药学专业知识药物的体内动力学过程知识点
执业西药师:药学专业知识-【基础精讲班】课件 第9章

单室模型:最简单的药动学模型。 当药物进入体循环后,能迅速向体内给组织器官分布,并很快在 血液与各组织脏器之间达到动态平衡
药物
血液
各组织脏器
双室模型: 假设身体由两部分组成。 药物分布速率大的中央室与药物分布速率较慢的周边室。
中央室包括血流丰富如心、肝、肾、肺、内分泌腺及细胞外液。 药物进入体循环后,能很快地分布在整个中央室,血液与这些组织中 的药物浓度可迅速达到平衡
第4节 单室模型血管外给药
峰左边称为吸收相,此时吸收速度大于消除速度,曲线呈上升状 态,主要体现药物的吸收过程。
峰右边称为消除相,反映了药物的消除情况,此时的吸收速度小 于消除速度;
在到达峰顶的瞬间,吸收速度等于消除速度,其峰值就是峰浓度 (Cmax)(2016配伍),这个时间称为达峰时间(tmax)
第3节 单室模型静脉滴注给药
二、稳态血药浓度 静脉滴注开始的一段时间内,血药浓度逐渐上升,然后趋近于恒 定水平,此时的血药浓度值称为稳态血药浓度或坪浓度,用Css表示。 达到稳态血药浓度时,药物的消除速度等于药物的输入速度。
Css=k0/kV(2016配伍) 稳态血药浓度Css与静滴速度k0成正比,随滴注速度增大而增大。
第4节 单室模型血管外给药
达峰时间
药物的tmax由ka、k决定,与剂量大小无关。 达峰浓度
而Cmax与X0成正比。药物制剂的达峰时间和峰浓度能够反映制剂中 药物吸收的速度。
请继续关注,精彩课程内容待续……
第9章 药物体内动力学过程
第5节 双室模型给药
第5节 双室模型给药
一、静脉注射血药浓度与时间的关系 双室模型药物经中央室进入系统,并从中央室消除,在中央室与 周边室之间药物进行着可逆性的转运。
2015年执业药师《药学专业知识一》第九章药物体内动力学过程(二)

第九章药物体内动力学过程六、非线性药物动力学当药物浓度超过某一界限时,参与药物代谢的酶发生了饱和现象所引起的。
可用描述酶动力学的方程,即米氏方程来研究。
第三节非房室模型特点:计算主要依据药物浓度一时间曲线下的面积,而不受数学模型的限制,适用于任何隔室。
一、药物动力学中的各种矩1.零阶矩:从零时间到无限大时药物浓度.时间曲线下的面积,称为药一时曲线的零阶矩。
即:2.-阶矩:药物通过机体(包括释放、吸收、分布与消除)所需要的平均滞留时间,称为一阶矩。
用MRT表不』uc3.二阶矩,VRT为平均滞留时间的方差,表示如下V第四节给药方案设计与个体化给药一、给药方案设计:(1)给药方案设计的一般原则:达到安全有效的治疗目的,根据患者的具体情况和药物的药效学与药动学特点而拟订的药物治疗计划称给药方案。
它包括剂量、给药间隔时间、给药方法和疗程等。
影响给药方案的因素有:药物的药理活性、药动学特性和患者的个体因素等。
给药方案设计的目的是使药物在靶部位达到最佳治疗浓度,产生最佳的治疗作用和最小的副作用。
安全范围广的药物不需要严格的给药方案。
但血药浓度监测仅在血药浓度与临床疗效相关,或血药浓度与药物副作用相关时才有意义。
(2)根据半衰期确定给药:临床上采用首次剂量加倍,使血药浓度迅速达到有效治疗浓度。
(3)根据平均稳态血药浓度制定给药方案。
(4)使稳态血药浓度控制在一定范围内的给药方案。
(5)静脉滴注给药方案设计:对于生物半衰期短、治疗指数小的药物,为了避免频繁用药且减小血药浓度的波动性,临床上多采用静脉滴注给药。
二、个体化给药:(1)血药浓度与给药方案个体化:给药方案个体化是提高临床疗效的一个重要方法。
对于治疗指数小的药物,要求血药浓度的波动范围在最低中毒浓度与最小有效浓度之间,而患者的吸收、分布、消除的个体差异又常常影响血药浓度水平,因而制定个体化给药方案十分重要。
对于在治疗剂量即表现出非线性动力学特征的药物,剂量的微小改变,可能会导致治疗效果的显著差异,甚至会产生严重毒副作用,此类药物也需要制定个体化给药方案。
执业药师《西药一》第9章考点:药物的体内动力学过程

单室模型静脉注射给药后,药物的消除按一级速度进行。
公式:静脉滴注是按恒定速度向血管内给药的方式。
公式:三、单室模型血管外给药:血管外给药存在吸收过程,药物的吸收和消除用一级过程描述。
公式:四、双室模型给药:公式:α称为分布速度常数或快配置速度常数;β称为消除速度常数或慢配置速度常数。
α和β分别代表着两个指数项即药物体内分布相和消除相的特征。
五、多剂量给药:在重复给药时,由于前一次给的药,体内药物尚未完全消除,体内药量在重复给药后逐渐蓄积。
随着多次给药,体内药量不断增加,同时消除也相应加快,经过一定时间能达到稳态血药浓度。
达稳态时,一个给药间隔范围内消除药量与给药剂量相平衡。
公式:六、非线性药动学:米氏(Michaelis-Menten)方程常用来表述非线性药动学过程。
其方程式:考点速记:【单选题】1. 头孢克洛生物半衰期约为1h。
口服头孢克洛胶囊后,其在体内基本清除干净(99%)的时间约是:A.2hB.3hC.7hD.14hE.28h【答案】C。
解析:考查半衰期与清除量关系。
静滴至99%的达坪浓度分数需经6.64 个半衰期。
单室模型静脉注射给药后,药物的消除按一级速度进行。
公式:静脉滴注是按恒定速度向血管内给药的方式。
公式:三、单室模型血管外给药:血管外给药存在吸收过程,药物的吸收和消除用一级过程描述。
公式:四、双室模型给药:公式:α称为分布速度常数或快配置速度常数;β称为消除速度常数或慢配置速度常数。
α和β分别代表着两个指数项即药物体内分布相和消除相的特征。
五、多剂量给药:在重复给药时,由于前一次给的药,体内药物尚未完全消除,体内药量在重复给药后逐渐蓄积。
随着多次给药,体内药量不断增加,同时消除也相应加快,经过一定时间能达到稳态血药浓度。
达稳态时,一个给药间隔范围内消除药量与给药剂量相平衡。
公式:六、非线性药动学:米氏(Michaelis-Menten)方程常用来表述非线性药动学过程。
其方程式:考点速记:【单选题】1. 头孢克洛生物半衰期约为1h。
药理学—— 药动学知识点归纳

药理学——药动学知识点归纳一、药物的体内过程药物从进入机体至离开机体,可分为四个过程:简称ADME系统→与膜的转运有关。
(一)药物的跨膜转运:※药物在体内的主要转运方式是:被动转运中的简单扩散!Ⅰ、被动转运——简单扩散1.概念:指药物由浓度高的一侧向浓度低的一侧扩散,以浓度梯度为动力。
2.特点:(1)不消耗能量。
(2)不需要载体。
(3)转运时无饱和现象。
(4)不同药物同时转运时无竞争性抑制现象。
(5)当膜两侧浓度达到平衡时转运即停止。
3.影响简单扩散的药物理化性质(影响跨膜转运的因素)(1)分子量分子量小的药物易扩散。
(2)溶解性脂溶性大,极性小的物质易扩散。
(3)解离性非离子型药物可以自由穿透。
离子障是指离子型药物被限制在膜的一侧的现象。
4.体液pH值对弱酸或弱碱药物的解离的影响:从公式可见,体液pH算数级的变化,会导致解离与不解离药物浓度差的指数级的变化,所以,pH值微小的变动将显著影响药物的解离和转运。
例题:一个pK a=8.4的弱酸性药物在血浆中的解离度为A.10%B.40%C.50%D.60%E.90%『正确答案』A『答案解析』pH对弱酸性药物解离影响的公式为:10 pH-pKa=[解离型]/[非解离型],即解离度为10 7.4-8.4=10-1=0.1。
※总结:体液pH值对药物解离度的影响规律:◇酸性药物在酸性环境中解离少,容易跨膜转运。
达到扩散平衡时,主要分布在碱侧。
◇碱性药物在碱性环境中解离少,容易跨膜转运。
达到扩散平衡时,主要分布在酸侧。
同性相斥、异性相吸或“酸酸碱碱促吸收;酸碱碱酸促排泄”例题:某弱酸性药物pK a=3.4,若已知胃液、血液和碱性尿液的pH 值分别是1.4、7.4和8.4。
问该药物在理论上达到平衡时,哪里的浓度高?A.碱性尿液>血液>胃液B.胃液>血液>碱性尿液C.血液>胃液>碱性尿液D.碱性尿液>胃液>血液E.血液>碱性尿液>胃液『正确答案』A『答案解析』同性相斥、异性相吸。
药理学第三章 药动学

门静脉
胆管 肠道
粪便
肝肠循环:部分由胆汁排泄到十二指肠的药物 可在肠道再次被吸收入门静脉进入血液循环
3.肺脏: 某些挥发性药物
4.其他排泄途径: 乳汁、胃液、唾液及汗液。
第二节 速率过程
一、血管外给药的药-时曲线
最低中毒浓度
达峰时间 药峰浓度
血
药
浓 度
吸 收
分
布
相
平衡相
治疗窗
最低有效浓度
消除相
单位时间内用药总量不变,给药间隔时间愈
短,血药浓度的波动愈小,否则反之,但CSS不变, 达CSS时间不变.
问题
某病人病情危急,需立即达到稳 态浓度以控制,应如何给药
加大剂量 缩短给药间隔时间 其它方法
Plasma Drug Concentration
Time
Plasma Drug Concentration
• 血眼屏障:血-房水、血-视网膜。局部用药。 • 胎盘屏障:与一般生物膜无太大区别。孕妇用
药需谨慎。
组织亲和力
• 碘主要集中在甲状腺 • 钙沉积于骨骼 • 汞、砷等重金属多分布在肝、肾 • 硫喷妥钠多分布于脂肪组织 • 四环素可与钙络合沉积于骨骼和牙齿。
(三)生物转化
部位:主要在肝脏,其它如胃肠、肺、
VVdd==33L-5左L右: 主要分布于血液并与血浆蛋白大量结合, 如双香豆素、保泰松。 VVdd==1150L-2左0m右l: 主要分布于细胞外液和血浆,此类药物往 往不易通过细胞膜。如溴化物和碘化物等
VVdd==4400-L左60右ml: 可以分布于细胞内、外液。如利福平、安替比林
VVdd==110000--220000mLl: 特异性分布,可浓集于某些组织,如硫喷 妥钠、131I。
执业西药师基础精讲班:药学专业知识一09-第9章-药物的体内动力学过程

药学专业知识(一)国家执业药师资格考试主讲老师:姜雅基础精讲班第九章药物的体内动力学过程第一节药动学基本概念、参数及其临床意义一、房室模型药物动力学1、药物动力学采用动力学的基本原理和数学的处理方法,研究药物体内药量随时间变化规律的科学,并求算相应的动力学参数。
第一节药动学基本概念、参数及其临床意义2、隔室模型(1)单隔室模型:把机体视为由一个单元组成,即药物进入体循环后迅速地分布于可分布到的组织,器官和体液中,并立即达到分布上的动态平衡,成为动力学的均一状态。
第一节药动学基本概念、参数及其临床意义(2)隔室模型:双室模型把机体看成药物分布速度不同的两个单元组成的体系称为双室模型中央室由血液和血流丰富的组织,器官组成(心、肺、肝、肾等),药物在中央室迅速达到分布平衡周边室由血液供应不丰富的组织、器官组成(肌肉、皮肤等),药物在周边室分布较慢。
(3)多室模型(略)第一节药动学基本概念、参数及其临床意义二、药动学参数2015A,2015A,2016B(1),2018A(3)1、速率常数速率常数用来描述这些过程速度与浓度的关系一级速率过程,即过程的速度与浓度成正比。
药物在体内的吸收、分布、代谢和排泄过程。
它是药动学的特征参数,速率常数越大,表明其体内过程速度越快。
速率常数的单位是时间的倒数,如min-1叫或h-1第一节药动学基本概念、参数及其临床意义2、生物半衰期指药物在体内的量或血药浓度降低一半所需要的时间,常以t1/2表示,单位取“时间”。
小;表示药物从体内消除的快慢,代谢快、排泄快的药物,其t1/2大。
代谢慢,排泄慢的药物,其t1/2第一节药动学基本概念、参数及其临床意义2015A31.某药物按一级速率过程消除,消除速度常数k=0.095h-1,则该药半衰期为A.8.0hB.7.3hC.5.5hC.4.0hE.3.7h【答案】:B解析:半衰期t1/2=0.693/k=0.693/0.095=7.3h第一节药动学基本概念、参数及其临床意义3、表观分布容积是体内药量与血药浓度间相互关系的一个比例常数,用“V”表示。
药物代谢动力学知识

Pharmacokinetics药代动力学简称药动学,是研究机体对药物的处应用动力学原理与数学模型,定量地描述与概述服给药等)进入机体后,机体对药物的吸收、分布、代谢和排泄过程的“量时”变化或“血药浓度经时吸收disribution)、代谢:ADME药物的体内过程直接影响到药物在其作用部位的浓度和有效浓度维持的时间,从而决定药物作用效果的基础,是临床制定给药方案的依据。
Bound组织器官分布A 消除¾特点:不需载体,无饱和性各药间无竞争性抑制现象 跨膜转运(passive transport)和载体转运被动转运包括:滤过(filtration)简单扩散(simple diffusion)滤过(filtration):亲水性的膜孔,4埃-40埃,水溶性药物借流体静压或渗透压通过亲简单扩散:绝大多数药物按此方式通过生物膜。
又称脂溶扩散(lipid diffusion),主要与药物的脂溶性与解离度有关。
非极性、解离度小或脂溶性强的药物容易通过。
大部分药物属于有机弱酸或有机弱碱,解离度影响他们的脂溶性。
pKa:弱酸弱碱类药物在50%解离时的溶液的pH 值。
¾体液对弱碱类药物被动转运的影响¾膜两侧不同状态,弱酸弱碱类药物被动运转达平衡时,膜两侧浓度比较:药物总量¾在膜两侧处于不同状态时,弱酸性药物被动运转达平衡时,膜两侧浓度比的计算方法主动转运特点:可逆浓度差转运有竞争性抑制现象(例:丙磺舒与青霉素)易化扩散(facilited diffusion)特点:不需要能量,有饱和性(例:葡萄糖进入红细胞、维生素B12通过胃粘膜)。
主要影响药物通过细胞膜的因素代谢metabolism排泄excretion吸收:药物从用药部位向血液循环中转运的过程血管内给药途径无吸收过程,血管外给药途径有吸收过程。
¾药物的理化性质:极性、解离度、脂溶性¾给药途径:消化道给药(口腔、胃、直肠);消化道外给药途径(肌内,皮下,肺等)首关效应口服给药1、口腔吸收:舌下under tongue 起效快,绝大部分药物直接进入体循环.避免首关效应:脂溶性高的药物硝酸甘油:3、小肠及直肠吸收per rectum儿童、呕吐、昏迷时采用;50%不经过肝脏;不规则、不完全、对黏膜有刺激作用。
药物的体内过程及药物代谢动力学

药物的体内过程及药物代谢动力学1药物的体内过程1.1吸收药物的吸收是它从用药部位转运至血液的过程。
其吸收快、慢、难、易,可受多种因素的影响:(1)药物本身的理化性质:脂溶性物质因可溶于生物膜的类脂质中而扩散,故较易吸收;小分子的水溶性物质可自由通过生物膜的膜孔而扩散而被吸收;而如硫酸钡,它既不溶于水又不溶于脂肪,虽大量口服也不致引起吸收中毒,故可用于胃肠造影。
非解离型药物可被转运,故酸性有机药物如水杨酸类、巴比妥类,在酸性的胃液中不离解,呈脂溶性,故在胃中易于吸收。
而碱性有机药物如生物碱类,在胃液中大部分离解,故难以吸收,到肠内碱性环境中才被吸收。
改变吸收部位环境的ph,使脂溶性药物不离解部分的浓度提高时,吸收就会增加,例如用碳酸氢钠使胃液ph升高时,可使碱性药物在胃中的吸收增加,而酸性药物的吸收则减少。
(2)给药的途径:在组织不破损不发炎的情况下,除静脉给药(直接进入血流)外,吸收的快慢顺序如后:肺泡(气雾吸入)——肌内或皮下注射——粘膜(包括口服、舌下给药)——皮肤给药。
(3)药物浓度、吸收面积以及局部血流速度等,一般地说,药物浓度大,吸收面积广,局部血流快,可使吸收加快。
胃肠道淤血时,药物吸收就会减慢。
1.2分布药物吸收入血后随血液循环向全身分布,有的分布均匀,有的分布并不均匀。
有些药物对某些组织有特殊的亲和力,例如碘浓集于甲状腺中;氯喹在肝中浓度比血浆中浓度约高数百倍;汞、锑、砷等以及类金属在肝、肾中沉积较多,故在中毒时这些器官常首先受害。
药物分布至作用部位,必须透过不同的屏障,如毛细血管壁、血脑屏障、胎盘等。
对于毛细血管壁,脂溶性或水溶性小分子易于透过;非脂溶性药物透过的速度与其分子大小成反比(大分子药物如右旋糖酐,通过毛细血管很慢,停留在血液中的时间较长,故可作为血浆代用品);解离型药物较难透过。
对于血脑屏障,水溶性化合物难以通过,脂溶性物质如乙醚、氯仿等则易于通过。
青霉素不易通过血脑屏障,进入脑脊髓液的比率很小,故用它治疗流脑时,必须加大剂量,才能保证脑脊液中有足够的浓度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
药学专业知识药物的体内动力学过程知识点1.药动学参数及其临床意义:房室模型、药动学参数2.房室模型:单室模型、双室模型、多剂量给药、非线性动力学3.非房室模型:统计矩及矩量法4.给药方案设计与个体化给药:给药方案设计、个体化给药、治疗药物监测5.生物利用度:生物利用度的临床应用、生物利用度的研究方法及生物等效性药动学基本参数>>速率常数(h-1、min-1)——速度与浓度的关系,体内过程快慢吸收:k a尿排泄:k e消除(代谢+排泄)k=k b+k bi+k e + ……>>生物半衰期(t1/2)——消除快慢t1/2 =0.693/k>>表观分布容积(V)——亲脂性药物分布广、组织摄取量多>>清除率(Cl,体积/时间)——消除快慢 Cl=kV某药物按一级速率过程消除,消除速率常数k=0.095h-1,则该药物消除半衰期t1/2约为A.8.0hB.7.3hC.5.5hD.4.0hE.3.7h『正确答案』B静脉注射某药,X0=60mg,若初始血药浓度为15μg/ml,其表观分布容积V是A.0.25LB.2.5LC.4LD.15LE.40L『正确答案』C房室模型药物转运(吸收、分布、排泄)的速度过程药学动力学首要问题——浓度对反应速度的影响>>一级速度与药量或血药浓度成正比>>零级速度恒定,与血药浓度无关(恒速静滴、控释)>>受酶活力限制(Michaelis-Menten型、米氏方程)药物浓度高出现酶活力饱和稳态血药浓度(坪浓度、C SS)静滴时,血药浓度趋近于一个恒定水平,体内药物的消除速度等于药物的输入速度。
达稳态血药浓度的分数(达坪分数、f ss)f ss:t时间体内血药浓度与达稳态血药浓度之比值n=-3.32lg(1-f ss)n为半衰期的个数n=1 →50%n=3.32 →90%n=6.64 →99%n=10 →99.9%静滴负荷剂量: X0=C SS V单剂量静注QIAN:单剂静注是基础,e变对数找lg尿药排泄数据分析·血药浓度测定困难·大部分药物以原形从尿中排泄·经肾排泄过程符合一级速度过程·尿中原形药物出现的速度与体内的药量成正比单剂量-静滴K0-滴注速度稳态血药浓度(坪浓度、C SS)QIAN:静滴速度找K0,稳态浓度双SA:关于单室静脉滴注给药的错误表述是A.k0是零级滴注速度B.稳态血药浓度C ss与滴注速度k0成正比C.稳态时体内药量或血药浓度恒定不变D.欲滴注达稳态浓度的99%,需滴注3.32个半衰期E.静滴前同时静注一个负荷剂量,可使血药浓度一开始就达稳态『正确答案』D单剂量-血管外F :吸收系数吸收量占给药剂量的分数QIAN:血管外需吸收,参数F是关键双室模型QIAN:双室模型AB杂,中央消除下标10 多剂量给药(重复给药)QIAN:多剂量需重复,间隔给药找τ值>>多剂量给药体内药量的蓄积蓄积系数:R1.τ越小,蓄积程度越大2.半衰期大易蓄积3.多剂量给药血药浓度的波动程度4.评价缓控释制剂质量重要指标这些年我们一直在追的公式QIAN:单剂静注是基础,e变对数找lg静滴速度找k0,稳态浓度双S血管外需吸收,参数F是关键双室模型AB杂,中央消除下标10多剂量需重复,间隔给药找τ值1.双室模型静脉注射给药血药浓度-时间关系式的方程为2.单室模型血管外重复给药血药浓度-时间关系式的方程为『正确答案』A、B以下单室模型血药浓度公式分别为1.单剂量静脉注射给药2.单剂量静脉滴注给药3.单剂量血管外给药4.多剂量静脉注射给药达稳态『正确答案』B、A、D、C非线性药动学(酶、载体参与时出现饱和,速度与浓度不成正比)非线性药动学的特点·消除动力学非线性·剂量增加,消除半衰期延长·AUC和平均稳态血药浓度与剂量不成正比·其他可能竞争酶或载体系统的药物,影响其动力学过程非房室模式——统计矩>>零阶矩:血药浓度-时间曲线下面积血药浓度随时间变化过程>>一阶矩:药物在体内的平均滞留时间(MRT)药物在体内滞留情况>>二阶矩:平均滞留时间的方差(VRT)药物在体内滞留时间的变异程度1.单室静脉滴注给药过程中,稳态血药浓度的计算公式是2.药物在体内的平均滞留时间的计算公式是『正确答案』B、A给药方案设计1.一般原则——安全有效2.方案内容:剂量、给药间隔时间、给药方法、疗程3.影响因素:药理活性、药动学特性、患者个体因素4.目的:靶部位治疗浓度最佳,疗效最佳,副作用最小5.根据半衰期、平均稳态血药浓度设计6.给药间隔τ=t1/2,5-7个达稳态,首剂加倍7.生物半衰期短、治疗指数小:静脉静脉滴注给药方案设计体重为75kg的患者用利多卡因治疗心律失常,利多卡因的表观分布容积V=1.7L/kg,消除速率常数k=0.46h-1,希望治疗一开始便达到2μg/ml的治疗浓度,请确定静滴速率及静注的负荷剂量。
解:负荷剂量X0=C0V=2×1.7×75=255(mg)静滴速率k0=C ss kV=2×0.46×1.7×75=117.3(mg/h)注射用美洛西林/舒巴坦,规格1.25(美洛西林1.0g,舒巴坦0.25g)。
成人静脉符合单室模型。
美洛西林表现分布容积V=0.5L/kg。
1.体重60Kg患者用此药进行呼吸系统感染治疗希望美洛西林可达到0.1g/L,需给美洛西林/舒巴坦的负荷剂量为A.1.25g(1瓶)B.2.5g(2瓶)C.3.75g(3瓶)D.5.0g(4瓶)E.6.25g(5瓶)2.关于复方制剂美洛西林钠与舒巴坦的说法,正确的是3.注射用美洛西林/舒巴坦的质量要求不包括A.无异物B.无菌C.无热原、细菌内毒素D.粉末细度与结晶度适宜E.等渗或略偏高渗注射用美洛西林/舒巴坦,规格1.25(美洛西林1.0g,舒巴坦0.25g)。
成人静脉符合单室模型。
美洛西林表现分布容积V=0.5L/kg。
体重60Kg患者用此药进行呼吸系统感染治疗希望美洛西林可达到0.1g/L,需给美洛西林/舒巴坦的负荷剂量为X0=C0V=0.5×60×0.1=3(g)个体化给药1.治疗指数小,血药浓度波动在安全范围内治疗剂量表现出非线性药动学特征2.测定血药浓度,计算参数,制定安全有效方案3.方法:比例法、一点法、重复一点法4.肾功减退:肾清除率与肌酐清除率成正比根据患者肾功,预测Cl、k,进行剂量调整治疗药物监测1.个体差异大:三环类抗抑郁药2.非线性动力学:苯妥英钠3.治疗指数小、毒性反应强:强心苷、茶碱、锂盐、普鲁卡因胺4.毒性反应不易识别,用量不当/不足的临床反应难以识别:地高辛5.特殊人群用药6.常规剂量下没有疗效或出现毒性反应7.合并用药出现异常反应8.长期用药9.诊断和处理药物过量或中毒治疗药物监测临床意义·指导临床合理用药、提高治疗水平·确定合并用药的原则·药物过量中毒的诊断·医疗差错或事故的鉴定依据·评价患者用药依从性生物利用度生物利用程度(EBA)吸收的多少——C-t曲线下面积(AUC)生物利用速度(RBA)吸收的快慢——达峰时间(t max)T:试验制剂 R:参比制剂 iv:静脉注射剂生物利用度的评价指标>>血药浓度-时间曲线下面积:AUC>>达峰时间:t max>>峰浓度:C max生物等效性(BE)1.一种药物的不同制剂2.在相同试验条件下给以相同剂量3.其吸收程度和速度的主要药动学参数无统计学差异等效标准:>>AUC:80%~125%>>C max:75%~133%A.ClB.k aC.kD.AUCE.t max1.表示药物血药浓度-时间曲线下面积的符号是2.清除率3.吸收速度常数4.达峰时间『正确答案』D、A、B、EA:已知口服肝脏首过作用很大的药物,改用肌肉注射后A.t1/2增加,生物利用度也增加B.t1/2减少,生物利用度也减少C.t1/2不变,生物利用度也不变D.t1/2不变,生物利用度增加E.t1/2不变,生物利用度减少『正确答案』DA.生物利用度B.相对生物利用度C.绝对生物利用度D.溶出度E.生物半衰期1.药物体内血药浓度消除一半所需要的时间,称为2.在规定溶剂中,药物从固体制剂中溶出的速度和程度,称为3.试验制剂与参比制剂的血药浓度-时间曲线下面积的比率,称为4.药物吸收进入血液循环的程度与速度『正确答案』E、D、B、A药物的体内动力学过程一、药动学参数及其临床意义:房室模型、药动学参数二、房室模型:单室模型、双室模型、多剂量给药、非线性动力学三、非房室模型:统计矩及矩量法四、给药方案设计与个体化给药:给药方案设计、个体化给药、治疗药物监测五、生物利用度:生物利用度的临床应用、生物利用度的研究方法及生物等效性。