离散选择模型分析

合集下载

基于离散选择模型的顾客选择偏好分析

基于离散选择模型的顾客选择偏好分析

o ti o d mak t e u n n t eb sso e i tr iw i fr t n a d s mp e d t n h ic e e c oc d l ti a e ic s e b an g o r e t r .O h a i ft n e ve n oma i n a l a a a d t e d s r t h ie mo e , h sp p rd s u s s r h o t e c so rsc o c p e e e c n n lz st er lt n h p b t e ei d v d a h r c e sa d c n u t n b h vo . s d o h h u t me ' h i e r f r n e a d a ay e e ai s i ewe n t n ii u lc a a tr n o s mp i e a i r Ba e n t e h o h o L gtmo e n P S s t t n y i s me r a o a l x l i r r p s d T e r s l o i r s a c a e u e n t r e r ei g oi d l d S S t i i a a ss o e s n b e e p an a e p o o e . h e u t f h s e e r h c n b s d i a g t a a sc l t ma k t n
的统计分析和合理解释。通过对液体奶制品 消费者 的个体特征和 选择 液态奶的某一特定 因素为 首选 因素的关 系分析 ,以及顾客 选择偏好 方面的探讨 ,为我 国液态奶制品供 应链在 目标 市场的选择方面提供 了一些启示。
关 键 词 : 离散 选 择 模 型 ;Lgt 型 ;顾 客偏 好 ;市场 营销 oi模

当代大学生价值观的离散选择模型分析

当代大学生价值观的离散选择模型分析
在心理学研究领域 ,对于研究对象的定性反应或定性属 性数据 ,可以选择的分析手段包括有列联表 、对数线性模型 等非线性的方式 ,从性质上讲 ,这些方式均属广义的离散选 择模型范畴[19 ] 。综合已报告的研究结果 ,国内心理学界的价 值观研究多采用两种类型的问卷作为数据收集方式 ,一种即 为使用 Likert 评 分 的 自 陈 式 问 卷[20 - 22 ] , 而 另 一 种 则 是 以 Rokeach Value Survey 为 代 表 的 等 级 排 序 式 问 卷[10 , 23 - 25 ] 。 前者在统计上可较为方便地进行各种常用的统计分析 ,而后 者多数只能进行有限的中位数等描述统计 ,也有研究者将后 者所获数据转换为计数数据或正态化 Z 分数使用[25 ] ,这些 做法或所获信息有限 ,或改变了数据性质 ,显然不利于揭示 价值观本身的特点和意义 。本研究选择其中在国内价值观 研究中鲜见运用的 Rank - Order Logit Model ,对大学生的价 值偏好进行探究 。
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
676
心 理 科 学
要特点 ,并尝试使用更为适合的分析手段获取有价值的研究 信息 。
3 p < 0. 05 , 3 3 p < 0. 005 ;下同 20 0. 86 0. 31 0. 72 0. 72 0. 50 1. 32 0. 54 0. 98 0. 83 0. 37 1. 02 0. 07 0. 52 1. 20 0. 69
工具性价值观
βj
0. 00 - 0. 16 3 3 - 0. 18 3 3 0. 15 3 3 1. 17 3 3 0. 33 3 3 0. 33 3 3 0. 70 3 3 - 0. 28 3 3 0. 61 3 3

离散选择模型logit模型实例stata分析.pptx

离散选择模型logit模型实例stata分析.pptx
MODEL 3-2 2variables (cost/LOS)
MODEL 4-2 2variables (time/LOS)
Data Modification
• We modify row-data to remove unreasonable data set
- Such as the choice of the not-dominant alternative
logcost5
los2
60
0
0.7419ቤተ መጻሕፍቲ ባይዱ7
6
60
1
1.029619
6
100
0
0.741937
10
60
1
1.029619
6
Modeling Estimated Results(DIST5)
Model distance5
1-1-5
2-1-5
3-1-5
0.2899 0.2884 0.1042
Modeling Estimated Results(DIST6)
Model 1 has 1 unreasonable data sets(in all data sets) Model 2 has 31 unreasonable data sets(in all data sets) Model 3 has 8 unreasonable data sets(in all data sets) Model 4 has 85 unreasonable data sets(in all data sets)
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0 m1-1-5

离散选择模型

离散选择模型

Yi 0 1GPAi 2 INCOMEi ui
其中:
1 Yi 0
第i个学生拿到学士学位后三年内去读研 该生三年内未去读研
GPA=第i个学生本科平均成绩 INCOME=第i个学生家庭年收入(单位:千美元)
设回归结果如下(所有系数值均在10%水平统计上显著):
ˆ Yi 0.7 0.4GPAi 0.002 INCOMEi
yi 0 yi 1
函数可以简化为:
L (1 F ( X ))1 yi F ( X ) yi
yi 1
对方程左右取对数我们便得到:
ln L [ yi ln F ( X ) (1 yi ) ln(1 F ( X ))]
i 1
n
似然函数为
fi ln L n yi fi [ (1 yi ) ]xi 0 Fi 1 Fi i 1
Pr ob(Y 1 X ) X F ( X ) f ( X ) X
因此我们在遇到二元响应模型时,估计出参数我们不能盲目的 将其解释为:解释变量变动一个单位,相对应的因变量变化参 数个单位。
为了解决偏效应的问题我们引入调整因子的概念。 在上式中的 f ( X ) 我们 便称为比例因子或调整因子,它与全部 的解释变量有关,为了方便起见,我们要找一个适用于模型所有 斜率的调整因子。有两种方法可以解决: (1)用解释变量的观测值计算偏效应的表达式,调整因子为:
四、二元选择模型的估计
1.除了LPM模型以外,二元选择模型的估计都是以极大似然法为基础 的 。由前面的讨论我们知道:
P(Y 1 X ) F ( X )
由此我们可以得到模型的似然函数为:
P(Y1 y1 ,Yn yn X ) (1 F ( X )) F ( X )

离散选择模型完整版

离散选择模型完整版

离散选择模型HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第五章离散选择模型在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。

我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。

本章主要介绍以下内容:1、为什么会有离散选择模型。

2、二元离散选择模型的表示。

3、线性概率模型估计的缺陷。

4、Logit模型和Probit模型的建立与应用。

第一节模型的基础与对应的现象一、问题的提出在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。

1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。

例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。

由离散数据建立的模型称为离散选择模型。

2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。

例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。

这种类型的数据成为审查数据。

再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。

这两种数据所建立的模型称为受限被解释变量模型。

有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,就把高出分数线和低于分数线划分为了两类。

下面是几个离散数据的例子。

例研究家庭是否购买住房。

由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住房的心理价位很难观测到,但我们可以观察到是否购买了住房,即我们希望研究买房的可能性,即概率(1)P Y =的大小。

《离散选择模型》课件

《离散选择模型》课件

极大似然估计法
通过最大化似然函数,估计模型 的参数值。
差分法估计法
通过对变量的差分进行估计,减 少了共线性问题的影响。
一般化估计方程法
通过建立一般化估计方程,对参 数进行估计。
离散选择模型的应用
公共交通出行方式选择
分析人们在选择公共交通出行方式时的决策行为,为政府制定交通政策提供依据。
食品品牌选择
确定性
选择结果是确定的,参与者 不受随机因素的影响。
离散选择模型的数学模型
1Байду номын сангаас
多项式Logit模型
通过对选择概率进行建模,预测参与者选择各个选项的概率。
2
二项式Logit模型
基于二项分布,预测参与者是否选择某个选项。
3
线性概率模型
使用线性回归方法,预测选择某个选项的概率。
离散选择模型的参数估计方法
离散选择模型是一种描述人们在面临离散选择时决策行为的数学模型。
2 离散选择模型的应用领域
离散选择模型被广泛应用于诸多领域,如公共交通、市场营销和行为经济学等。
离散选择模型的基本假设
可比性
各个选择项之间可以进行比 较,存在客观标准用于决策。
独立性
参与者之间的选择行为是独 立的,不受其他参与者的影 响。
《离散选择模型》PPT课 件
离散选择模型是一种用于分析人们在面临离散选择时的决策行为的统计模型。 本课件将介绍离散选择模型的定义、基本假设、数学模型、参数估计方法、 应用、不足及未来发展方向。
什么是离散选择模型
离散选择模型是一种用于研究人们在面临可选项时所作出的离散决策行为的统计模型。
1 离散选择模型的定义
将离散选择模型与其他决策模 型进行结合,以提高模型的准 确性和解释能力。

离散选择模型

离散选择模型

六、二元选择模型的参数检验 6.1 单个系数的显著性检验
一个解释变量(对二元决策的概率)是否有显著性影响的检验,如同正态
线性回归分析的单个系数的检验类似,根据模型中的待估系数与其方差计算 z 统计量,并检验假设 H0 : βi = 0 。
6.2 总体显著性检验 由于 Logit 模型、Probit 模型是非线性的,在同时检验多个系数是否为 0 时,
33潜回归我们假设存在一个不可观察的潜在变量称为决策倾向是指标变量的连续性函数记为iy它与指标变量ix之间具有如下线性关系i1kkiiiyxxu该方程称为潜回归方程其中iu是随机扰动项1ikixx??????????1k??????????34量变临界值选取量变到多少时个体才进行选择呢
离散选择模型
郑安
是估计系数的协方差
矩阵, βˆ 是无约束模型得到的估计值。可以证明,W 渐进服从 χ 2 (k −1) 分布。
所以 W 检验只需要估计无约束模型 (2)对数似然比检验(只适用于线性约束) H0 : β2 = β3 = " = βk = 0
检验统计量: LR = −2[ln L(βˆR ) − ln L(βˆ)]
其中,ln L(βˆR ) 是约束模型的最大对数似然函数值,ln L(βˆ) 是非约束模型的最大
对数似然函数值。可以证明,在零假设下,LR 渐进服从 χ 2 (k −1) 分布。所以 LR
检验既需要估计有约束模型,又需要估计无约束模型 (3)拉格朗日乘子检验(适用于线性和非线性约束) H0 : β2 = β3 = " = βk = 0
离散选择模型起源于 Fechner 于 1860 年进行的动物条件二元反射研究。1962 年,Warner 首次应用于经济领域。20 世纪 70 和 80 年代,离散选择模型普遍应 用于经济布局、交通问题、就业问题、购买决策问题等经济决策领域的研究。 模型的估计方法主要发展于 20 世纪 80 年代初期,远远滞后于模型的应用,并 且至今还在不断改进,它属于微观计量经济学——即研究大量个人、家庭或企 业的经济信息,McFadden 因为在微观计量经济学领域的贡献而获得 2000 年诺 贝尔经济学奖。

离散选择模型和连续选择模型的比较分析

离散选择模型和连续选择模型的比较分析

离散选择模型和连续选择模型的比较分析一、引言选择模型是指通过研究个体选择行为来预测市场需求的一种模型。

根据选择的属性是否可测,选择模型可以分为离散选择模型和连续选择模型。

离散选择模型是指选择行为的结果是分类的,例如选择是A、B还是C。

而连续选择模型是指选择行为的结果是连续的,例如选择的数量是多少。

本文将对离散选择模型和连续选择模型进行比较分析。

二、离散选择模型离散选择模型常用于解释市场需求中的离散选择行为,包括二项选择模型、多项选择模型、有序多项选择模型等。

1、二项选择模型二项选择模型常用来解释个体在两个选项之间进行选择的概率。

其模型设定为,在两个选项中,个体选择第一个选项1的概率为P,选择第二个选项2的概率为1-P,二者之和为1。

该模型假设个体根据其效用(utility)差异进行选择,即个体会选择能够获得最大效用的选项。

2、多项选择模型多项选择模型常用来解释个体在多个选项之间进行选择的概率。

其模型设定为,对于N个选项,个体选择第i个选项的概率为Pi,所有选项的概率之和为1。

该模型假设个体会选择能够获得最大效用的项,效用函数通常采用对数线性模型(Logit Model)。

3、有序多项选择模型有序多项选择模型常用来解释个体在多个选项之间进行有序选择的概率。

例如,当个体面对三个不同价格的产品时,个体有可能在选择第一价格区间的产品、第二价格区间的产品或者第三价格区间的产品。

该模型假设选择的概率是对价值的一次函数,因此需要先对选项进行排序以确定选择的顺序,然后再推导选择的概率。

三、连续选择模型连续选择模型常用于解释市场需求中的连续选择行为,包括对数线性模型、线性规划模型等。

1、对数线性模型对数线性模型是一种常用的连续选择模型。

它假设个体的效用函数是一个对数线性函数,其中因变量是一个连续变量,例如价格、数量等。

对数函数可以将效用函数转化为线性形式,从而便于分析。

2、线性规划模型线性规划模型是一种常用的数学优化模型,用于解决连续选择问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档