“矿源黄腐酸”与“生化腐植酸”区别

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、黄腐酸的由来

说起黄腐酸,我们不能不从腐殖质(Humus)谈起。

腐殖质的生成历程和化学理论有多种流派,众说纷纭,而目前比较公认的是科诺诺娃(Kononova)[1]和斯蒂文森(Steve nson)[2]的学说。本资料主要根据他们的理论加以阐述。

腐殖质是植物(也包含部分动物和微动物)残体在微生物作用以及后期复杂的地球化学作用下分解-合成的一类天然复杂大分子芳香族聚合物,参与形成腐殖质的植物组分,主要是木质素和多酚类物质,但纤维素、半纤维素、淀粉、单宁、蛋白质、脂肪等也参与了腐殖质的生成。腐殖质在地球上分布很广:在土壤、腐泥、江河湖海、死亡动植物残体中有之,在有机垃圾、堆肥、发酵废料中有之,而泥炭、褐煤、风化煤中的含量更高。

按腐殖质在不同溶剂中的溶解性,主要可分为4个级分:黄腐酸、棕腐酸、黑腐酸和腐黑物。在这4个级分中,前3种统称“腐植酸类物质”(HAs)其中溶于碱而不溶于酸的级分称作腐植酸(Humic acid,代号HA),而既溶于碱、又溶于酸(实际也部分溶于乙醇和丙酮)的Has叫做黄腐酸,原称富里酸(Fulvic acid,代号FA),是瑞典化学家奥登(Odén)于19 19年最早命名的。因此,FA是腐植酸类“家族”中的重要成员之一。

自然界FA的总量尽管很多,但大部分含量不超过1‰,难以提取和直接利用。泥炭和煤炭(包括褐煤和风化煤)中HAs 含量都较高,是目前腐植酸类工业加工和利用的主要原料来源。其中泥炭中的FA含量最高,其加工利用早已引起国外学者的关注。众所周知,泥炭是成煤的初期阶段,也是形成HA和FA的重要阶段。这个阶段是植物残体腐殖化初期,实际还是以喜氧微生物作用为主,泥炭化后期才进入厌氧细菌活跃期。因此,泥炭黄腐酸(PFA)的形成期,与土壤黄腐酸(S FA)、生物发酵黄腐酸(BFA)的形成期比较接近。因此,现代泥炭仍然大量保存着原始植物成分(纤维素、半纤维素、木质素、单宁质、蛋白质等),其HA和FA也不可避免地与这些非腐殖物质相“亲合”。而褐煤和风化煤中的黄腐酸(以下统称煤炭黄腐酸,CFA)则不同,它们的生成后期已经受过厌氧细菌作用(褐煤),甚至经过了长期的地质化学(高温、高压、风化氧化)作用和演变(风化煤),植物原来的成分已分解殆尽,而其中的HA和FA都经过复杂的芳香缩合-异构化过程。另外,现代泥炭的成矿原料几乎都是草本/蕨类/苔藓植物,而褐煤和风化煤都是木本植物为原料的,因此,泥炭和煤炭不仅生成年代、地质化学条件不同,而且原始植物也不同,这就决定了它们的化学组成和性质及加工工艺的差异。

2、黄腐酸的化学组成与结构

黄腐酸(FA)的主要有机元素是碳(C)、氢(H)、氧(O)、氮(N)和硫(S),其不同来源的FA元素组成大致范围见表1。可以看出,泥炭FA与生化FA、水体FA、堆肥FA、土壤FA的各元素比例基本相近,H/C原子比都在1.1以上,而煤炭FA (特别是风化煤FA)则不同,表现在碳含量较高、氢含量较低,H/C原子比都小于1。FA中的活性基团主要是羧基(COO H)和酚羟基(OH Ph),总称“总酸性基团”,它们含量的多寡,是FA化学活性高低的一项重要标志。从表1看出,泥炭FA 与煤炭FA、土壤FA的官能团在同一数量级,即总酸性基(特别是COOH)含量明显高于生化FA和堆肥FA,而酚羟基则比煤炭FA和土壤FA高,预示泥炭FA的综合活性较高。

表1 不同来源黄腐酸的元素组成和官能团对比(据文献[3]~[10])

来源

元素组成 (大致范围), %, daf H/C

(平均)官能团(平均),mmol/g

C H N S O总酸性基 COOH OH Ph 生化FA45~47 7~8 4~5 1~2 39~41 1.84 5.8 3.3 2.5堆肥FA47~48 5~7 1~3 1~2 40~42 1.72 6.4 1.3 5.1水体FA45~47 5~6 2~3 ——44~46 1.53—————土壤FA44~46 4~6 1~3 0.5~2 43~45 1.4210.38.2 2.1泥炭FA44~46 4~6 2~3 0.5~1 44~46 1.1910.47.8 2.6褐煤FA48~50 3~4 1~2 0.5~1 41~43 0.829.07.3 1.7风化煤FA52~55 2~3 0.7~1.5 0.5~1 38~43 0.6510.79.1 1.6风化煤HA54~65 1~3 0.1~0.9 0.3~0.5 37~39 0.537.87.00.8因为FA是来源不同的复杂天然有机物质,不可能写出一个确定的分子式,但可以用示性式来表示,即FA分子的基本结构单元由核+桥键(或侧链)+官能团3部分组成。“核”主要是苯环(也有少数脂环、萘环和杂环);桥键和侧链主要有亚甲基(-CH2-)、亚氨基(-NH-)、氮桥(-N=)、 O)、氨基(-NH2)、烯醇基(-CH=CH-OH)等。由若干个结构单元通过氢键、静电引力、范德华引力、金属离子等缔合构成FA分子,而FA分子之间又与蛋白质、氨基酸、碳水化合物、烃类、金属离子等通过弱键连接, 构成大分子(或“超分子”)。若干大分子又组合成为大分子胶体,这就是所谓的“FA胶体粒

子”。Stevenson[2]提出的FA分子结构模型(部分)见图3。这种结构模式只是理想状态,自然界的实际情况要复杂得多。比如,泥炭FA、水体FA、堆肥FA和部分土壤FA,不仅有芳香核和各种官能团,而且还与或多或少的蛋白质(多肽,po lypeptide)、多糖(saccharide)和脂肪链(R)结构相缔合(见图3);但煤炭FA则比较简单,除存在核结构和官能团外,蛋白质和糖类几乎荡然无存,脂肪链也少得多。E4/E6比值(在可见光465nm和665nm处光密度的比值),是反映FA的芳香缩合程度(或共轭键多少)的一个重要指标(与E4/E6呈负相关)。泥炭FA的E4/E6在土壤和堆肥FA范围,而与生化F A和煤炭FA差别较大;芳香度(fa,芳香碳占总碳的比例)也与上述规律相吻合。可见,泥炭FA与土壤、堆肥FA具有同等的芳香缩合度,也就是说,它们的腐殖化成熟度大致相同。但泥炭FA数均分子量相对最小(见表2),这无疑对农业应用是有利的。表1、2中数据还显示,同一来源的腐植酸(HA)和FA相比较(以风化煤为例),差别十分明显:前者的碳含量高,H/C低,氧含量低,芳香度高,分子量大,官能团数量相对较少。因此,人们更青睐FA,是不难理解的。

3、黄腐酸的性质

黄腐酸(FA)与腐植酸(HA)尽管在性质上有相似之处,但从上述组成结构的分析可知,FA是腐植酸类物质中芳香度最低、分子最小、官能团最多、溶解性最好的部分,也预示着FA是腐植酸“家族”中最活跃的一个级分,其化学、物理化学、生物化学活性比HA更高。对FA的性质简单分述如下:

3.1 物理性质和胶体性质

黄腐酸在固体状态下为深黄-深褐色粉末,颜色深度一般随土壤FA≈泥炭FA<褐煤FA<风化煤FA依次加深。FA真密度在1. 4g/cm3左右;易溶于水、酸和碱性溶液以及某些有机溶剂。FA的分子尺寸大约0.15~0.2nm,其稀溶液几乎为真溶液,但在较高浓度时呈现亲水胶体特性。FA也具有有机聚电解质的特性,表现在能提高胶体粒子的ζ-电位和双电层厚度、增强胶体体系稳定性方面。当FA水溶液中的金属离子达到一定浓度时,或者H+离子浓度极高(pH很低)时,FA会凝聚沉淀,这一性质主要用“凝聚极限”(n)来表示,n越大,FA

表2 黄腐酸的某些结构性质参数[3~11]

来源E4/E6凝聚极限n

(mmol/g)

数均分子量[11]

芳香度

fa

生化FA 3.3~9.81~36————

堆肥FA7~8————0.3~0.55土壤FA7.5~110.1~0.69510.4~0.6

泥炭FA7.6~8.910~∞5060.2~0.5风化煤FA 3.8~8.60.6~27460.49~0.6风化煤HA 3.1~6.30.1~0.6>15000.55~0.75抵抗电解质絮凝的能力越强。表2列出了不同来源FA的n值范围,可见泥炭FA的n最高。FA也是表面活性物质,具体表现在降低水表面张力、减小接触角和提高发泡性上。一般来说,表面活性大小的规律为:泥炭FA>褐煤FA>风化煤F A。同一来源的HA和FA相比,前者的n值要小得多(见表2),所以风化煤腐植酸钾(钠)溶液的抗絮凝能力很差,不适合制取液体肥料。

3.2 化学性质

1、弱酸性:由于FA含羧基、酚羟基,所以具有弱酸性,其水溶液pH值在3~5范围。

2、离子交换性:FA羧基和酚羟基上的活泼氢离子(H+)很容易被一价阳离子(K+、Na+、Li+、NH4+)和部分二价金属离子(Ca2+、Mg2+、Fe2+等)置换,形成FA的盐类,如黄腐酸钠(FA-Na)、黄腐酸钾(FA-K)等。FA甚至可以与许多天然物质,如粘土矿物、磷酸盐、碳酸盐、肥料、农药及各种有机阳离子发生离子交换反应,生成各种各样的复合物。

3、络合、螯合性:FA的活性基团(包括羧基、羟基以及某些含P、O、N、S的基团)一般都是电子给予体,很容易与许多电子接受体(多价金属离子、有机基团或离子)构成配位化合物,称作络合物或螯合物。比如,FA-Zn、FA-Mn、FA-Fe、FA-尿素、FA-农药等,实际大部分是络合(螯合)物。FA的络合(螯合)性能直接影响着自然界各种物质的迁移、固定、胶、化学反应性和生物可利用度,也是生产各种FA化学制剂(如高效液体肥料、低毒农药等)的理论基础之一。

4、氧化还原性:据测定,HA和FA的标准氧化-还原电位(E0)在0.7V左右,与半醌自由基的电极电位相当,故认为FA 的氧化还原性是醌-半醌-酚相互转换引起的。实际上,FA中的羰基、醇羟基、氨基、硝基、甚至脂肪碳结构部位都有可能参与氧化还原反应。FA的这种性质,不仅能调节土壤矿物的氧化还原浓度比(αOx/αRrd)、刺激微生物活性、调节植物体的生理活性,而且对地质化学变化、重金属和有机毒物(石油、多环芳烃、酚类、染料、农药等)的迁移和毒性也有影响。实验证明,HA和FA的大量存在,可使土壤环境的有效氧化-还原电位(E h)保持在最佳范围(0.2~0.7V),有利

相关文档
最新文档