随机过程-C4马尔可夫链

合集下载

随机过程报告——马尔可夫链

随机过程报告——马尔可夫链

马尔可夫链马尔可夫链是一种特殊的随机过程,最初由A.A .M arkov 所研究。

它的直观背景如下:设有一随机运动的系统E (例如运动着的质点等),它可能处的状态记为,....E ,...,E ,E n 10总共有可数个或者有穷个。

这系统只可能在时刻t=1,2,…n,…上改变它的状态。

随着∑的运动进程,定义一列随机变量Xn,n=0,1, 2, ⋯其中Xn=k ,如在t=n 时,∑位于Ek 。

定义1.1 设有随机过程}{T n X n ∈,,若对任意的整数T n ∈和任意的,,...,110I i i i n ∈+条件概率满足}i {},...,i X i {1n 10001n 1n n n n n n i X X P i X X P ======++++ 则称}{T n X n ∈,为马尔可夫链,简称为马氏链。

实际中常常碰到具有下列性质的运动系统∑。

如果己知它在t=n 时的状态,则关于它在n 时以前所处的状态的补充知识,对预言∑在n 时以后所处的状态,不起任何作用。

或者说,在己知的“现在”的条件下, “将来”与“过去”是无关的。

这种性质,就是直观意义上的“马尔可夫性”,或者称为“无后效性”。

假设马尔可夫过程}{T n X n ∈,的参数集T 是离散时间集合,即T={0,1,2,…},其相应Xn 可能取值的全体组成的状态空间是离散状态空间I={1,2,..}。

定义1.2 条件概率}{P 1)(i X j X p n n n ij ===+称为马尔可夫链}{T n X n ∈,在时刻n 的一步转移矩阵,其中i ,j ∈I ,简称为转移概率。

一般地,转移概率)(P n ij 不仅与状态i,j 有关,而且与时刻n 有关。

当)(P n ij 不依赖于时刻n 时,表示马尔可夫链具有平稳转移概率。

若对任意的i ,j ∈I ,马尔可夫链Xn,n ∈T}的转移概率)(P n ij 与n 无关,则称马尔可夫链是齐次的。

随机过程习题集-第四章马尔可夫过程

随机过程习题集-第四章马尔可夫过程

1第四章 马尔可夫过程内容提要1. 马尔可夫过程的概念 (1)马尔可夫过程给定随机过程{}(),X t t T ∈,如果对122,∀≥∀<<<∈n n t t t T ,有11221111{()|(),(),,()}{()|()}n n n n n n n n P X t x X t x X t x X t x P X t x X t x ----<====<=则称{}(),X t t T ∈为马尔可夫过程。

称(){}:,==∈E x X t x t T 为状态空间。

参数集和状态空间都是离散的马尔可夫过程称为离散参数马氏链. 参数连续、状态空间离散的马尔可夫过程称为连续参数马氏链. (2)k 步转移概率设{}(),0,1,2,=X n n 为离散参数马氏链,称()(),(,){|},0,1=+==≥≥i j p n k P X n k j X n i n k为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率,称(),(,)((,)),P =∈i j n k p n k i j E为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率矩阵. 特别地,当1k =时,在时刻n 的一步转移概率和一步转移概率矩阵分别简记为()ij p n 和()n P . (3)初始分布、绝对分布称((0)),,==∈i p P X i i E 为离散参数马氏链{}(),0,1,2,=X n n 的初始分布,记为0P ,称()(){},,==∈j p n P X n j j E 为马尔可夫链{}0n X n ≥的绝对分布,记为P n . (4)离散参数齐次马氏链设{}(),0,1,2,=X n n 是一离散参数马氏链,如果其一步转移概率()ij p n 恒与起始时刻n 无关,记为ij p ,则称{}(),0,1,2,=X n n 为离散参数齐次马氏链。

若{}(),0,1,2,=X n n2是离散参数齐次马氏链,则其k 步转移概率记为(),i j p k ,一步转移概率矩阵和k 转移概率矩阵分别记为P 和().P k(5) 离散参数齐次马氏链的遍历性离散参数齐次马氏链{X (n ) ,n=0,1,2… },若对一切状态i ,j ,存在与i 无关的极限()()lim 0,ij j n p n i j E →+∞=π>∈则称此马氏链具有遍历性.0,1j j j Ej E ππ∈>∈=∑若且则称{},j j E π∈为离散参数齐次马氏链{X (n ) ,n=0,1,2… }的极限分布,或称为最终分布,记为{},j j E ∏=∈π(6)离散参数齐次马氏链的平稳分布离散参数齐次马氏链{X (n ) ,n=0,1,2… },若存在{v j , j ∈E } 满足条件:1)0,2)13)j jj Ej i iji Ev j E vv v p ∈∈≥∈==∑∑则称此马氏链是平稳的,称 { v j , j ∈E } 为此马氏链的平稳分布。

随机过程第四章马尔可夫链

随机过程第四章马尔可夫链

0,
p(n) ij
1, i,
jI
jI
即P(n)也为随机矩阵.
当n
1时,
p (1) ij
pij
,
P (1)
P
当n
0时,规定pi(j0)
0 , i 1 , i
j j
13
4.1 马尔可夫链与转移概率
• 定理4.1 设{Xn, nT}为马尔可夫链, 则对任意 整数n0, 0l<n和i,jI, n步转移概率 p具i(jn) 有性
Ckx 0
pxqy ,
,
k ( j i)为偶数 k ( j i)为奇数
11
4.1 马尔可夫链与转移概率
例4.4 具有吸收壁和反射壁的随机游动状态空间 {1,2,3,4}, 1为吸收壁, 4为反射壁.
解:状态转移图
状态转移矩阵
1 3
1 0 0 0
1
1
3
1 1
3
1
1
1 1 1
1 3
1 3
2
P 3
5
4.1 马尔可夫链与转移概率
= =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1 |Xn-2=in-2}
P{X1=i1|X0=i0}P{X0=i0} 马尔可夫链的统计特性完全由条件概率 P{Xn+1=in+1|Xn=in}确定。
6
4.1 马尔可夫链与转移概率
定义 称条件概率pij(n)= P{Xn+1=j|Xn=i} 为马尔 可夫链{Xn, nT}在时刻n的一步转移概率,简 称转移概率,其中i,jI.
P{X 0 i}P{X1 i1 | X 0 i} iI
P{X 2 i2 | X1 i1} P{X n in | X n1 in1}

马尔可夫链的基本概念与应用

马尔可夫链的基本概念与应用

马尔可夫链的基本概念与应用随机过程是用来描述随机事件演变的数学模型。

在现实生活中,很多情况下的随机事件都有时间上的相关性,也就是说当前的随机事件决定于之前的一些随机事件,这就涉及到了马尔可夫链。

马尔可夫链是序列上的随机过程,具有马尔可夫性质,即未来状态只由当前状态决定,而与之前的状态无关。

马尔可夫链的概念和应用在各个领域都有广泛的应用。

本文将从基本概念和应用两个方面介绍马尔可夫链。

一、基本概念马尔可夫链是一个由若干个状态及其转移概率组成的随机过程。

若状态空间为S={s1,s2,...,sn},则一个马尔可夫链可以表示为一个n×n的矩阵P={pij},其中pij表示转移从状态si到状态sj的概率。

一般来说,一个马尔可夫链从某一个状态开始,每一次转移是根据概率分布进行的,而且每次的转移只依赖于当前状态,而不依赖于之前的状态。

这也就是说,如果我们知道当前状态,就可以确定下一步的状态。

马尔可夫链的一个重要概念是状态转移矩阵。

状态转移矩阵是指某一时刻处于一个状态,下一时刻转移到另一个状态的所有可能性的概率矩阵。

在状态转移矩阵中,每一个元素pij表示从状态i 转移到状态 j 的概率。

状态转移矩阵是唯一的,因为每个状态只有一种可能的下一个状态。

马尔可夫链是一种随机过程,因此它的演化具有随机性。

由于其状态转移矩阵具有随机性,所以我们可以通过模拟来预测其未来的状态。

在模拟马尔可夫链时,我们需要一个状态转移矩阵和一个初始状态。

然后,根据初始状态和状态转移矩阵,我们可以生成整个马尔可夫链的状态序列。

二、应用马尔可夫链在各个领域都有广泛的应用。

以下是一些典型的应用。

1.自然语言处理在自然语言处理中,马尔可夫链被广泛用于以下场景:文本生成、词性标注、语音识别、机器翻译等等。

其中,最常见的应用是文本生成。

文本生成是指通过某种方式生成一段看似自然的、有意义的文本,而马尔可夫链是一种被广泛应用于文本生成的方法。

马尔可夫链生成文本的基本思路是:通过一个有限的语料库训练出一个马尔可夫模型,然后随机生成一些文本,最后通过概率分布进行筛选,从而得到一些看似自然的、有意义的文本。

马尔可夫链▏小白都能看懂的马尔可夫链详解

马尔可夫链▏小白都能看懂的马尔可夫链详解

马尔可夫链▏小白都能看懂的马尔可夫链详解1.什么是马尔可夫链在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。

马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。

该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。

这种特定类型的“无记忆性”称作马尔可夫性质。

马尔科夫链作为实际过程的统计模型具有许多应用。

在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。

状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。

随机漫步就是马尔可夫链的例子。

随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。

2.一个经典的马尔科夫链实例用一句话来概括马尔科夫链的话,那就是某一时刻状态转移的概率只依赖于它的前一个状态。

举个简单的例子,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。

这么说可能有些不严谨,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等。

假设状态序列为由马尔科夫链定义可知,时刻Xt+1 的状态只与Xt 有关,用数学公式来描述就是:既然某一时刻状态转移的概率只依赖前一个状态,那么只要求出系统中任意两个状态之间的转移概率,这个马尔科夫链的模型就定了。

看一个具体的例子。

这个马尔科夫链是表示股市模型的,共有三种状态:牛市(Bull market), 熊市(Bear market)和横盘(Stagnant market)。

随机过程课件-马尔可夫链

随机过程课件-马尔可夫链
定理二
对于不可约的马尔可夫链,其极限分 布是遍历的,即极限分布与初始状态 无关。
05
马尔可夫链的模拟与实现
随机数生成
伪随机数生成器
使用数学公式和种子值生成一系列近似 随机的数列。
VS
真随机数生成器
利用物理现象(如电路噪音)产生真正的 随机数。
马尔可夫链蒙特卡洛方法
采样分布
通过多次重复模拟马尔可夫链的路径来估计 某个事件的概率或某个参数的值。
收敛性
随着模拟次数的增加,估计值逐渐接近真实 值。
马尔可夫链在决策分析中的应用
要点一
决策树
要点二
强化学习
将马尔可夫链应用于决策分析中,帮助决策者评估不同策 略的风险和收益。
在强化学习中,马尔可夫链用于描述环境状态转移和奖励 函数。
06
马尔可夫链的扩展与改进
时齐马尔可夫链
定义
时齐马尔可夫链是指时间 参数为离散的马尔可夫链 ,其状态转移概率不随时 间而变化。
遍历性是马尔可夫链达到平稳分布的必要条件之一,也是判 断马尔可夫链是否具有唯一平稳分布的重要依据。
03
马尔可夫链的转移概率
转移概率的定义与性质
定义
马尔可夫链中,给定当前状态$i$,未来状态$j$在某个时间步长内发生的概率称为转移 概率,记作$P(i,j)$。
性质
转移概率具有非负性、归一性和时齐性。非负性指$P(i,j) geq 0$;归一性指对于每个 状态$i$,所有可能转移到该状态的转移概率之和为1,即$sum_{ j} P(i,j) = 1$;时齐性
周期性会影响马尔可夫链的平稳分来自的性质和计算。状态空间的分解
状态空间的分解是将状态空间划分为若干个子集,每个子集内的状态具有相似的 性质和转移概率。

随机过程-C4马尔可夫链复习过程

随机过程-C4马尔可夫链复习过程

随机过程-C4马尔可夫链收集于网络,如有侵权请联系管理员删除练习四:马尔可夫链 随机过程练习题1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1停留在原处,在其它整数点分别以概率31向左、右移动一格或停留在原处。

求质点随机游动的一步和二步转移的概率矩阵。

2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2≥n 求,令n X =0,1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反),(反,正)或(反,反)。

求马尔可夫链},2,1,0,{Λ=n X n 的一步和二步转移的概率矩阵。

3.设}0,{≥n X n 为马尔可夫链,试证:(1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ΛΛ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++Λ(2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P ΛΛ}|,,,{111100++=====n n n n i X i X i X i X P Λ==⋅+++m n n n X i X P ,,{22Λ }|11+++=n n m n i X i4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为==0{X P p i 4,3,2,1,41}==i i ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22Λt X X =Λ),(n n t X X =为独立同分布随机变量序列,令2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证}0,{≥n Y n 是马尔可夫链。

随机过程中的马尔可夫过程

随机过程中的马尔可夫过程

随机过程中的马尔可夫过程在随机过程中的马尔可夫过程马尔可夫过程是在随机过程中常见且重要的一种形式。

它具有一定的数学特性和模型结构,能够描述在离散或连续时间段内状态的转移以及相关的概率。

本文将对马尔可夫过程的基本概念、特性和应用进行详细介绍。

一、概述马尔可夫过程是一种随机过程,其状态转移满足马尔可夫性质。

马尔可夫性质是指在给定当前状态下,未来和过去的转移概率仅与当前状态有关,与过去状态无关。

这种性质使得马尔可夫过程具有简化模型和简单计算的优势,被广泛应用于各个领域。

二、基本概念1. 状态空间:马尔可夫过程的状态空间是指所有可能取值的集合。

例如,一个骰子的状态空间为{1, 2, 3, 4, 5, 6}。

2. 转移概率:马尔可夫过程中的状态转移概率描述了从一个状态到另一个状态的概率。

用P(Xt+1 = j | Xt = i)表示从状态i转移到状态j的概率。

3. 转移矩阵:将所有状态之间的转移概率整合到一个矩阵中,称为转移矩阵。

转移矩阵是一个方阵,大小为n×n,其中n是状态空间的数量。

4. 平稳分布:在马尔可夫过程中,如果某个状态的概率分布在经过无限次转移后保持不变,那么该概率分布称为平稳分布。

平稳分布可以通过解线性方程组来计算。

三、特性1. 马尔可夫链:马尔可夫过程可以看作是离散时间的马尔可夫链。

马尔可夫链是指具有无记忆性质的随机序列,即未来状态只依赖于当前状态。

2. 齐次马尔可夫过程:如果马尔可夫过程的转移概率与时间无关,那么称为齐次马尔可夫过程。

齐次马尔可夫过程的转移概率矩阵在时间上保持不变。

3. 连续时间马尔可夫过程:如果马尔可夫过程的时间是连续的,则称为连续时间马尔可夫过程。

连续时间的马尔可夫过程可以用微分方程来描述。

四、应用领域1. 金融学:马尔可夫过程常用于金融市场的建模和分析,例如股票价格的预测和风险管理。

2. 信号处理:马尔可夫过程可以用于信号和图像的分析与处理,包括语音识别和图像识别等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习四:马尔可夫链 随机过程练习题
1.设质点在区间[0,4]的整数点作随机游动,到达0点或4点后以概率1停留在原处,
在其它整数点分别以概率
3
1
向左、右移动一格或停留在原处。

求质点随机游动的一步和二步转移的概率矩阵。

2.独立地重复抛掷一枚硬币,每次抛掷出现正面的概率为p ,对于2≥n 求,令n X =0,
1,2或3,这些值分别对应于第1-n 次和第n 次抛掷的结果为(正,正),(正,反),
(反,正)或(反,反)。

求马尔可夫链},2,1,0,{ =n X n 的一步和二步转移的概率矩阵。

3.设}0,{≥n X n 为马尔可夫链,试证: (1)},,,|,,,{11002211n n m n m n n n n n i X i X i X i X i X i X P ======++++++ }|,,,{2211n n m n m n n n n n i X i X i X i X P =====++++++
(2)}|,,,,,,{11221100++++++======n n m n m n n n n n i X i X i X i X i X i X P
}|,,,{111100++=====n n n n i X i X i X i X P ==⋅+++m n n n X i X P ,,{22 }|11+++=n n m n i X i
4.设}1,{≥n X n 为有限齐次马尔可夫链,其初始分布和转移概率矩阵为==0{X P p i
4,3,2,1,4
1}==i i ,⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛=4/14/14/14/18/34/18/14/14/14/14/14/14/14/14/14/1P ,试证 }41|4{}41,1|4{12102<<=≠<<==X X P X X X P
5.设}),({T t t X ∈为随机过程,且)(11t X X =,,),(22 t X X = ),(n n t X X =为独
立同分布随机变量序列,令2,,)(,011110≥=+===-n X cY Y X t Y Y Y n n n ,试证
}0,{≥n Y n 是马尔可夫链。

6.已知随机游动的转移概率矩阵为⎪⎪⎪⎭
⎫ ⎝⎛=5.005.05.05.0005.05.0P ,求三步转移概率矩阵)
3(P 及
当初始分布为1}3{,0}2{}1{000======X P X P X P 时经三步转移后处于状态
3的概率。

7.已知本月销售状态的初始分布和转移概率矩阵如下:
(1))4.0,2.0,4.0()0(=T
P ,⎪⎪⎪⎭
⎫ ⎝⎛=6.02.02.02.07.01.01.08.08.0P ;
(2))3.0,3.0,2.0,2.0()0(=T
P ,⎪⎪






⎛=5.02.01.01.02.06.01.01.01.02.06.01.01.01.01.07.0P ;
求下一、二个月的销售状态分布。

8
后的销售状态分布。

10.讨论下列转移概率矩阵的马尔可夫链的状态分类。

(1)⎪⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛=010
06.04.000000
010
0003.07
.0005.03.02.0P ;(2)⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛=02.02.06.00
07.03.000010100
P ; (3)⎪⎪⎪⎪⎪⎪
⎪⎪



⎛=10000000
00001
p r q p r q p
r q P ,其中1=++p r q ,},,1,0{b I =
11.设马尔可夫链的转移概率矩阵为(1)⎪⎪⎭⎫
⎝⎛3/23/12/12/1;(2)⎪⎪⎪⎭

⎝⎛33221
10
00p q
q p q p ;计算)(11n f ,)
(12
n f ,3,2,1=n 12.设马尔可夫链的状态空间}7,,2,1{ =I ,转移概率矩阵为
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛=2.08.0000007.03.000000003.05.02.000006.004.0000004.06.0001.01.01.02.02.03.01.01.01.01.001.02.04.0P
求状态的分类及各常返闭集的平稳分布。

13.设马尔可夫链的转移概率矩阵为⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛= 00000010221
1p q p q P ,求它的平稳分
布。

14.艾伦菲斯特(E renfest)链。

设甲乙两个容器共有N 2个球,每隔单位时间从这N 2个球中任取一球放入另一容器中,记n X 为在时刻n 甲容器中球的个数,则}0,{≥n X n 是齐次马尔可夫链,称为艾伦菲斯特链,求该链的平稳分布。

15.将2个红球4个白球任意地分别放入甲、乙两个盒子中,每个盒子放3个,现从每个盒子中各任取一球,交换后放回盒中(甲盒内取出的球放入乙盒中,乙盒内取出的球放入甲盒中),以)(n X 表示经过n 次交换后甲盒中红球数,则}0),({≥n n X 为一齐次马尔可夫链,(1)求一步转移概率矩阵;(2)证明}0),({≥n n X 是遍历链;(3)求
2,1,0,lim )(=∞
→j P n ij n 16.设}1),({≥n n X 为非周期不可约马尔可夫链,状态空间为I ,若对一切I j ∈,其一步转移概率矩阵满足条件:
1=∑∈I
i j
i p
,试证(1)对一切I j ∈,1)(=∑∈I
i n j i p ;(2)
若状态空间},,2,1{m I =,计算各状态的平均返回时间。

17.设河流每天的BOD (生物耗氧量)浓度为齐次马尔可夫链,状态空间}4,3,2,1{=I 是按BOD 浓度为极低、低、中、高分别表示的,其一步转移概率矩阵(以一天为单位)
为⎪⎪






⎛=4.04.02.001.06.02.01.01.02.05.02.001
.04.05.0P 。

若BOD 浓度为高,则称河流处于污染状态。

(1)证明
该链是遍历链;(2)求该链的平稳分布;(3)河流再次达到污染的平均时间4μ。

答 案
1.解:质点随机游动的一步转移的概率矩阵为
⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡=100003/13/13/10003/13/13/10003/13/13/100001
P
质点随机游动的二步转移的概率矩阵为。

相关文档
最新文档