初中数学《二次根式》专项练习题
二次根式计算专题——30题(教师版含答案)

二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(3)(3)2732π++-+-【答案】(1)22; (2) 643-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22(36)(42)=-=54-32 =22.(2)2(3)(3)2732π++-+-313323=+-+- 643=-考点: 实数的混合运算. 2.计算(1)﹣×(2)(6﹣2x)÷3.【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:2051123525532335=-⨯32=-1=;(2)1(62)34x x x÷62)3x x x x =÷ (3)3x x x =÷3x x =.13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=- 考点:二次根式的化简. 10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算. 试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简. 11.计算:(1)(2)()02014120143π----.【答案】(1)1(2)3-【解析】 试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:(1)(1==(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法. 试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1. 【解析】0(2013)|-+-1=+1=.考点:二次根式化简. 14.计算12)824323(÷+- 【答案】262.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:248)12(62622)23(226)23 26考点: 二次根式的混合运算.15112 2322.【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.1122343222323考点: 二次根式的运算.16.化简:(1)83250+(2)2163)1526(-⨯-【答案】(1)92;(2)-【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;.(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17. 【解析】,运用平方差公式计算1)(1+,再进行计算求解.181--=17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:①1 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷ ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】 试题分析:(1)原式=152310-++-=;(2)原式==. 考点:1.实数的运算;2.二次根式的加减法. 22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】 试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π==.(2)((()2344951675+--=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式. 23.(1)18282-+(2)3127112-+(3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除.法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式经典训练题(含答案)

二次根式经典训练题一.选择题(共10小题)1.下列各式中,不是二次根式的是()A. B.C.D.2.下列各式①;②;③;④;⑤,其中二次根式的个数有()A.1个B.2个C.3个D.4个3.已知是整数,a是正整数,a的最小值是()A.0 B.3 C.6 D.244.要使二次根式有意义,x必须满足()A.x≤2 B.x≥2 C.x>2 D.x<25.使代数式有意义的x的取值范围是()A.x>3 B.x≥3 C.x>4 D.x≥3且x≠46.当1<a<2时,代数式+|1﹣a|的值是()A.﹣1 B.1 C.2a﹣3 D.3﹣2a7.下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①②B.③④C.②④D.①③8.已知a、b都是实数,且b,化简•+1的结果是()A.2 B.﹣2 C.1 D.39.下列代数式中,+1的一个有理化因式是()A.B.C.+1 D.﹣110.如果最简二次根式与是同类二次根式,那么x的值是()A.﹣1 B.0 C.1 D.2二.填空题(共8小题)11.若a≥1,则的最小值是.12.若是二次根式,则字母x满足的条件是.13.若是一个正整数,则正整数m的最小值是.14.已知实数a、b在数轴上的位置如图所示,化简的结果为.15.三角形的三边长分别为3、m、5,化简﹣=.16.在、、、、中,最简二次根式是.17.若和都是最简二次根式,则m=,n=.18.已知a=+,b=,则a与b的大小关系是a b.三.解答题(共10小题)22.计算:(1)+(π﹣1)0﹣4+(﹣1)(2)+﹣(﹣)23.计算:(1)﹣+(2)(﹣)÷5(3)(2﹣)2﹣(+2)(+)24.计算:①×(﹣9)②﹣+﹣③4+﹣+4④2•(3﹣4﹣3)25.计算:(1)(π﹣2013)0+()﹣1﹣×|﹣3| (2)(+)×﹣(4﹣3)÷2(3)+2﹣(﹣)(4)(﹣)2+2×3(5)+(+1)(﹣1)+×.26.(2015春•北流市期中)已知:x=+,y=﹣,求代数式x2﹣y2+5xy的值.27.(2014•襄阳)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.28.(2014•焦作一模)先化简:(2x+1)2+(x+2)(x﹣2)﹣4x(x+1),再求值,其中.2015年12月24日刘笑天的初中数学组卷参考答案一.选择题(共10小题)1.B;2.B;3.C;4.B;5.D;6.B;7.D;8.D;9.D;10.C;二.填空题(共8小题)11.;12.x≥-;13.5;14.-2a;15.2m-10;16.、;17.1;2;18.=;三.解答题(共10小题)19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;。
初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。
二次根式练习10套(附答案)

二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。
3、16的平方根________,64的立方根________。
4、算术平方根等于它本身的数有________,立方根等于本身的数有________。
5、若2562=x ,则=x ________,若2163-=x ,则=x ________。
6、已知ABC Rt ∆两边为3,4,则第三边长________。
7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。
8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。
9、如果0)6(42=++-y x ,则=+y x ________。
10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。
12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。
二、选择题13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB. 5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB. 248cmC. 224cmD. 232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A. 2h ab =B. 2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。
二次根式20道典型题练习

2、 若 ,则 的取值范围是。
3、 当 时, 。
4、 把 的根号外的因式移到根号内等于。
5、 若 ,则 ( )
A. B. C. D.
6、 若 ,则 化简后为( )
A. B.
~
C. D.
7、 能使等式 成立的 的取值范围是( )
A. B. C. D.
8、 计算: 的值是( )
A. 0 B. C. D. 或
9、 去掉下列各根式内的分母:
{
&
10、 已知 ,求 的值。
11、 已知 为实数,且 ,求 的值。
12、已知 ,化简二次根式 的正确结果为( )
·
A. B. C. D.
13、对于所有实数 ,下列等式总能成立的是( )
A. B.
C. D.
14、 和 的大小关系是( )
A. B. C. D. 不能确定
15、 对于二次根式 ,以下说法中不正确的是( )
A. 它是一个非负数 B. 它是一个无理数
C. 它是最简二次根式 D. 它的最小值为3
16、 化简:
*
17、 把根号外的因式移到根号内:
>
18、计算及化简:
⑴. ⑵.
⑶.
*
·
⑷.
|
19、 已知: ,求 的值。
20、 已知: ,求 的值。
中考数学复习《二次根式》专项练习题-附带答案

中考数学复习《二次根式》专项练习题-附带答案一、选择题1.下列式子,一定是二次根式的共有()√28,1,√−1,√m,,√x2+1A.5个B.4个C.3个D.2个2.下列根式是最简二次根式的是()A.√3B.√12C.√3D.√503.要使二次根式√6x+12有意义,则x的取值范围是()A.x≤-2 B.x≥-2 C.x⩾−12D.x⩽−124.计算2√5×3√10等于()A.6√15B.6√30C.30√2D.30√5 5.计算√52−42−32的结果是()A.6 B.0 C.√6D.46.使式子√x+3√4−3x在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个7.下列计算错误的是()A.√43+√121=2√7B.(√8+√3)×√3=2√6+3C.(4√2−3√6)÷2√2=2−32√3D.(√5+√7)(√5−√7)=5−7=−28.如图,在长方形ABCD中无重叠放入面积分别为12cm2和16cm2的两张正方形纸片,则图中空白部分的面积为()A.8−4√3B.16−8√3C.8√3−12D.4−2√3二、填空题9.计算:3√2−√8=.10.若代数式√2−xx−2有意义,则x的取值范围是.11.已知:x=√13+1,y=√13−1,则xy的值为.12.若a <2,化简√(a −2)2+a ﹣1= .13.已知x =√3+1,y =√3−1,则代数式y x +x y 的值是 .三、解答题14.计算:(181832;(221268(13)-15.先化简,再求值:已知x =3+2√2,求(2−x)2x−2+√x 2+9−6x x−3的值 16.已知23x =+23y =(1)试求22x y +的值; (2)试求x y y x-的值. 17.某居民小区有块形状为长方形的绿地ABCD ,长BC 为√128米,宽AB 为√50米,现在要长方形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为(√13+1)米,宽为(√13−1)米.(1)求长方形ABCD 的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为30元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?18.在数学课外学习活动中,小明和他的同学遇到一道题:已知a =,求2a 2﹣8a+1的值.他是这样解答的: ∵a ===2﹣,∴a ﹣2=﹣ ∴(a ﹣2)2=3,a 2﹣4a+4=3∴a 2﹣4a =﹣1∴2a 2﹣8a+1=2(a 2﹣4a )+1=2×(﹣1)+1=﹣1.请你根据小明的解析过程,解决如下问题:(1)= ;(2)化简;(3)若a=,求a4﹣10a3+a2﹣20a+5的值.参考答案1.D2.C3.B4.C5.B6.C7.A8.C9.√210.x <211.1212.113.414.(1)原式2222(2)原式333315.解: x =3+2√2=√2(3+2√2)(3−2√2)=3−2√2∴x −3=−2√2<0.原式=x −2+|x−3|x−3 =x −2+3−x x−3=x −2−1=x −3.当x =3+2√2时,原式==3+2√2−3=3−2√2−3=−2√2.16.(1)解:∵23x =和 23y =∴x+y=2323+,xy=(2323+=1 ∴()2222242114x y x y xy +=+-=-⨯= ;(2)解:∵23x =+和 23y =-∴x+y=2323+x-y=((2323232323--=+=xy=(2323=1 ∴()()2242383x y x y x y x y y x xy xy +--⨯-====17.(1)解:2×(√128+√50)=2×(8√2+5√2)=26√2(米)∴长方形ABCD 的周长为26√2米.(2)解:√128×√50−2×(√13+1)×(√13−1)=80−2×12=56(平方米)则56×30=1680(元)∴要铺完整个通道,则购买地砖需要花费1680元.18.解:(1)故答案为:﹣1; (2)==12﹣1=11;(3)∵a =∴a ﹣5=∴(a ﹣5)2=26,即a 2﹣10a+25=26.∴a 2﹣10a =1∴a 4﹣10a 3+a 2﹣20a+5=a 2(a 2﹣10a+1)﹣20a+5=a 2×(1+1)﹣20a+5=2(a 2﹣10a )+5=2+5=7. 答:a 4﹣10a 3+a 2﹣20a+5的值为7.。
二次根式练习10套(附答案)

二次根式练习01f填空JS1、卜列和«1(1)3 141592( (2)0.3 (3)≡- (4)√2 (5)-√8(6)y (7)0 3030030003.■其中无理数有 ______ •有理数右 ________ (填序号)42、亍的平力H _______ ・0 216的立方H.3、JlB的平方根________ .阿的立方根 ___________ .4、球术平方根等于它本身的数有_______ ・立方根等于本身的数右________5、若X2 = 256. W-IX= ________ ・若x j = -216. WX= ___________ .6、LI)IlRtMBC两边为3∙ 4・则第三边长_________ >7、若三角形三边之比为3: 4:5∙网长为24.则三角形向枳_______& L!⅛∣≡A形L 2n+ IJn1 ÷2n f2n2 + 2n+ Ln为止整数.則此三角滞是三角形.9. ⅛ι⅛√χ34+(y+6)j -0 ・則x + y- _______________10.如果2a-lfπ 5-a是一个数m的平方根•则& = ____________ m= _______ IU三角形二边分别为& 15. 17.那么仪长边上的岛为_____________ .12. K角三角形三角形FWiftft边长为3和4・三角形内一点到备边铢离相等.那么这个丽离为________二.13. 卜刊几组数中不能作为H角二角形三边长度的足< )Aa = 6t b= 24»C= 25 Ba = 1.5,b = 2»C= 2.52 5C. a ≡ —t b ■ 2f c ■ —D. a ■ 15,b ■& C ■ 173 414. 小强Ift御家甲.彩电荧屏的长为58cm •宽为46cm •则这台电视机尺寸足( >A 9 英Q (23 Cm )B 21 英寸(54Cnl) C.29 英寸(74Cm )D S4 英寸« 87Cm)15. 等腰二角形腰长IOan.底边16cm.则面积( >A 96Cm I B. 48Cm i C. 24cm1 D 32Cm J16. 三何形二边a,b,c满足(a+b)'∙c∣+ 2ab∙则这个三角形足()A 角形B.钝ffj^∑flj形 C. H角三角形D等腰三角形17. (-6)'的平方根足( )A - 6B 36 C. 士6 D. ±麻18. bħj∣⅛jg∣E确的个故冇,(I)Va7 = a t(2)√aτ≡a(3)无限小数都足无珅数<4)有眼小数郝是有理数(5)实数分为IE实数和岁实数两类( 〉A l个 B.2个 C 3个D4个19. x½(-√9)2的平方Mi∙ y足64的立方根•则χ + y= <>A 3 B.7 C3. 7 D l. 720. Fnfl三角形边长度为5. 12.則斜边上的高( )IS 60A 6B 8 C. — D —13 132k Γ{ffi~∕fi形边K为a,b.斜边I•高为h∙则卜列冷犬总能成立的地(A. ab= Ii 2 B a 1÷b 2 = 2h i22. ⅛ιffl ∙fi∕{j Ξ角形尿片.两HftJ 边AC-6αnBC-8αn ・现将直角边AC 沿Fl 线AD 折叠.便它落在料边AB 上•且,j AE ⅛fr.则CD 等F ()(3×2Xr = -824.用i ∣∙nsi ∣∙W:(结果保留3个有效数字)A. 2cm B 3an C 4cm 三、计算层23.求F 列待式中X 的值:(1)16X 2-49=0第 22 JSra(2XX-1)2 = 25(4A(x∙F J7(I)VB四、作图题(?)VB(3)√6-< (4)2√3-3√225.庄数轴上Bii 岀■罷的点•D.5an% 25 Sffl26. IT的JI方形网格■毎个止方形顶点叫格点•请在图和Bi—个面枳为10的正方形•五■解善JR27.已Ial如图所示•四边形ABCD 中AB- 3cnχAD- 4α∏BC - 13ClnCD - 12an ZA- 90°求四边形ABCD 的∣6i⅛U«27 JSffl28. ⅛ι附所示•在1⅛长为C的正方形中.有四个斜边为c∙宜角边为a,b的全肆Hfn三和彤.你虢利用这个图说明勾股定円叫?耳出Pf由“%2Sβffl 229.如图所示・】5只空油饲(毎只油桶底面虫径均为60Cm >堆在•起.妥给它盖一个遮甬棚•逋甬棚起码耍多奇?(结呆保昭一位小数〉30.如图所示∙ ΛlRtΔABC 中∙ ZACB- 90° . CDALAB 边上高•若 AD=S.引.XZSABC 中.AB≡15. AC≡13・ BC 边 l:A AD=12.试求/.ABC 周长.BD=2. 求CD,二次根式练习1一.填空题:1. 4. 6. 7. k 2、3、5; 2・0. 6:3. ±2∙ 2: 4. 0 和1∙ 0 和±hL PO 5・±16∙・4: 6・5Λ√7 :7・ 24: S.宜角:9・・2: 10.)・ 81: 11. ≤-:二选择业:13-22: ACBCCBDDDB三.It WSSi23. (1) (2)x=6 或x≡4 (3) x≡-l: (4) x≡6: 24.用il 弊器4计“答案略BL作图題,(«)五、解答题* 27. Ie示,遗箔BD.面税为56: 28.捉川利用面农证明ι 29. 327. S:二次根式练习2 30. CD-4∣ 31.周长为42.二次根式练习02一.选择题〈毎小题2分.共30分) h 25的平方根是()c. V≡2l6--6 D. -Vδ^δol≡-o 15. 下列各数中.无理数的个数有()-O lOlooh √7. 丄 -?• √2-√3. 0, -√1642AV 1 B 、 2 CU 3D 、 46. 如果J 口有总义.則X 的取值范围是()A. X ≥ 2B. X < 2C. X≤ 2D. X > 27. 化简∣1-√2∣+1的结果是()C∙ ±5 D. ±√52、 (-3)】的算术平方桟是()AK 9 B.・3 C 、±3 3. 下列叙述正确的是()A. 0.4的平方根是±0 2 C. ±6是36的算术平方根 4.下列等式中,钳误的是()D. 3B. -(-2?的立方根不存在 D.・27的立方根是・3A . 2- √2B ∙ 2 + √2c 、2 O. √2 8∙下列各式比较大小正确的是() A. -√2<.√3 趴-営八徑56C. -n < -3 14 D 、- VTO >-3 9∙用计算澎求得√3 + V3的络果(保留4个有效数字)是(A. 3. 1742 B % 3.174 CW 3. 175 2'如果栏F=In成立,则实数m 的取值范围是(IK 计鼻5→√5×-^t 所得络果正飜的是( A 、 5 B 、 2512、若x<0,则匚五[的结果为()X13. ∙∙b 为实数.在数轴上的位置如图所示.则ja-b ∣÷√Γβ的值是(—bB. bC. b —2DD.2a —b14. 下列算式中正确的是()AW m λ∕3 - n√3 = m - n√3 B 、5λ∕a + 3√b = 8x ^b C 、7√x+3>∕x≡ IOD∙ ^J545 ■ 2√5D. 3. 1743A. m≥ 3Bi m≤0C% 0 < m≤ 3D∙ O≤m≤3A. 2B. O C∙ O 或-2 D.■ ・15. 左二次根式:ω√Γ5;②爲;③個;④Q 中.与書是同类二次根式的是()A.①蜩B、②和③ C、①她D.③和④二.填空題〈哥小题2分.共20分〉16. - 125的立方根是 ____17. 如果∣3∣≡9t那么L ________ I如果X2 = 9t那么X= _________ •18. 要使心匚3有慮义,则”可以取的嵌小整数是 __________ •19. 平方根等于本身的数是_______ ;立方根需于本身的数是________20. X是实数•且2"・y-0,则______________21. 若仏b是实数・Ia-II+J2b + l = θ. Wa2-2b= _______________22、计算:Φ(-2√3)* = _②启事= _____________________23, SVrS5 = 1 22& = 2 645.则"1850000=.24. 计算:√2 + √8 + √18≡ 25、已知正数"和九有下列命SL(1) Sa+b≡2f M√ab≤l(2)若a+b≡3, M√ab≤∣■(3〉若a+b = 6. M√ab≤3根聞以上三个命題所提供的规徉豹想:若a+b≡9t则屈W _______________三.解答題(共50分)26. ■接写岀答案OO分)Φ√144②士」(■二$③ V-O O64④斗5)f⑤^6×y∕8CD√48-√3⑧(√I + 2∣1φ(√3÷√5)(√5-√3)27■计Jr化閒:(熨求有必夏的解答过程)(18分〉②書(3√I - √7¾6^)√T7-J ∣+√I?TF= 5pj r = ---------------- ∫⅛r =--------------------- √θr = -------------------- •根据计算结果•回答:(1)・ Q —定等于a 吗?你发现其中的规律了吗?谄你用自己的语言描 述出来.(2).利用你总纽的规律,计算①若X 〈人M √(x - 2): - _____________② √(3.14-π)1= ________ ____⑤(-√3),÷√32-2^I28.探究題(10分)29. (6分)己知一个正方形边长为3c叫另一个正方形的面积是它的面积的4 倍.求第二个正方形的边长•饰确到O ICm). --------------- 4 30. (6分)已知X、y满足√2x-3y-l+∣x- 2y+2∣= 0.求2x-<y的平方根附加掘31. (5分)已WX-Iy- L9求下列各式的值32. (5分)已知AZBC的三边为(U b、c・化简J(a +b + c)' + J(a _ b_ cj + Jp- C — a),- — a — b)i根式002参考答案_■ CODBCa)C BeCACOC二• 一5;±9ι±3{2; O S ±K 0; ±0.5; 2; 12;122∙ 8∣三、12J ±|; -0.4i5; 4√3 ; -y-53√3 s9+4√5 ; 2{ 1.5;3; ^6;;羽;牛曲;3+V∑; 1;3; 0. 5; 6:扌;J ; 0;不一定•因为■ IaI ; 2-x; J -3.14 ;6cm;± 2>∕3;;4c •二次根式练习03填空题:每题2分,共28分)1.4的平方根是_________________ .2. 旅的平方根是__________________ •3. 如数亿师数轴上的住置如图所示.则化简7?歹的结昊足------------- 1-------- 1 --------------- ! ------------a o »4. _______________________________________ -右的豆方碎僧数= _______________________________________________ ・5∙己知S b∣ = ?上=Z I,则Ja 4∙ 2b = __________ ・6. ・J(I -刖≡冲7则尸点取7I•范围是____________________ .7. 在实数范IS内分解因式:#-4 = ____________________ ・≡∙化简:捋M9∙化简吋13.妇^J(6-R(X-4沪=0-耳圧?则命取值范围是14・己夕DQY 0,则J^ = ________________ ・二、迭择題(每题4分,共20分〉15.下列说法正确的是( ).(A) 7伏绝对值的平方根是1⑻0的平方根是0(C) £是最简二戻視式(D) G)冷亍才16 •计M(√2-iχ√2+l)啲鉛黑敏)・(A) √2 + l (B) 3血- I (C) 1 (D) -1】7.若寸X+J,÷1 = 2,则& +昭値杲( )•ω±√3⑻±1 (C)I (D) √318.下列各工〔展于最商相式的呈( )•(A) 7771 (B) TΛ7 (C) √i2(D) √0519•式子<ΞI的耽值取值范围().才+ 2(A) x≥ 1(B) x> 1 且x≠-2(C) x≠-2 (D)才勿且x≠-220. <2, Mr-3∣+J,(Λ-]/的值为( )・(A) 2L4(B)-2 (C)4-2x (D) 2三、计算题(各小题6分.共30分)21. h--2^./45+2√20 ・22∙∕lW居z∕l∙23∙(3-√5)% +(3+毎・24+阿"∙卜 3.f-25.∣√27√÷6x.J∣-z21j∣-√iθ8^.10吒傍「諾卜岳四.化简求值(各小题5分,共10分)27.当X詁J = Q81时,求X£-州・点・*77值.+ √36∑y).其中入=#•*27.五、解答βr各小題8分,共24分)29.有一块面积为(2a * t>)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a・6),疗,问所挖去的圆的半径多少?30.已知正方形纸片的面积是32c√,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?14.15・ B 16. A 17. D 18. A 19. A20・D1. ±22. ±23. - ab4. -25. 0 或 46. ∕π≥17.(^3 + 2)(Λ+√2X<J -√2)8.軾9∙ ⅛Za 2 +⅛2 Ia12. -Jr X 门・Λ≤4根式003答案21. 亘_2不3 22. 10√2 23・ 24 24. — '[ΛB25. 4:7 —6∖Λ^ — 丄,22G. -各、隔 27. +振-3石;-2. 45 29. 2√2^5 30・ 0.900二次根式练习04一•填空赣(毎題3分,共农分)1. 0.4的平方根 ____________ ,吉的舁术平方根是______________2. -27的立方根3・己知α <-6■则∣3-$46/ + 9卜_________________ •4. 式子也手有意义∙QH得肢值范區是_______________________x+25. 写出两个与誓是同类二矢根武的根式杲_____________________6. 当X < 0,M1 -=入若数P在数粘上如图所示,则化简/百y4√(p-2f捋=10.已知2凸*代,则;T=___________________ .11・当么VO且时,化简厶:加十丄=a - CI13. ________________________________________________________ 己丸;Cj 为实数,y - X 一9+ 9一“ +',则X +y - _______________兀一3W.观察下列各式后,再芫成化简:丿3十2旋=√2 + 2^+l = M十A二血十1.Vτ÷2√10 = V5 + 2√l0+2 = 7(75+ √2)a= √5 + √2, .Jg+2√β= ・祢能曰一个相同炖的化简题吗?頁在横线上, __________________________ 二、选择題(每题4分,共20分)15•下列式子成立的是().(A)Ja2 ÷62 =(2 + ∂(B) “ J-2 = -J- ab(D)J-a "b" = —Λ⅛16. 若/芬与囲赤最筠同娄很式.则•甜=值杲().(A)O φ)l (C)-I (D)I17. 下列计算正确的是( ).(A]√2 +x^≡√5(B)2 + ,β ≡ 2√2(C)^3+√28=5Λ∕7(D)^⅛^ = √4÷√9218. 若b<O r化简+二?的结果是( )•(A) - b后(B)fe√≡^ (C)-£> Pab (P)b^fab19. 把儿Jg阴外的因式移入根号内,结果化简为(>(A)F CB)- V (C)∙Λ£)-石20. 満足廣十"=倚的整敖对(XJ)的个数是] ).(盘)多于?个⑻3个©2个(D)I个三.计算題(各小题6分•共30分) 21.9岳-7√127 4 2√6 3馬.23 .(7 + 4√3)(2 -4)2 十(2 十 √3×2 -M)- √124.舟、乔J 耳+ 6碾.22.2(l + ⅛ + √,48 +四.化简求值(各小题8分,共16分)27•巳哑手君'且曲如^,1+χ,J⅞τr28. α > αD > Q■屈运+爲j= 3血書+MI求竺空t逅的危. a -b五■解答題(各小题8分.共24分〉29. = 2-√5.‰4 -8α5+ 16αa -α÷l.50. i⅛等式JeX■小+ Jeyu TXP-Ja-丿在买数范51内成立・矣中"。
二次根式计算专题——30题教师版含答案

二次根式计算专题1.计算:⑴ ()()24632463+- ⑵ 20(2π+【答案】(1)22; (2) 6-【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1) ()()24632463+-22=-=54-32=22.(2)20(2π+312=+-6=-考点: 实数的混合运算.2.计算(1)﹣× (2)(6﹣2x )÷3. 【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案.试题解析:3=-⨯32=-1=;(2)2÷2()2x=-÷=÷=13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.22-==.考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.0+=⎝. 考点:二次根式计算.9.计算:()0+1π.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简.11.计算:(1)(2)()020********π---【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)(1==+(2)()020141201431133π---=--+=-. 考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.试题解析:解:原式=2123+-- =2考点:二次根式的混合运算.130(2013)|-+-.【答案】1.【解析】0(2013)|+-+-1=+1=.考点:二次根式化简.14.计算12)824323(÷+-【答案】23-.【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案.试题解析:???=- 考点: 二次根式的混合运算.15-2-. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案.22=-=- 考点: 二次根式的运算.16.化简:(1)83250+ (2)2163)1526(-⨯-【答案】(1)92;(2)- 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式92=;(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)233=-=.(2)(2223===.考点:二次根式化简.181)(1+- 【答案】17.【解析】,运用平方差公式计算1)(1+,再进行计算求解.181-- =17考点:实数的运算.19.计算:231|21|27)3(0++-+--【答案】-【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化.20.计算:① 01 2⎛⎫+- ⎪⎝⎭ ② ⎛ ⎝ ③⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可.1112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷== ⎝⎝.1a 2a 63⎛---⋅=- ⎝. 考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π (2)2(3(4+-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+-==.(2)((()2344951675+--=+--=. 考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6- 【解析】试题分析:本题主要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算。