用基本不等式解决应用题

合集下载

如何利用基本不等式解决日常生活中的问题

如何利用基本不等式解决日常生活中的问题

如何利用基本不等式解决日常生活中的问题在我们的日常生活中,数学知识看似抽象遥远,但实际上却无处不在,尤其是基本不等式,它能帮助我们解决许多实际问题,让我们做出更明智的决策。

基本不等式,通常表述为对于任意两个正实数 a 和 b,有算术平均数大于等于几何平均数,即(a + b) /2 ≥ √(ab) 。

这个看似简单的公式,却蕴含着丰富的应用价值。

先来说说购物中的应用。

假设我们在商场看到同一款式的 T 恤有两种包装,一种是单件装,售价为x 元;另一种是三件装,售价为y 元。

如果我们打算购买 n 件 T 恤,怎样购买更划算呢?这时候基本不等式就能派上用场。

假设单件购买 m 件,三件装购买 k 套(k 为整数),使得 m + 3k= n 。

那么总花费 C = mx + ky 。

我们希望总花费最小,考虑到均值不等式,C / n =(mx + ky)/ n =(m / n)x +(k / n)y 。

为了使 C / n 最小,我们需要找到合适的 m 和 k 。

通过分析和计算,可以发现当(m / n) =(k / 3n) 时,C / n 可能取得最小值。

再比如,在安排工作任务时,基本不等式也能发挥作用。

假设一项工作总量为 A ,有甲、乙两人合作完成。

甲单独完成这项工作需要 a 小时,乙单独完成需要 b 小时。

那么两人合作完成这项工作所需的时间 t = A /(A / a + A /b) ,化简可得 t = ab /(a + b) 。

根据基本不等式,t = ab /(a +b) ≤ (a + b) / 4 。

这意味着,在分配工作任务时,要考虑到两人的工作效率,合理安排,以达到最快完成工作的目的。

在投资理财方面,基本不等式同样能提供一些思路。

假设我们有一笔资金 P ,可以选择两种投资方式,一种年利率为 r₁,另一种年利率为 r₂。

为了在一定时间内获得最大的收益,我们需要合理分配资金。

设投入第一种投资方式的资金为 x ,投入第二种的为 P x 。

3.4.4基本不等式解决应用题

3.4.4基本不等式解决应用题

即 220000SS++2102200S09+00S2490P000S,3420000S0(,,S )2+6 S-160 0,解得
即即2即(02002SS00+S0)2+S+ 1+2160210020S0-0SS1S6P0PP03,23023解002000得,00,00,
S 100, S 10,
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理 成本最低? (2)该单位每月能否获利?如果获利,求出最大利润;如果 不获利,则国家至少需要补贴多少元才能使该单位不亏损?
解:(1)由题意可知,二氧化碳的每吨平均处理成本为
xy=12x+80x000-200≥2 12x·80x000-200=200, 当且仅当12x=80x000,即 x=400 时, 才能使每吨的平均处理成本最低,最低成本为 200 元.
2.某工厂要建造一个长方体无盖贮水池,其容积为4800m3, 深解为:3设m底,面如的果长池为底x每m1,m宽2的为造ym价,为水15池0元的,总池造壁价每为1zm元2,的
造根价据为题意12,0元得,问怎样48设00计水池能使总造价最低,最低总 造价是多少z元?150 3 120(2 3x 2 3 y)
3.某机构准备建造一批简易房(每套长方体状,房高2.5 米),前后墙用彩色钢板,两侧用复合钢板,两种钢板的 价格都用长度来计算彩色钢板每米450元,复合钢板每米 200元.房顶用其他材料建造,每平方米材料费为200 元.每套房材料费控制在32000元以内,试计算: (1)设房前面墙的长为x,两侧墙的长为y,所用材料费为 P,试用x,y表示P; (2)求简易房面积S的最大值是多少?并求S最大时,前面 墙的长度应设计为多少米?
数列,因此使用x年的总维修费用为 x0.2 0.2x 万元, 2

基本不等式实际应用题

基本不等式实际应用题

得最小值为( ) B
(2009年天津理6)
A. 8
B. 4 C. 1
D.
11 ab
1 4
2.(2010四川文)设ab0, 则a2 1 1 的最小值是( D )
ab a(ab) A1 B 2 C3 D 4
3.(2009山东理12T)设 x满,足y约束条件
3x y 6 0,
x
y若 目2 标 函0 ,数
2(x+y)=20
即 x+y=10
∴ xy ( x y )2 =25
当且仅当x=y=5时取等号
2
∴ 当这个矩形的长、宽都是5m的时候面积最大,
为25
m2
y x
(5)一段长为30m的篱笆围成一个一边靠墙的 矩形菜园,墙长18m,问这个矩形的长、宽各 为多少时,菜园的面积最大,最大面积时多少?
解: 设菜园的长和宽分别为xm,ym
5000 + 16× 2
x·3025 = 6760 x
只 有 x = 3025 即 x = 55取 " = "
x
4 8 4 0 = 8 8 ,a = 5 5 < 1
x
88
例2:某种生产设备购买时费用为10万元,每年的设备管理费共计9千元,这种生产设备的维修费各年为:第一 年2千元,第二年4千元,第三年6千元,依每年2千元的增量递增。问这种生产设备最多使用多少年报废最合 算(即使用多少年的平均费用最少?)
a2
16 b(a
b)
a2
64 a2
2
a
2
64 a2
16,
a 2 2,b 2
1. 两个不等式 (1)
a,bR,那么 a2b2 2ab (2) (当且 当且仅仅 当aa=b当 时,b等时 号成立取 ""号)

基本不等式应用题

基本不等式应用题

5.某种汽车购车时费用为10万元,每 年的保险、养路、汽油费用共9千元, 汽车的维修费逐年以两千元递增,第
一年为2千元,第2年为4千元,第三 年为6千元……问这种汽车使用几年 后报废最合算? (即汽车的年平均费用为最低,已知
公式:l+2+3+…+
x1x 2
x)
1.建造一个容积为8m3,深为2m
的长方体无盖水池.如池底和池
壁的造价每平方米分别为120元 和80元.求水池的最低总造价.

2.利用长12米长的篱笆围成一个 一边靠墙的矩形养鸡场,要使场 地面积最大,问矩形的的边长应 为多少?
3.某品牌手机为了打开市场,进行 促销,准备对特定型号手机降价。
有四种降价方案,
方案(1):先降 a%,再降b%;
方案(2):先降 b%,再降a%;
方案(3):先降
a
2
b
%,再降
a
2
b
%;
方案(4):一次性降价(ab)%。
如果 a0 ,b0 ,ab 且销量不变,
从商家角度考虑,应选择哪种方案?
4.某新建居民小区欲建一面积为700 平方米的矩形绿地,在绿地四周铺设 人行道,设计要求绿地长边外人行道 宽3米,短边外人行道宽4米,如图所 示(图中单位:米),怎样设计绿地的 长与宽,才能使人行道的占地面积最 小?(结果精确到0.1米)

基本不等式的题目

基本不等式的题目

基本不等式的题目
一、基本不等式的概念与意义
基本不等式,又称均值不等式或切比雪夫不等式,是数学中一种常见的不等式。

它的一般形式为:对于任意的实数a、b、c,有(a+b+c)/3 ≥ (max(a, b, c) + min(a, b, c))/2。

基本不等式在数学分析、概率论、线性代数等领域具有广泛的应用。

二、基本不等式的性质与公式
1.性质:当且仅当a=b=c时,等号成立。

2.公式:对于任意的实数a、b、c,有(a+b+c)/3 ≥ (max(a, b, c) + min(a, b, c))/2。

三、基本不等式的应用场景
1.求解最值问题:利用基本不等式可以求解带有约束条件的最值问题,例如求函数的最值、最值函数等问题。

2.证明不等式:基本不等式可以作为证明其他不等式的基础,如切比雪夫不等式、赫尔德不等式等。

3.求解概率问题:在概率论中,基本不等式可用于估计随机变量的期望、方差等。

四、基本不等式的练习与拓展
1.练习:求解以下不等式问题:
(1)已知a、b、c∈R,求(a+b+c)/3的最小值。

(2)已知a、b、c、d∈R,证明(a+b+c+d)/4 ≥ (max(a, b, c,
d) + min(a, b, c, d))/2。

2.拓展:研究基本不等式与其他不等式(如切比雪夫不等式、赫尔德不等式等)的关系,了解它们在实际问题中的应用。

通过掌握基本不等式,我们可以在解决实际问题时更加得心应手。

应用题 基本不等式类型1

应用题  基本不等式类型1

应用题 基本不等式类型16、运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.7、某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?4、小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年 起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车 运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其 销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)5、要制作一个如图的框架(单位:米),要求所围成的总面积为19.5(平方米),其中四边形ABCD 是一个矩形,四边形EFCD 是一个等腰梯形,梯形高h =12AB ,tan ∠FED =34,设AB =x 米,BC =y 米.(1)求y 关于x 的表达式;(2)如图设计x ,y 的长度,才能使所用材料最少?答案1、解 (1)设所用时间为t =130x(h), y =130x ×2×⎝⎛⎭⎫2+x 2360+14×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100]. (或y =2 340x +1318x ,x ∈[50,100]). (2)y =130×18x +2×130360x ≥2610, 当且仅当130×18x =2×130360x ,即x =1810时,等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.2、解 (1)设扇环的圆心角为θ,则30=θ(10+x )+2(10-x ),所以θ=10+2x 10+x. (2)花坛的面积为12θ(102-x 2)=(5+x )(10-x ) =-x 2+5x +50(0<x <10).装饰总费用为9θ(10+x )+8(10-x )=170+10x ,所以花坛的面积与装饰总费用的比y =-x 2+5x +50170+10x=-x 2-5x -5010(17+x ), 令t =17+x ,则y =3910-110⎝⎛⎭⎫t +324t ≤310, 当且仅当t =18时取等号,此时x =1,θ=1211. 答:当x =1时,花坛的面积与装饰总费用的比最大.4、解 (1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元,则y =25x -[6x +x (x -1)]-50(0<x ≤10,x ∈N ),即y =-x 2+20x -50(0<x ≤10,x ∈N ),由-x 2+20x -50>0,解得10-52<x <10+5 2.而2<10-52<3,故从第3年开始运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出,所以销售二手货车后,小王的年平均利润为 y =1x [y +(25-x )]=1x (-x 2+19x -25)=19-⎝⎛⎭⎫x +25x ,而19-⎝⎛⎭⎫x +25x ≤19-2x ·25x=9,当且仅当x =5时等号成立,即小王应当在第5年将大货车出售,才能使年平均利润最大.5、解 (1)如图,等腰梯形CDEF 中,DH 是高. 依题意,DH =12AB =12x , EH =DH tan ∠FED =43×12x =23x , ∴392=xy +12⎝⎛⎭⎫x +x +43x 12x =xy +56x 2, ∴y =392x -56x . ∵x >0,y >0,∴392x -56x >0,解得0<x <3655, ∴所求表达式为y =392x -56x (0<x <3655). (2)Rt △DEH 中,∵tan ∠FED =34, ∴sin ∠FED =35, ∴DE =DH sin ∠FED =12x ×53=56x , ∴l =(2x +2y )+2×56x +⎝⎛⎭⎫2×23x +x =2y +6x =39x -53x +6x =39x +133x ≥2 39x ×13x 3=26. 当且仅当39x =133x ,即x 2=9,即x =3时取等号,此时y =392x -56x =4, ∴AB =3米,BC =4米时,能使整个框架用材料最少.1.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.(1)为控制预算,要求每批产品的总费用控制在1000元,求x的范围;(2)为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品多少件.2.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则当每台机器运转多少年时,年平均利润最大,并求出最大值.3.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200 辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时) f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/时)1、解析 设每件产品的平均费用为y 元,由题意得y =800x +x 8≥2800x ·x 8=20,当且仅当800x =x 8(x >0),即x =80时“=”成立.答案 802、解析 每台机器运转x 年的年平均利润为y x =18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x ≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.答案 5 83、解 (1)由题意:当0≤x ≤20时,v (x )=60;当20<x ≤200时,设v (x )=ax +b再由已知得⎩⎨⎧ 200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧ a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧ 60,0≤x ≤20,13(200-x ),20<x ≤200. (2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧ 60x ,0≤x ≤20,13x (200-x ),20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时,f (x )=13x (200-x )≤13⎣⎢⎡⎦⎥⎤x +(200-x )22=10 0003, 当且仅当x =200-x ,即x =100时,等号成立.所以,当x =100时,f (x )在区间[20,200]上取得最大值10 0003.。

基本不等式应用题型

基本不等式应用题型

基本不等式应用题型1. 一个长方形的长是x+3,宽是x-2,求长方形的周长和面积。

解答:周长=2(x+3+x-2)=2(2x+1)=4x+2,面积=(x+3)(x-2)=x^2+x-6。

2. 一个三角形的两边长分别是x和x+2,第三边长是2x-1,求三角形的周长。

解答:周长=x+(x+2)+(2x-1)=4x+1。

3. 一个矩形的长是x+4,宽是x-1,求矩形的周长和面积。

解答:周长=2(x+4+x-1)=2(2x+3)=4x+6,面积=(x+4)(x-1)=x^2+3x-4。

4. 一个正方形的边长是2x-1,求正方形的周长和面积。

解答:周长=4(2x-1)=8x-4,面积=(2x-1)^2=4x^2-4x+1。

5. 一个圆的半径是x+2,求圆的周长和面积。

解答:周长=2π(x+2)=2πx+4π,面积=π(x+2)^2=π(x^2+4x+4)。

6. 一个等腰三角形的底边长是2x-1,两腿长分别是x和x+3,求三角形的周长。

解答:周长=(2x-1)+x+(x+3)=4x+2。

7. 一个梯形的上底长是x+2,下底长是2x-1,高是x,求梯形的面积。

解答:面积=((x+2)+(2x-1))×x/2=(3x+1)×x/2=3x^2+x/2。

8. 一个圆的直径是2x+1,求圆的周长和面积。

解答:周长=π(2x+1)=2πx+π,面积=π[(2x+1)/2]^2=π(x+1/2)^2。

9. 一个等边三角形的边长是2x-1,求三角形的周长和面积。

解答:周长=3(2x-1)=6x-3,面积=(2x-1)^2=4x^2-4x+1。

10. 一个平行四边形的边长分别是x和x+3,高是x-1,求平行四边形的周长和面积。

解答:周长=2(x+x+3)=4x+6,面积=(x+3)(x-1)=x^2+2x-3。

基本不等式实际应用题

基本不等式实际应用题
基本不等式实际应用
• 基本不等式的概念和性质 • 基本不等式的应用场景 • 基本不等式的解题技巧 • 基本不等式的实际应用案例 • 基本不等式的扩展和深化
01
基本不等式的概念和性质
基本不等式的定义
定义
基本不等式是数学中常用的一个不等 式,它表示两个正数的平均数总是大 于或等于它们的几何平均数。
总结词:代数变换技巧是基本不等式 解题中的重要技巧之一,通过代数运 算对项进行变换,可以简化计算过程, 提高解题效率。
放缩法技巧
放缩法技巧是指通过放缩不等式的两边,使不等式更易于解 决。例如,在利用基本不等式求最值时,可以通过放缩法技 巧将问题转化为更容易求解的形式。
总结词:放缩法技巧是基本不等式解题中的重要技巧之一, 通过放缩不等式的两边,可以将问题转化为更容易求解的形 式,提高解题效率。
构造函数技巧
构造函数技巧是指根据题目的特点,构造一个函数来解决问题。例如,在利用基本不等式求最值时,可以通过构造函数技巧 将问题转化为求函数的最值问题。
总结词:构造函数技巧是基本不等式解题中的重要技巧之一,通过构造函数可以将问题转化为求函数的最值问题,简化计算 过程,提高解题效率。
04
基本不等式的实际应用案例
VS
详细描述
在资源有限的条件下,如何合理分配资源 以达到最优效果是资源分配问题的核心。 基本不等式可以用来解决这类问题,例如 在农业生产、资金分配等方面,通过优化 资源配置,可以提高整体效益。
最短路径问题
总结词
在交通、通信和工程领域,最短路径问题至关重要,基本不等式为寻找最短路径提供了 理论支持。
极值问题
在极值问题中,基本不等式可以用来确定函数的极值点,以及极值的大小。
优化问题的求解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N T
M H G
F E D A
用基本不等式解决应用题
例1.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:(08)35
k p x x =≤≤+,若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设()f x 为建造宿舍与修路费用之和.
(1)求()f x 的表达式;
(2)宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值.
变式:某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m ,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为x (m ),三块种植植物的矩形区域的总面积...
为S (m 2). (1)求S 关于x 的函数关系式;
(2)求S 的最大值.
17.解:(1)由题设,得
()9007200822916S x x x x ⎛⎫=--=--+ ⎪⎝⎭
,()8,450x ∈. ………………………6分 (2)因为8450
x <<,所以72002240x x +≥, ……………………8分 当且仅当60x =时等号成立. ………………………10分 从而676S ≤. ………………………12分 答:当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,最大为676m 2 . ………………………14分 例2.某小区想利用一矩形空地ABCD 建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中60AD m =,40AB m =,且EFG ∆中,90EGF ∠=,经测量得到10,20AE m EF m ==.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点G 作一直线交,AB DF 于N M ,,从而得到五边形MBCDN 的市民健身广场,设()DN x m =.
(1)将五边形MBCDN 的面积y 表示为x 的函数;
(2)当x 为何值时,市民健身广场的面积最大?并求出最大面积.
变式. 某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆
心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).
(1)求θ关于x 的函数关系式; (2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/
米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?
18、(本题满分16分)
如图所示,把一些长度均为4米(PA +PB =4米)的铁管折弯后当作骨架制作“人字形”帐蓬,根据人们的生活体验知道:人在帐蓬里“舒适感”k 与三角形的底边长和底边上的高度有关,设AB 为x ,AB 边上的高PH 为y ,则
,若k 越大,则“舒适感”越好。

(I )求“舒适感” k 的取值范围;
(II )已知M 是线段AB 的中点,H 在线段AB 上,设MH =t ,当人在帐蓬里的“舒适感”k 达到最大值时,求y 关于自变量t 的函数解析式;并求出y 的最大值(请说明详细理由)。

17. (本小题满分14分)
某公司生产的某批产品的销售量P 万件(生产量与销售量相等)与促销费用x 万元满足24x
P (其中0,x a a 为正常数).已知生产该批产品还要投入成本16()P
P 万元(不包含促销费用),产品的销售价格定为20(4
)P 元/件. (1)将该产品的利润y 万元表示为促销费用x 万元的函数;
(2)当促销费用投入多少万元时,该公司的利润最大?
17.如图,某生态园将一三角形地块ABC 的一角APQ 开辟为水果园种植桃树,已知角A 为120,,AB AC 的长度均大于200米,现在边界AP ,AQ 处建围墙,在PQ 处围竹篱笆.
(1)若围墙AP,AQ 总长度为200米,如何围可使得三角形地块APQ 的面积最大?
(2)已知AP 段围墙高1米,AQ 段围墙高1.5米,造价均为每平方米100元.若围围墙用了20000元,问如何围可使竹篱笆用料最省?
A
18.(16分)某油库的设计容量是30万吨,年初储量为10万吨,从年初起计划每月购进石油m万吨,以满足区域内和区域外的需求,若区域内每月用石油1万吨,区域外前x个月
的需求量y(万吨)与x的函数关系为y=(p>0,1≤x≤16,x∈N*),并且前4个月,
区域外的需求量为20万吨.
(1)试写出第x个月石油调出后,油库内储油量M(万吨)与x的函数关系式;
(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定m的取值范围.
【考点】根据实际问题选择函数类型.
【专题】应用题;函数的性质及应用.
【分析】(1)利用前4个月,区域外的需求量为20万吨,求出p,可得y=10(1≤x≤16,x∈N*),即可求出第x个月石油调出后,油库内储油量M(万吨)与x的函数关系式;(2)由题意0≤mx﹣x﹣10+10≤30(1≤x≤16,x∈N*),分离参数求最值,即可得出结论.【解答】解:(1)由题意,20=,∴2p=100,
∴y=10(1≤x≤16,x∈N*),
∴油库内储油量M=mx﹣x﹣10+10(1≤x≤16,x∈N*);
(2)∴0≤M≤30,
∴0≤mx﹣x﹣10+10≤30(1≤x≤16,x∈N*),
∴(1≤x≤16,x∈N*)恒成立.;
设=t,则≤t≤1,.
由≤(x=4时取等号),可得m≥,
由20t2+10t+1=≥(x﹣16时取等号),可得m≤,
∴≤m≤.
17.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x(x∈N*)名员工从事第三产业,调整后他们平均每人每年创造利润为万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?
考点:基本不等式在最值问题中的应用;函数模型的选择与应用.
专题:计算题;应用题.
分析:(1)根据题意可列出10(1000﹣x)(1+0.2x%)≥10×1000,进而解不等式求得x 的范围,确定问题的答案.
(2)根据题意分别表示出从事第三产业的员工创造的年总利润和从事原来产业的员工的年总利润,进而根据题意建立不等式,根据均值不等式求得求a的范围.
解答:解:(1)由题意得:10(1000﹣x)(1+0.2x%)≥10×1000,
即x2﹣500x≤0,又x>0,所以0<x≤500.
即最多调整500名员工从事第三产业.
(2)从事第三产业的员工创造的年总利润为万元,
从事原来产业的员工的年总利润为万元,
则(1+0.2x%)
所以,
所以ax≤,
即a≤恒成立,
因为,
当且仅当,即x=500时等号成立.
所以a≤5,又a>0,所以0<a≤5,
即a的取值范围为(0,5].。

相关文档
最新文档