基本不等式在实际中的应用

合集下载

基本不等式应用

基本不等式应用

基本不等式应用
基本不等式是一种数学结构,可以用来描述数量之间的关系。

它可以用来考量给定数据和参数之间的约束,并且可以用来确定在特定情况下可以取得何种结果。

在几何图形、统计技术、分析算法和其他范畴中,基本不等式可以带来一定的帮助、提升效率,并且为用户提供更精准的结果。

首先,基本不等式可以用于解决几何图形中的问题。

在几何图形上,基本不等式可以用来确定形状、约束大小和尺寸、判断相邻多边形边界等。

例如,可以使用三角不等式去确定诸如三角形的边界,以便分析三角形的面积、周长、外接圆半径等参数。

此外,基本不等式还可以应用于其他几何图形的解决方案,比如椭圆形、抛物线等,以更全面进行分析与计算。

其次,基本不等式可以用于统计技术上的应用,例如运用贝叶斯不等式实现数据的识别、比较、求和等操作。

它可以在统计分析中确定两个数量之间是否存在关系,以及应用于无限统计分布上,比如高斯分布等,以判断哪种概率分布适合哪种应用场景。

最后,基本不等式还可以应用于分析算法和函数优化领域。

例如,可以利用三角不等式去优化函数,以求解最优值,增强几何分析的效率。

此外,还可以使用拉格朗日不等式去筛选出特定约束之下的最优分析结果。

总而言之,基本不等式在许多数学应用中得到广泛应用,它可以更好地辅助分析、统计、优化算法、提升数据处理能力等多
种领域。

它不仅可以提升数学模型的准确性,而且可以实现更深入精准的结果。

以上的例子仅概述了基本不等式的基本应用,未来它在工程和科学领域的应用也将引起更多人的关注。

基本不等式在生活中的应用

基本不等式在生活中的应用

24500
225000 当且仅当40 x 即x=75时S取得最少值24500 m 2 x
Байду номын сангаас
课堂小结
1、实际问题的定义域 2、用基本不等式解决实际问题的步骤 建立函数——转换为函数的最值——利 用基本不等式求出最值——还原成实际问 题的结果
课堂推进
解:如图,设一个矩形框架的宽为xm ,长为ym ,ABCD的面积为S
就有2xy=18000,即xy=9000
方法一:
S =(2x+25) ( y 20)=2 xy 40 x 25 y 500
40 x 25 y 18500,( x 0, y 0)
2 40x 25 y 18500 24500
当且仅当40x 25 y即x 75, y 120时,S有最小值24500m2
方法二
S =(2x+25) ( y 20) (2x+25) (
S 40 x
9000 20) x
225000 18500, ( x 0) x
2 40 x
225000 18500 x
基本不等式在生活中的应用
复习回顾
ab 基本不等式:ab (一正二定三相等) , 2
a b 2 ab , 若ab为定值P, 则a b有最小值2 P
ab 2 P ab ( ) ,若a b为定值P, 则ab有最大值 2 2
2
新课导入
“水立方”是2008年北京奥运会标志性建筑之一,下 图为水立方平面设计图,已知水立方地下部分为钢筋混凝 土结构,该结构是大小相同的左右两个矩形框架,两框架 面积之和为18000平方米,现地上部分要建在矩形ABCD 上,已知两框架与矩形ABCD空白的宽度为10米,两框架 之间的中缝空白宽度为5米,请问作为设计师应怎样设计 矩形ABCD,才能使水立方占地面积最小?并求出最小值 。

基本不等式的八大应用

基本不等式的八大应用

基本不等式的八大应用不等式充斥着整个数学空间.随意浏览一下任意一套试卷,用不等号连接的式子总是占据着“上风”,这说明了不等式的应用性与重要性,也说明了不等式是永不衰退的高考热点.面对丰富的不等式内容,哪些知识点的“出镜率”高?又为什么总是它们高?请看:应用一:最值问题最值问题是基本不等式的重要应用之一,是不等式应用的核心,也是不等式应用的精华.应用基本不等式求最值时,一定要注意等号会不会成立.有些时候不等式的推导没有问题,但不可能有等号成立的时刻,这时的值是取不到的值,当然,不能作为最值.例1 设x,y∈R+,且+ =1,求x+y的最小值.解法一由x+y=( + )(x+y)=(2+ + )≥4,当且仅当= ,结合+ =1,得x=2,y=2时,取得最小值4.解法二由已知,设= ,=x=1+ ,y=1+ ,x+y=(1+ )+(1+ )=2+( + )≥4,当且仅当m=n,即x=2,y=2时,取得最小值4.解法三由+ =1 x+y=xy x+y≤( )2,由x,y∈R+,得x+y≥4,当且仅当x=y=2时,取得最小值4.点评本题给出了三种方法求解,这三种方法都是基本方法.涉及的技能是我们必须熟练掌握的基本技能.例2 已知x,y∈(-1,1),且xy=- ,求u= + 的最小值.解析由u= + ≥2 =2 ≥2 =4,或由u= + = =1+ ≥1+ =4.点评本题很精干,基本不等式的应用也很特别,第一种解法,两次使用到它,幸好两次不等式成立的条件相同;第二种解法转化后再用,两解都具有“活”的特点,欣赏价值较高.应用二:恒成立问题恒成立问题是不等式的“特产”,它的求解方法常规是最值转化法,求最值的方法往往有两类,一类是利用基本不等式求最值;另一类是函数求最值.例3 若常数k>0,对于任意非负实数a,b,都有a2+b2+kab≥c(a+b)2恒成立,求最大的常数c.解析(i)当k≥2时,a2+b2+kab≥a2+b2+2ab=(a+b)2,当且仅当ab=0时等号成立.(ii)当04a2时,在[-1,1]上是否存在一个x值使得|f(x)|>b;(2)当a,b,c均为整数,且方程f(x)=0在(0,1)内有两根,求证:|a|≥4.解析(1)由b2>4a2 - >1或- b f(x)>b或f(x)b或f(-1)0或a+c0,f(1)>0,又a,b,c均为整数,得f(0)≥1,f(1)≥1,则f(0)f(1)≥1,∴1≤a2 |a|≥4.点评本题的综合性较强,它将二次不等式与二次函数有机地结合在一起.第一问利用二次函数的单调性;第二问利用二次函数的“零点式”、基本不等式等,可以看出,在第二问求解中,基本不等式起到至关重要的作用.应用四:证明问题证明问题是基本不等式的常规题型之一.在对不等式的证明过程中,有时应用基本不等式进行和与积不等关系的相互转换;有时应用基本不等式的各种变式.例7 已知a>2时,求证:loga(a-1)2,得loga(a-1)>0且log(a+1)a>0.又=loga(a-1)?loga(a+1)≤[ ]2=[ ]2 ( )2= ,当且仅当100-3x=80-(20-2x),即x= 时,等号成立.故在线段AB上取点G(5, ),过G分别作AE,BC的平行线DE交于F、交CD于H,则矩形GHDF的面积最大,其值为.点评房地产是近年倍受关注的行业,针对房地产的命题也随之诞生.本题的求解借助直线方程,通过直线方程进行设点,然后利用基本不等式产生问题的结论.应用六:交汇性问题不等式的交汇性是人所共知的,可以说,没有不等式不能交汇的.此类题既可以是基础题,也可以是高难度的解答题,君不见:数列中不等式呈强、导数中不等式泛滥、解几中不等式压轴、函数中不等式随处可见.不等式的交汇性是高考命题的热点,必须引起高度重视.例10 定长为3的线段AB的两端点在y2=x上移动,AB 的中点为M,求M点到y轴的最短距离.解析设A(x,x1),B(x,x2),M(x,y),则x+x=2x,x1+x2=2y,(x-x)2+(x1-x2)2=9x+x=2x,2x1x2=4y2-2x,(x1-x2)2[(x1+x2)2+1]=9.由于(x1-x2)2[(x1+x2)2+1]≥2 =6,即4x+1≥6,得x≥,其中等号成立的条件为(x1-x2)2=[(x1+x2)2+1],即4x1x2=-1,也就是4y2-2x=- ,结合x= ,得到y=±,故最短距离为,此时点M的坐标为( ,±).点评本题是解几问题,但求解中的关键是基本不等式.通过合理的应用基本不等式使条件恰到好处地得到了应用,既方便了求解,也优化了解题过程.例11 设数列{an}是由正数组成的等比数列,sn为前n 项和,试问:是否存在常数c,使得:[lg(sn-c)+lg(sn+2-c)]=lg(sn+1-c)成立?证明你的结论.解析由snsn+2-s=sn(a1+qsn+1)-sn+1(a1+qsn)=a1(sn-sn+1)=-anan+1m+ 1时,结论同上.综合可知:当4a2-16b≤1时一定存在整数n,使|f(n)|≤成立.点评本题是一道探索性试题,求解过程有两大特点:第一,对根所在区间进行分类;第二,在每一类中灵活应用基本不等式.抓住这两个特点,就抓住了求解的关键.关于基本不等式的应用就谈到此,当你掩卷时,有何感想呢?是为了解了基本不等式的试题类型而高兴,还是为见到基本不等式诸多灵活应用而惊讶呢?相信,你一定会有自己的答案.责任编校徐国坚注:本文中所涉及到的图表、注解、公式等内容请以PDF 格式阅读原文。

基本不等式的实际应用

基本不等式的实际应用

基本不等式的实际应用
基本不等式是初中数学中重要的不等式之一,它的实际应用非常广泛。

在生活中,我们经常会遇到需要比较大小的情况,比如购物打折、交通工具的选择等等。

而基本不等式就是帮助我们进行大小比较的数学工具。

在物品打折中,我们会看到“打X折”或“打X%折”,这时我们就需要通过基本不等式来比较打折前和打折后的价格大小。

比如说,某物原价为100元,打7折后价格为70元,打8折后价格为80元,我们可以使用基本不等式7/10<8/10来说明第二种打折方式更优惠。

在选择交通工具时,我们也需要比较不同交通工具的速度和费用大小。

比如说,某旅游景点离我们住处10公里,我们可以选择步行、自行车、公交车和出租车四种交通方式。

我们需要通过基本不等式来比较它们的速度和费用大小,从而选择最优的交通方式。

除此之外,基本不等式还可以应用于代数式的简化、三角函数的证明等数学领域。

在学习数学时,我们应该充分理解和掌握基本不等式的定义和运用,以便更好地应用于实际问题中。

- 1 -。

基本不等式实际应用举例

基本不等式实际应用举例

3. 利用基本不等式求最值时,如果无定值,要先配、凑出定 值,再利用基本不等式求解。
4. 形如 y x
a (a 0) 这类函数,当不能利用基本不等式求 x
最值时,可以借助函数单调性求解。
C.
11 3
y
D. 4
略解:
把点(4,6)代入z = ax + by得4a + 6b = 12, 2 3 2 3 2a + 3b 即2a + 3b = 6,而 + = + a b a b 6 13 b a 13 25 = +( + ) + 2 = ,故选A 6 a b 6 6
复习
1. 基本不等式: 如果a≥0,b≥0,那么
a =b (当且仅当________ 时取“=”号).
2ab ab a 2 b2 2.若a 0, b 0, 则 ab , ab 2 2 当且仅当a b时取等号。 (由小到大)
ab ≥ ab . 2
应用基本不等式求最值的条件: ab a b
4840 3025 S =(x + 10)( + 16) = 5000 + 16(x + ) x x 3025 5000 + 16×2 x· = 6760 x 3025 只有x = 即x = 55取" = " x 4840 55 = 88,a = <1 x 88
例3.某种生产设备购买时费用为10万元,每年的设备 管理费共计9千元,这种生产设备的维修费各年为: 第一年2千元,第二年4千元,第三年6千元,依每年2 千元的增量递增。问这种生产设备最多使用多少年报 废最合算(即使用多少年的平均费用最少?)

应用基本不等式解决实际问题的方法

应用基本不等式解决实际问题的方法

应用基本不等式解决实际问题的方法(原创实用版4篇)目录(篇1)I.问题的提出II.基本不等式的应用方法III.实际问题中的应用IV.结论正文(篇1)随着数学在各个领域的广泛应用,基本不等式作为数学中的重要工具,在解决实际问题中发挥着越来越重要的作用。

本文旨在探讨基本不等式在解决实际问题中的应用方法。

首先,我们需要明确基本不等式的概念。

基本不等式是指两个或多个数相加或相乘,它们的和或积不超过另外两个数之和或积的等式。

基本不等式在解决实际问题中具有广泛的应用,如工程设计、财务管理、物流规划等领域。

其次,在解决实际问题中,我们需要根据问题的特点选择合适的基本不等式。

例如,在物流规划中,我们可以使用基本不等式来计算运输成本;在财务管理中,我们可以使用基本不等式来计算投资回报率;在工程设计中,我们可以使用基本不等式来计算结构强度等。

最后,通过具体实例,我们可以看到基本不等式在解决实际问题中的有效性。

例如,在物流规划中,我们可以使用基本不等式来计算运输成本,从而优化物流方案;在财务管理中,我们可以使用基本不等式来计算投资回报率,从而做出更明智的投资决策;在工程设计中,我们可以使用基本不等式来计算结构强度,从而确保工程的安全性。

总之,基本不等式作为一种有效的数学工具,在解决实际问题中具有广泛的应用。

目录(篇2)1.引言2.基本不等式的概念和性质3.应用基本不等式解决实际问题的方法4.结论正文(篇2)随着数学在各个领域的广泛应用,基本不等式作为一种重要的数学工具,在解决实际问题中起到了关键作用。

基本不等式是数学中的一种重要不等式,它可以用来解决各种实际问题,包括但不限于最大值、最小值、平均值等问题。

基本不等式是指“和的平方等于各加和的平方和”,即“a+b≥2√ab”。

它具有以下基本性质:一、乘法分配律;二、乘法结合律;三、二次方差恒等式。

这些性质使得基本不等式在解决实际问题中具有广泛的应用。

在解决实际问题时,我们需要将问题转化为基本不等式可以解决的问题。

高考数学:基本不等式在实际问题中的应用

高考数学:基本不等式在实际问题中的应用

试卷第1页,总7页 高考数学:基本不等式在实际生活中的应用典例1.为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y (万元)与处理量x (吨)之间的函数关系可近似的表示为: 250900y x x =-+,且每处理一吨废弃物可得价值为10万元的某种产品,同时获得国家补贴10万元.(1)当[]10,15x ∈时,判断该项举措能否获利?如果能获利,求出最大利润; 如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?解:(1)根据题意得,利润P 和处理量x 之间的关系: (1010)P x y =+-22050900x x x =-+-270900x x =-+-()235325x =--+,[10,15]x ∈.∵35[10,15]x =∉,()235325P x =--+在[10,15]上为增函数,可求得[300,75]P ∈--.∴国家只需要补贴75万元,该工厂就不会亏损.(2)设平均处理成本为 90050y Q x x x==+-5010≥=, 当且仅当900x x =时等号成立,由0x >得30x =. 因此,当处理量为30吨时,每吨的处理成本最少为10万元.点评:(1)本题考查函数应用,属于容易题,解题的关键是列出收益函数,收益等于收入减成本,因此有利润(1010)P x y =+-,化简后它是关于x 的二次函数,利用二次函数的知识求出P 的取值范围,如果P 有非负的取值,就能说明可能获利,如果P 没有非负取值,说明不能获利,而国家最小补贴就是P 中最大值的绝对值.(2)每吨平均成本等于y x,由题意90050y x x x =+-,我们根据基本不等式的知识就可以求出它的最小值以及取最小值时的x 值. 变式题1.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化。

基本不等式实际应用题

基本不等式实际应用题
基本不等式实际应用
• 基本不等式的概念和性质 • 基本不等式的应用场景 • 基本不等式的解题技巧 • 基本不等式的实际应用案例 • 基本不等式的扩展和深化
01
基本不等式的概念和性质
基本不等式的定义
定义
基本不等式是数学中常用的一个不等 式,它表示两个正数的平均数总是大 于或等于它们的几何平均数。
总结词:代数变换技巧是基本不等式 解题中的重要技巧之一,通过代数运 算对项进行变换,可以简化计算过程, 提高解题效率。
放缩法技巧
放缩法技巧是指通过放缩不等式的两边,使不等式更易于解 决。例如,在利用基本不等式求最值时,可以通过放缩法技 巧将问题转化为更容易求解的形式。
总结词:放缩法技巧是基本不等式解题中的重要技巧之一, 通过放缩不等式的两边,可以将问题转化为更容易求解的形 式,提高解题效率。
构造函数技巧
构造函数技巧是指根据题目的特点,构造一个函数来解决问题。例如,在利用基本不等式求最值时,可以通过构造函数技巧 将问题转化为求函数的最值问题。
总结词:构造函数技巧是基本不等式解题中的重要技巧之一,通过构造函数可以将问题转化为求函数的最值问题,简化计算 过程,提高解题效率。
04
基本不等式的实际应用案例
VS
详细描述
在资源有限的条件下,如何合理分配资源 以达到最优效果是资源分配问题的核心。 基本不等式可以用来解决这类问题,例如 在农业生产、资金分配等方面,通过优化 资源配置,可以提高整体效益。
最短路径问题
总结词
在交通、通信和工程领域,最短路径问题至关重要,基本不等式为寻找最短路径提供了 理论支持。
极值问题
在极值问题中,基本不等式可以用来确定函数的极值点,以及极值的大小。
优化问题的求解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式在实际中的应用
1.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 ( )
A .80元
B .120元
C .160元
D .240元
2.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则 ( )
A .a v <<
B .v
C 2a b v +<
D .2
a b v +=
3.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8
x 天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品 ( )
A .60件
B .80件
C .100件
D .120件
4.如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20
y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象有限一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.
5.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 满足函数关系式
35(06)814(6)k x x S x x ⎧++<<⎪=-⎨⎪≥⎩,.
已知每日的利润L =S -C ,且当x =2时,L =3.
(1)求k 的值;
(2)当日产量为多少吨时,每日的利润可以达到最大?并求出最大值.
6.某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足31
k x m =-+(k 为常数),如果不搞促销活动,该产品的年销售量只能是1万件.已知生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为年平均每件产品成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).
(1)将该产品的年利润y 万元表示为年促销费用m 万元的函数;
(2)该厂家的年促销费用投入为多少万元时,厂家的年利润最大?最大年利润是多少万元?
7.已知直角三角形的周长l (定值).问:直角三角形满足什么条件时,可使其面积最大?
参考答案:
1.答案:C 设底面矩形的长和宽分别为a m 、b m ,则ab =4
.容器的总造价为202()108020()80160()ab a b a b ++⨯=++≥+=元(当且仅当a =b 时等号成立).故选C .
2. 答案:A 设甲、乙两地的距离为s ,
则2211s
v s s a b a b ==++.
由于a <b
,∴
11a b +>v >a ,
又11a b +>
v .
故a v <<,选A .
3.答案:B 每批生产x 件,则平均每件产品的生产准备费用是
800x 元,每件产品的仓储费用是8x
元,则800208x x +≥=,当且仅当8008
x x =,即x =80时“=”成立, ∴每批应生产产品80件,故选B .
4.解析 (1)令y =0,得221(1)020kx k x -
+=,由实际意义和题设条件知x >0,k >0, 故220202010112
k x k k k
==≤=++,当仅当k =1时取等号. 所以炮的最大射程为10千米.
(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使2213.2(1)20
ka k a =-+成立 ⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根
⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0
⇔a ≤6.
所以a 不超过6(千米)时,可击中目标.
5.解析 由题意得,每日的利润L 与日产量x 的函数关系式为
22(06)811(6).
k x x L x x x ⎧++<<⎪=-⎨⎪-≥⎩, (1)当x =2时,L =3,即322228
k =⨯++-,得k =18. (2)当x ≥6时,L =11-x 为单调递减函数,故当x =6时,L max =5. 当0<x <6时,1818222(8)18688L x x x x =+
+=-++≤--, 当且仅当182(8)(06)8
x x x -=<<-,即x =5时等号成立,即L max =6. 综上,当日产量为5吨时,每日的利润可以达到最大,最大值为6万元.
6. 解析 (1)依题意得m =0时,x =1,代入31k x m =-
+,得k =2,即231
x m =-+. 年成本为28168163()1x m ⎛⎫+=+- ⎪+⎝⎭万元, 所以2(1.51)81631y m m ⎡⎤⎛⎫=-+-- ⎪⎢⎥+⎝⎭⎣
⎦ 1628(0)1
m m m =--≥+. (2)由(1
)得1629(1)29211y m m ⎡⎤=-++≤-⎢⎥+⎣⎦
. 当且仅当1611
m m +=+,即m =3时,厂家的年利润最大,为21万元.
7.解析:设直角三角形的三边分别为,,a b c ,其中c 为斜边,则
法1:
222a b c +=,a b c l ++=, 面积为()()()()222222*********ab a b a b l c c l cl ⎡⎤⎡⎤=+-+=--=-⎣
⎦⎣⎦ 而22222a b a b ++⎛⎫ ⎪⎝⎭≥,∴2222c l c -⎛⎫ ⎪⎝⎭≥,()222c l l +≥
,于是)
1c l ≥.
因此面积的最大值为
)
222132144
l l -⎡⎤-=⎣⎦,当且仅当a b =,也即直角三角形为等腰直角三角形时,取得最大值.
法2:
∵a b +
∴a b l ++
(2
2l =,即2ab .。

相关文档
最新文档