和组成的函数。
(对。
)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。
(错。
三对数对应态原理不能适⽤于任何流体,⼀般能⽤于正常流体normal fluid)14. 在压⼒趋于零的极限条件下,所有的流体将成为简单流体。
(错。
简单流体系指⼀类⾮极性的球形流,如Ar等,与所处的状态⽆关。
化工热力学 冯新 第3章 纯流体的热力学性质计算

查 手 册 知 液 态 汞 的 0.00018 K ; 0.0000385 M P a
1
P 4 . 675 T 4 . 675 277 275 ) 9 . 35 MPa (
P P0 P 0 . 1013 9 . 35 9 . 45 MPa
dQ
R
T
; dQ
p
dH ; dQ V dU
CP S T T P
CV S T T V
其它106个偏导数不能直接实验测定。 106个不可测偏导数应用时必须将与6个可测的偏 导数联系起来。 纽带:热力学基本方程和偏导数关系式和Maxwell 20 方程!
(1)
(2) (3) (4)
如何计算U,H,A、G?
1)由公式知U,H,A,G =f(P,V,T,S)
2)P、V、T、S中只有两个是独立变量。S不能 直接测定, 以(T, P )和(T ,V)为自变量最 有实际意义。
13
3、若有S=S(T,P) 和 V=V(T,P),就能推 算不可直接测量的U,H,A,G。 问题:如何建立V=V(T,P)和S=S(T,P) ? 答案: 1)建立V=V(T,P) ,用EOS。 2)通过Maxwell关系式建立 S=S(T,P),使难测量与易测量 联系起来。
G
T
P
A
V S
H
U
S V ( 11) P T T P
•P,V,T,S之间的求导。变量为函数的垂直项,交叉项为 恒定下标。 •“+,-”由恒定下标所处的位置决定,位于箭头取“+”号, 24 位于箭尾取“-”号。
§3.1.6 帮助记忆小诀窍
《化工热力学》详细课后习题答案解析(陈新志)

2习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。
(错。
和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。
当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。
(错)3. 封闭体系中有两个相。
在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。
(对)4. 理想气体的焓和热容仅是温度的函数。
(对)5. 理想气体的熵和吉氏函数仅是温度的函数。
(错。
还与压力或摩尔体积有关。
)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。
(错。
V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。
(对。
状态函数的变化仅决定于初、终态与途径无关。
)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。
(错。
) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。
(错。
有时可能不一致)10. 自变量与独立变量是不可能相同的。
(错。
有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。
2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。
3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。
4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。
化工热力学答案(3章)

3-1. 物质的体积膨胀系数β和等温压缩系数k 的定义分别为:1PV V T β∂⎛⎫=⎪∂⎝⎭,1T V k V P ∂⎛⎫=- ⎪∂⎝⎭。
试导出服从Vander Waals 状态方程的β和k 的表达式。
解:Van der waals 方程2RT aP V b V=-- 由Z=f(x,y)的性质1y x z z x y x y z ⎛⎫∂∂∂⎛⎫⎛⎫⋅⋅=- ⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭得 1T P V P V T V T P ∂∂∂⎛⎫⎛⎫⎛⎫⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭又 ()232TP a RTV VV b ∂⎛⎫=-⎪∂⎝⎭- VP R T V b∂⎛⎫=⎪∂-⎝⎭所以 ()2321P a RT V V b V T RV b ⎡⎤∂-⎛⎫-⋅⋅=-⎢⎥⎪∂⎝⎭-⎢⎥⎣⎦()()3232P RV V b V T RTV a V b -∂⎛⎫= ⎪∂⎝⎭-- 故 ()()22312PRV V b V V T RTV a V b β-∂⎛⎫==⎪∂⎝⎭--()()222312T V V b V k V P RTV a V b -∂⎛⎫=-= ⎪∂⎝⎭-- 3-2. 某理想气体借活塞之助装于钢瓶中,压力为,温度为93℃,反抗一恒定的外压力3.45 MPa 而等温膨胀,直到两倍于其初始容积为止,试计算此过程之U ∆、H ∆、S ∆、A ∆、G ∆、TdS ⎰、pdV ⎰、Q 和W 。
解:理想气体等温过程,U ∆=0、H ∆=0 ∴ Q =-W =21112ln 2V V V V RTpdV pdV dV RT V===⎰⎰⎰J/mol ∴ W =- J/mol 又PP dT V dS C dP T T ∂⎛⎫=- ⎪∂⎝⎭ 理想气体等温膨胀过程dT =0、PV R T P ∂⎛⎫= ⎪∂⎝⎭ ∴RdS dP P=-∴ 222111ln ln ln2S P P P S P S dS R d P R PR ∆==-=-=⎰⎰=J/(mol·K)A U T S ∆=∆-∆=-366×5.763=-2109.26 J/(mol·K)G H T S A ∆=∆-∆=∆ J/(mol·K)TdS T S A =∆=∆⎰ J/(mol·K) 21112ln 2V V V V RTpdV pdV dV RT V===⎰⎰⎰= J/mol 3-3. 试求算1kmol 氮气在压力为MPa 、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3-1. 物质的体积膨胀系数β和等温压缩系数k 的定义分别为:1P V V T β∂⎛⎫=⎪∂⎝⎭,1TV k V P ∂⎛⎫=- ⎪∂⎝⎭。
试导出服从Vander Waals 状态方程的β和k 的表达式。
解:Van der waals 方程2RT a P V b V=--由Z=f(x,y)的性质1y x z z x y x y z ⎛⎫∂∂∂⎛⎫⎛⎫⋅⋅=- ⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭得 1T P VP V T V T P ∂∂∂⎛⎫⎛⎫⎛⎫⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭ 又 ()232TP a RTV VV b ∂⎛⎫=-⎪∂⎝⎭- VP R T V b∂⎛⎫= ⎪∂-⎝⎭所以 ()2321P a RT V V b V T RV b ⎡⎤∂-⎛⎫-⋅⋅=-⎢⎥⎪∂⎝⎭-⎢⎥⎣⎦()()3232P RV V b V T RTV a V b -∂⎛⎫= ⎪∂⎝⎭-- 故 ()()22312PRV V b V V T RTV a V b β-∂⎛⎫==⎪∂⎝⎭--()()222312T V V b V k V P RTV a V b -∂⎛⎫=-= ⎪∂⎝⎭-- 3-2. 某理想气体借活塞之助装于钢瓶中,压力为34.45MPa ,温度为93℃,反抗一恒定的外压力3.45 MPa 而等温膨胀,直到两倍于其初始容积为止,试计算此过程之U ∆、H ∆、S ∆、A ∆、G ∆、TdS ⎰、pdV ⎰、Q 和W 。
解:理想气体等温过程,U ∆=0、H ∆=0 ∴ Q =-W =21112ln 2V V V V RTpdV pdV dV RT V===⎰⎰⎰=2109.2 J/mol ∴ W =-2109.2 J/mol 又PP dT V dS C dP T T ∂⎛⎫=- ⎪∂⎝⎭ 理想气体等温膨胀过程dT =0、PV R T P ∂⎛⎫= ⎪∂⎝⎭ ∴Rd S d P P=-∴ 222111ln ln ln2S P P P S P S dS R d P R PR ∆==-=-=⎰⎰=5.763J/(mol·K)A U T S ∆=∆-∆=-366×5.763=-2109.26 J/(mol·K) G H T S A ∆=∆-∆=∆=-2109.26 J/(mol·K) TdS T S A =∆=∆⎰=-2109.26 J/(mol·K) 21112ln 2V V V V RTpdV pdV dV RT V===⎰⎰⎰=2109.2 J/mol 3-3. 试求算1kmol 氮气在压力为10.13MPa 、温度为773K 下的内能、焓、熵、V C 、p C 和自由焓之值。
假设氮气服从理想气体定律。
已知:(1)在0.1013 MPa 时氮的p C 与温度的关系为()27.220.004187J /mol K p C T =+⋅;(2)假定在0℃及0.1013 MPa 时氮的焓为零;(3)在298K 及0.1013 MPa 时氮的熵为191.76J/(mol·K)。
3-4. 设氯在27℃、0.1 MPa 下的焓、熵值为零,试求227℃、10 MPa 下氯的焓、熵值。
已知氯在理想气体状态下的定压摩尔热容为()36231.69610.14410 4.03810J /mol K ig p C T T --=+⨯-⨯⋅解:分析热力学过程300K 0.1 MPa H=0S=0, 真实气体,H S∆∆−−−−→、 500K 10 MPa ,真实气体-H 1R H 2R -S 1R S 2R300K 0.1 MPa , 理想气体11H S ∆∆−−−−→、500K 10 MPa , 理想气体查附录二得氯的临界参数为:T c =417K 、P c =7.701MPa 、ω=0.073 ∴(1)300K 、0.1MPa 的真实气体转换为理想气体的剩余焓和剩余熵T r = T 1/ T c =300/417=0.719 P r = P 1/ P c =0.1/7.701=0.013—利用普维法计算1.60.4220.0830.6324rB T =-=-2.60.675 1.592r rdB T dT == 14.20.1720.1390.5485rB T =-=-15.20.722 4.014r rdB T dT ==又 0101R r r r c r r H dB dB P B T B T RT dT dT ω⎡⎤⎛⎫=-+-⎢⎥⎪⎝⎭⎣⎦ 01R r r r S dB dB P R dT dT ω⎛⎫=-+ ⎪⎝⎭代入数据计算得1RH =-91.41J/mol 、1RS =-0.2037 J/( mol ·K )(2)理想气体由300K 、0.1MPa 到500K 、10MPa 过程的焓变和熵变21500362130031.69610.14410 4.03810T ig p T H C dT T T dT--∆==+⨯-⨯⎰⎰=7.02kJ/mol215003621300110ln31.69610.14410 4.03810ln 0.1ig T p T C P S dT R T TdT R TP --∆=-=+⨯-⨯-⎰⎰ =-20.39 J/( mol ·K )(3) 500K 、10MPa 的理想气体转换为真实气体的剩余焓和剩余熵T r = T 2/ T c =500/417=1.199 P r = P 2/ P c =10/7.701=1.299—利用普维法计算1.60.4220.0830.2326r B T =-=- 02.60.6750.4211r rdB dT ==14.20.1720.1390.05874r B T =-=- 15.20.7220.281r rdB T dT ==又0101R r r r c r r H dB dB P B T B T RT dT dT ω⎡⎤⎛⎫=-+-⎢⎥⎪⎝⎭⎣⎦ 01R r r r S dB dB P R dT dT ω⎛⎫=-+ ⎪⎝⎭ 代入数据计算得2RH =-3.41K J/mol 、2RS =-4.768 J/( mol ·K )∴H ∆=H 2-H 1= H 2=-1RH +1H ∆+2RH=91.41+7020-3410=3.701KJ/molS ∆= S 2-S 1= S 2=-1R S +1S ∆+2RS =0.2037-20.39-4.768=-24.95 J/( mol ·K )3-5. 试用普遍化方法计算二氧化碳在473.2K 、30 MPa 下的焓与熵。
已知在相同条件下,二氧化碳处于理想状态的焓为8377 J/mol ,熵为-25.86 J/(mol·K).解:查附录二得二氧化碳的临界参数为:T c =304.2K 、P c =7.376MPa 、ω=0.225 ∴ T r = T/ T c =473.2/304.2=1.556 P r = P/ P c =30/7.376=4.067—利用普压法计算 查表,由线性内插法计算得出:()1.741R cH RT =-()10.04662R cH RT =()0.8517R S R=-()10.296R S R=-∴由()()1R R Rc c cH H HRT RT RT ω=+、()()1R R RS S SR RRω=+计算得:H R =-4.377 KJ/mol S R =-7.635 J/( mol ·K )∴H= H R + H ig =-4.377+8.377=4 KJ/mol S= S R + S ig =-7.635-25.86=-33.5 J/( mol ·K )3-8. 试估算纯苯由0.1013 MPa 、80℃的饱和液体变为1.013 MPa 、180℃的饱和蒸汽时该过程的V ∆、H ∆和S ∆。
已知纯苯在正常沸点时的汽化潜热为3.733 J/mol ;饱和液体在正常沸点下的体积为95.7 cm 3/mol ;定压摩尔热容()16.0360.2357J /mol K igpC T =+⋅;第二维里系数 2.4310/mol ⎛⎫⨯⎪⎝⎭31B=-78cm T。
解:1.查苯的物性参数:T c =562.1K 、P c =4.894MPa 、ω=0.2712.求ΔV 由两项维里方程2.4321117810PV BP P Z RT RT RT T ⎡⎤⎛⎫==+=+-⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2.46361.013101178100.85978.31410453453⎡⎤⨯⎛⎫=+-⨯=⎢⎥⎪⨯⨯⎝⎭⎢⎥⎣⎦3.计算每一过程焓变和熵变(1)饱和液体(恒T 、P 汽化)→饱和蒸汽 ΔH V =30733KJ/KmolΔS V =ΔH V /T=30733/353=87.1 KJ/Kmol·K (2)饱和蒸汽(353K 、0.1013MPa )→理想气体 ∵点(T r 、P r )落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。
由式(3-61)、(3-62)计算()R2R1)(-H H H H H H id Tid P V +∆+∆++∆=∆()RR21)(S S S S S S id Tid P V +∆+∆+-+∆=∆21V V V -=∆molcm P ZRT V 3216.3196013.1453314.88597.0=⨯⨯==cmV V V 3125.31007.9516.3196=-=-=∆628.01.562353===Cr T T T 0207.0894.41013.0===C r P P P 00111r c -T Rr r r r r H dB B dB B P RT dT T dT T ω⎡⎤⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦()()-0.02070.628 2.2626 1.28240.2718.1124 1.7112=⨯⨯+++⎡⎤⎣⎦=-0.0807∴ ∴ (3)理想气体(353K 、0.1013MPa )→理想气体(453K 、1.013MPa )()212145335316.036 1.0130.23578.3140.101345316.0360.235745335319.13538.47idT idP T C P S dT Rln T P dT ln T ln KJ Kmol K∆=-⎛⎫=+- ⎪⎝⎭=+--=∙⎰⎰(4)理想气体(453K 、1.013MPa )→真实气体(453K 、1.013MPa )点(T r 、P r )落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。