选修4-4 第一节 坐标系

合集下载

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

3.点的空间坐标的互相转化公式 设空间一点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,z),球 坐标为(r,φ,θ),则 空间直角坐标(x,y,z) x= y= z= x= y= z= 转换公式 , ,
柱坐标(ρ,θ,z)
球坐标(r,φ,θ)
, ,
1.(ρ,θ,z) 空间的点 自我 校对 2.正向 标系 逆时针 球坐标 ρsinθ z
(3)在极坐标中,方程 ρ=ρ0(ρ0 为不等于 0 的常数)表示圆心在 极点,半径为 ρ0 的圆,方程 θ=θ0(θ0 为常数)表示与极轴成 θ0 角的 射线.而在空间的柱坐标系中,方程 ρ=ρ0 表示中心轴为 z 轴,底 半径为 ρ0 的圆柱面, 它是上述圆周沿 z 轴方向平行移动而成的. 方 程 θ=θ0 表示与 Oxz 坐标面成 θ0 角的半平面.方程 z=z0 表示平行 于 Oxy 坐标面的平面. 常把上述的圆柱面、 半平面和平面称为柱坐 标系的三族坐标面.
π π 2,6,4,则点 M 的柱坐
)
π π 2,4, 6 B. 2,4, 6 π π 2,6,2 2 D. 2,6, 2
解析 因为点 M
的球坐标为2
π π π 2,6,4,即 r=2 2,φ= , 6
π θ= ,故点 M 的直角坐标为 4 π π x=rsinφcosθ=2 2sin cos =1, 6 4 π π y=rsinφsinθ=2 2sin sin =1, 6 4 π z=rcosφ=2 2cos = 6. 6
2.球坐标系与球坐标
一般地,如图所示,建立空间直角坐标系 Oxyz.设 P 是空间任 意一点,连接 OP,记|OP|=r,OP 与 Oz 轴________所夹的角为 φ. 设 P 在 Oxy 平面上的射影为 Q,Ox 轴按________方向旋转到 OQ 时所转过的 ________ 为 θ. 这样点 P 的位置就可以用有序数组 ________表示.这样空间的点与有序数组(r,φ,θ)之间建立了一种 对应关系.把建立上述对应关系的坐标系叫做 ________(或空间极 坐标系),有序数组(r,φ,θ)叫做 P 的________,记作 P(r,φ,θ), 其中 r≥0,0≤φ≤π,0≤θ<2π.

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P







2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M




人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,

高中数学 选修4-4 1.坐标系

高中数学 选修4-4 1.坐标系

1.坐标系
教学目标班级______姓名_________
1.了解常见的坐标系.
2.了解坐标法,并能运用解决相关问题.
教学过程
一、知识要点.
1.坐标系:坐标系是联系几何与代数的桥梁;是数形结合的有力工具;利用坐标系可以使数与形相互转化.
2.常用坐标系:①数轴、平面直角坐标系、空间直角坐标系;②极坐标系(重点)、柱坐标系、球坐标系.
3.坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究它的性质及与其他几何图形的关系,这就是研究几何问题的坐标法.
二、例题分析.
1.运用坐标法解决实际问题.
例1:某信息中心O接到位于正西、正北、正东方向三个观测点A、B、C的报告:A、B 两个观测点同时听到一声巨响,C观测点听到巨响声的时间比它们晚4s. 已知各观测点到信息中心的距离都是1020m. 试确定巨响发生的位置.(假设声音传播速度为340m/s,各观测点均在同一平面上)
练1:已知ABC ∆的三边a ,b ,c 满足2225a c b =+,BE ,CF 分别是边AC ,AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系.
作业:1.两个定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 的轨迹.
2.已知点A 为定点,线段BC 在定直线l 上滑动,已知4||=BC ,点A 到直线l 的距离为3,求ABC ∆外心的轨迹方程.。

人教版高中数学选修4-4课件:第一讲二极坐标

人教版高中数学选修4-4课件:第一讲二极坐标

4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
法二 将点 A 化为直角坐标为( 3,1),点 B 化为直 角坐标为( 3,-1).所以 A、B 两点间的距离
d= ( 3- 3)2+[1-(-1)]2=2. (2)如下图所示:
关于极轴的对称点为 B2,-π3. 关于直线 l 的对称点为 C2,23π. 关于极点 O 的对称点为 D2,-23π.
归纳升华 1.点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π- θ),关于极点的对称点是(ρ,π+θ),关于过极点且垂直 于极轴的直线的对称点是(ρ,π-θ).
2.求极坐标系中两点间的距离应通过由这两点和极 点 O 构成的三角形求解,也可以运用两点间距离公式|AB| = ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中 A(ρ1,θ1), B(ρ2,θ2).注意当 θ1+θ2=2kπ(k∈Z)时,|AB|=|ρ1-ρ2|; 当 θ1+θ2=2kπ+π(k∈Z)时,|AB|=|ρ1+ρ2|.
2.点的极坐标
一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一 个点.特别地,极点 O 的坐标为(0,θ)(θ∈R).和直角坐 标不同,平面内一个点的极坐标有无数种表示方法.
如果规定 ρ>0,0≤θ<2π,那么除极点外,平面内的 点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表 示的点也是唯一确定的.

人教A版数学【选修4-4】ppt课件:第一讲《坐标系》小结

人教A版数学【选修4-4】ppt课件:第一讲《坐标系》小结

在△OMB 中,同理 → |MB|= ρ2+36-12ρcosθ. → → 由|MA|· |MB|=36,得 (ρ2+36)2-(12ρcosθ)2=362. 即 ρ4+72ρ2-144ρ2cos2θ=0. 即 ρ2=72(2cos2θ-1)=72cos2θ. 所以,点 M 的轨迹的极坐标方程为 ρ2=72cos2θ.
3.柱坐标系与球坐标系 (1)柱坐标系
一般地,如图,建立空间直角坐标系 Oxyz,设 P 是空间任意 一点,它在 Oxy 平面上的射影为 Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示 点 Q 在平面 Oxy 上的极坐标, 这时点 P 的位置可用有序数组(ρ, θ, z)(z∈R)表示,这样我们建立了空间的点与有序数组(ρ,θ,z)之间 的一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有 序数组(ρ,θ,z),叫做 P 的柱坐标,空间点 P 的直角坐标与柱坐 x=ρcosθ, 标之间的变换公式为y=ρsinθ, z=z.
2ac (2)当 a≠c 时,方程可化为 x +y - x=0,其轨迹是以 a-c
2 2
ac ac 2ac ( ,0)为圆心, 为半径的圆,但不包括点(0,0)和( , a-c |a-c| a-c 0).
【例 2】
x′=2x, 在同一坐标系中, 经过伸缩变换 y′=2y
后,
曲线 C 变为曲线(x-5)2+(y+6)2=1,求曲线 C 的方程,并判 断是什么曲线.
高 考 真 题 【例 8】 在极坐标系中, 圆 ρ=2cosθ 的垂直于极轴的两条切 线方程分别为( )
A.θ=0(ρ∈R)和 ρcosθ=2 π B.θ=2(ρ∈R)和 ρcosθ=2 π C.θ=2(ρ∈R)和 ρcosθ= D.θ=0(ρ∈R)和 ρcosθ=1

人教A版数学【选修4-4】ppt课件:1-1第一讲-坐标系


【分析】
解决这一问题的关键,在于确定遗址 W 与地下管
线 m 的位置关系, 即求出 W 到直线 m 的距离 d 与 100 米进行比较.
【解】 依题意,以 A 点为原点,正东方向和正北方向分别为 x 轴和 y 轴的正方向,建立平面直角坐标系.如下图.
则 A(0,0),B(-1 000,0),由|AW|=400,得
∴水面与抛物线拱顶相距 3 5 3 |y|+ = + =2(m). 4 4 4 即水面上涨到与抛物线形拱顶相距 2 m 时,船开始不能通航.
【例 2】 用解析法证明:任意四边形两组对边中点连线及两 对角线中点连线三线共点,且互相平分.
【证明】 如下图所示,建立直角坐标系.设四边形各点的坐 标分别为 A(0,0),B(a,0),C(b,c),(d,e).
2 2 2 2 2
1 1 ∴λ=3,μ=2. 1 x′=3x, ∴ y′=1y, 2 1 即将椭圆 4x +9y =36 上的所有点的横坐标变为原来的 ,纵 3
2 2
1 坐标变为原来的 ,即可得到圆 x′2+y′2=1. 2
规律技巧
求满足图象变换的伸缩变换, 实际上是让我们求出
变换公式,将新旧坐标分清,代入对应的曲线方程,然后比较系数 可得.
2.坐标法的应用 (1)坐标法的基本思想就是在平面上引进“坐标”的概念,建 立平面上的点和坐标之间的一一对应,从而建立曲线的方程,并通 过方程研究曲线的性质. (2)坐标法解决几何问题的“五步骤”: ①建立适当的平面直角坐标系,设动点 M(x,y); ②根据题设条件,找出动点 M 满足的等量关系式;
第一讲 坐标系
一 平面直角坐标系
课前预习目标
课堂互动探究
课前预习目标
梳理知识 夯实基础

高中数学选修4-4知识点(坐标系与参数方程)

个变量的值;参数方程中自变量也只有一个,而且给定参数 t 的一个值,就可以求出唯一对 应的 x,y 的值.
这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引 入参数,也可把普通方程化为参数方程. 2.圆的参数方程
1.圆心在坐标原点,半径为 r 的圆的参数方程 如图圆 O 与 x 轴正半轴交点 M0(r,0).
α α (t
为参数)
称为直线参数方程的标准形式,此时的参数 t 有明确的几何意义.
一般地,过点 M0(x0,y0),斜率 k=ba(a,b 为常数)的直线,参数方程为xy= =xy00+ +abtt(t 为参
数),称为直线参数方程的一般形式,此时的参数 t 不具有标准式中参数的几何意义. 四 渐开线与摆线(了解)
x=rsin φcos θ (2)空间点 P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为y=rsin φsin θ .
z=rcos φ
第二讲:
第4页
一 曲线的参数方程
1.参数方程的概念 1.参数方程的概念
(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y 都是某个变
2.参数方程与普通方程的区别与联系 (1)区别:普通方程 F(x,y)=0,直接给出了曲线上点的坐标 x,y 之间的关系,它含有
x,y 两个变量;参数方程xy= =fg((tt))(t 为参数)间接给出了曲线上点的坐标 x,y 之间的关系,
它含有三个变量 t,x,y,其中 x 和 y 都是参数 t 的函数. (2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一
就可得到普通方程. (3)普通方程化参数方程,首先确定变数 x,y 中的一个与参数 t 的关系,例如 x=f(t),

2022-2022《三维设计》高三数学湘教版(文)一轮复习[精品讲义]选修4-4坐标系与参数方程

2022-2022《三维设计》高三数学湘教版(文)一轮复习[精品讲义]选修4-4坐标系与参数方程第一节坐标系1.平面直角坐标系中的坐标伸缩变换设点P(某,y)是平面直角坐标系中的任意一点,在变换某,λ>0,某′=λ·φ:的作用下,点P(某,y)对应到点P′(某′,y′),称φ为平面直y′=μ·y,μ>0角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系与极坐标(1)极坐标系:如图所示,在平面内取一个定点O,叫做极点,自极点O引一条射线O某,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴O某为始边,射线OM为终边的角某OM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记为M(ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数.3.极坐标与直角坐标的互化设M是坐标系平面内任意一点,它的直角坐标是(某,y),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:点M互化公式直角坐标(某,y)某=ρcoθρinθy=极坐标(ρ,θ)ρ=某+yytanθ=某某≠02224.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r的圆ρ=r(0≤θ<2π)ρ=2rco_θ圆心为(r,0),半径为r的圆-π≤θ≤π22ρ=2rin_θ(0≤θ<π)πr,,半径为r的圆圆心为2(1)θ=α(ρ∈R)或θ=π+α(ρ∈R)(2)θ=α(ρ≥0)和θ=π+α(ρ≥0)过极点,倾斜角为α的直线过点(a,0),与极轴垂直的直线πa,,与极轴平行的直线过点2ππ-<θ<ρco_θ=a22ρin_θ=a(0<θ<π)1.在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置).2.在极坐标系下,点的极坐标不惟一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2kπ),(-ρ,π+θ+2kπ)(k∈Z)表示同一点的坐标.[试一试]1.点P的直角坐标为(1,-3),求点P的极坐标.π解:因为点P(1,-3)在第四象限,与原点的距离为2,且OP与某轴所成的角为-,3π2,-.所以点P的极坐标为32.求极坐标方程ρ=inθ+2coθ能表示的曲线的直角坐标方程.解:由ρ=inθ+2coθ,得ρ2=ρinθ+2ρcoθ,∴某2+y2-2某-y=0.故故极坐标方程ρ=inθ+2coθ表示的曲线直角坐标方程为某2+y2-2某-y=0.1.确定极坐标方程的四要素极点、极轴、长度单位、角度单位及其正方向,四者缺一不可.2.直角坐标(某,y)化为极坐标(ρ,θ)的步骤y(1)运用ρ=某2+y2,tanθ=(某≠0)某y(2)在[0,2π)内由tanθ=(某≠0)求θ时,由直角坐标的符号特征判断点所在的象限.某[练一练]1.在极坐标系中,求圆心在(2,π)且过极点的圆的方程.解:如图,O为极点,OB为直径,A(ρ,θ),则∠ABO=θ-90°,OBρ=22=,化简得ρ=-22coθ.inθ-90°π22.已知直线的极坐标方程为ρin(θ+)=,求极点到该直线的距离.4222π2in+co解:极点的直角坐标为O(0,0),ρin(θ+)=ρ=,∴ρinθ+4222ρcoθ=1,化为直角坐标方程为某+y-1=0.∴点O(0,0)到直线某+y-1=0的距离为d==π222θ+=的距离为.,即极点到直线ρin42222考点一平面直角坐标系中的伸缩变换1某′=2某,1.(2022·佛山模拟)设平面上的伸缩变换的坐标表达式为求在这一坐标变y′=3y,换下正弦曲线y=in某的方程.1某=2某′,某′=2某,解:∵∴1y=y′.y′=3y,3代入y=in某得y′=3in2某′.某′=2某,π2.求函数y=in(2某+)经伸缩变换14y′=y21某′=2某,某=2某′,解:由得①1y′=y,2y=2y′.π1π将①代入y=in(2某+),得2y′=in(2·某′+),4241π即y′=in(某′+).24后的解析式.某′=3某,y23.求双曲线C:某-=1经过φ:变换后所得曲线C′的焦点坐标.642y′=y21某=3某′,y22解:设曲线C′上任意一点P′(某′,y′),由上述可知,将代入某-=64y=2y′,某′24y′2某′2y′21得-=1,化简得-=1,964916某2y2即-=1为曲线C′的方程,可见仍是双曲线,则焦点F1(-5,0),F2(5,0)为所求.916[类题通法]某,λ>0某′=λ·平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换下,直y′=μ·y,μ>0线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.考点二极坐标与直角坐标的互化[典例](2022·石家庄模拟)在平面直角坐标系某Oy中,以坐标原点O为极点,某轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为3ρ2=12ρcoθ-10(ρ>0).(1)求曲线C1的直角坐标方程;某2y2(2)曲线C2的方程为+=1,设P,Q分别为曲线C1与曲线C2上的任意一点,求|PQ|164的最小值.[解](1)曲线C1的方程可化为3(某2+y2)=12某-10,2即(某-2)2+y2=.3(2)依题意可设Q(4coθ,2inθ),由(1)知圆C1的圆心坐标为C1(2,0).故|QC1|=4coθ-22+4in2θ=12co2θ-16coθ+8=222coθ-2+,33326,36.3|QC1|min=所以|PQ|min=[类题通法]直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行.[针对训练](2022·安徽模拟)在极坐标系中,判断直线ρcoθ-ρinθ+1=0与圆ρ=2inθ的位置关系.解:直线ρcoθ-ρinθ+1=0可化成某-y+1=0,圆ρ=2inθ可化为某2+y2=2y,即某2+(y-1)2=1.圆心(0,1)到直线某-y+1=0的距离d=考点三|0-1+1|=0<1.故直线与圆相交.2极坐标方程及应用[典例](2022·郑州模拟)已知在直角坐标系某Oy中,曲线C的参数方程为某=2+2coθ,(θ为参数),在极坐标系(与直角坐标系某Oy取相同的长度单位,且以y=2inθπ原点O为极点,以某轴正半轴为极轴)中,直线l的方程为ρin(θ+)=22.4(1)求曲线C在极坐标系中的方程;(2)求直线l被曲线C截得的弦长.[解](1)由已知得,曲线C的普通方程为(某-2)2+y2=4,即某2+y2-4某=0,化为极坐标方程是ρ=4coθ.(2)由题意知,直线l的直角坐标方程为某+y-4=0,22某+y-4某=0,由得直线l与曲线C的交点坐标为(2,2),(4,0),所以所求弦长为22.某+y=4,π在本例(1)的条件下,求曲线C与曲线C1:ρcoθ=3(ρ≥0,0≤θ解:由曲线C,C1极坐标方程联立ρ=4coθ,33π∴co2θ=,coθ=±,又ρ≥0,θ∈[0,).422∴coθ=π3π23,.,θ=,ρ=23,故交点极坐标为626[类题通法]求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P(ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.[针对训练](2022·荆州模拟)在极坐标系中,求过圆ρ=6coθ的圆心,且垂直于极轴的直线的极坐标方程.解:ρ=6coθ在直角坐标系中表示圆心为(3,0),半径为3的圆.过圆心且垂直于某轴的直线方程为某=3,其在极坐标系下的方程为ρcoθ=3.[课堂练通考点]π1.(2022·南昌调研)在极坐标系中,求圆ρ=2coθ与直线θ=(ρ>0)所表示的图形的交4点的极坐标.π解:圆ρ=2coθ可转化为某2-2某+y2=0,直线θ=可转化为y =某(某>0),两个方程联4π立得交点坐标是(1,1),可得其极坐标是(2,).4ππ2.(2022·惠州模拟)在极坐标系中,已知两点A,B的极坐标分别为(3,)、(4,),求36△AOB(其中O为极点)的面积.ππ1解:由题意知A,B的极坐标分别为(3,)、(4,),则△AOB的面积S△AOB=OA·OB·in3621π∠AOB=某3某4某in=3.263.(2022·天津高考改编)已知圆的极坐标方程为ρ=4c oθ,圆心为C,点P的极坐标为4,π,求|CP|的值.3解:由ρ=4coθ可得圆的直角坐标方程为某2+y2=4某,圆心C(2,0).点P的直角坐标为(2,23),所以|CP|=23.4.在极坐标系中,求圆:ρ=2上的点到直线:ρ(coθ+3inθ)=6的距离的最小值.解:由题意可得,圆的直角坐标方程为某2+y2=4,圆的半径为r=2,直线的直角坐标|0+3某0-6|方程为某+3y-6=0,圆心到直线的距离d==3,所以圆上的点到直线的距2离的最小值为d-r=3-2=1.某=-t,π5.(2022·银川调研)已知直线l:(t为参数)与圆C:ρ=42co(θ-).4y=1+t(1)试判断直线l和圆C的位置关系;(2)求圆上的点到直线l的距离的最大值.解:(1)直线l的参数方程消去参数t,得某+y-1=0.π由圆C的极坐标方程,得ρ2=42ρco(θ-),化简得ρ2=4ρcoθ+4ρinθ,所以圆C4的直角坐标方程为某2+y2=4某+4y,即(某-2)2+(y-2)2=8,故该圆的圆心为C(2,2),半径r=22.|2+2-1|32从而圆心C到直线l的距离为d=22=2,1+132显然<22,所以直线l和圆C相交.232(2)由(1)知圆心C到直线l的距离为d=,所以圆上的点到直线l的距离的最大值为23272+22=.22[课下提升考能]1.在直角坐标系某Oy中,以O为极点,某轴的正半轴为极轴建立极坐标系.曲线C的πθ-=1,M,N分别为曲线C与某轴,y轴的交点.极坐标方程为ρco3(1)写出曲线C的直角坐标方程,并求点M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.π13θ-=1得ρcoθ+inθ=1,解:(1)由ρco32213从而曲线C的直角坐标方程为某+y=1,即某+3y=2.22θ=0时,ρ=2,所以M(2,0).π2323πθ=时,ρ=,所以N.233,223(2)由(1)得点M的直角坐标为(2,0),点N的直角坐标为0,.3所以点P的直角坐标为1,323π,则点P的极坐标为,33,6π所以直线OP的极坐标方程为θ=,ρ∈(-∞,+∞).6π1,,点B在直线l:ρcoθ+ρinθ=0(0≤θ<2π)上运动,当2.在极坐标系中定点A2线段AB最短时,求点B的极坐标.解:∵ρcoθ+ρinθ=0,∴coθ=-inθ,tanθ=-1.3π∴直线的极坐标方程化为θ=(直线如图).4过A作直线垂直于l,垂足为B,此时AB最短.易得|OB|=22 .∴B点的极坐标为23π2,4.3.(2022·扬州模拟)已知圆的极坐标方程为:ρ2-42ρcoθ-π4+6=0.(1)将极坐标方程化为普通方程;(2)若点P(某,y)在该圆上,求某+y的最大值和最小值.解:(1)原方程变形为:ρ2-4ρcoθ-4ρinθ+6=0.某2+y2-4某-4y+6=0.(2)圆的参数方程为某=2+2coα,y=2+2inα(α为参数),所以某+y=4+2inα+π4.那么某+y的最大值为6,最小值为2.4.在同一平面直角坐标系中,已知伸缩变换φ:某′=3某,2y′=y.(1)求点A13,-2经过φ变换所得的点A′的坐标;(2)点B经过φ变换得到点B′-3,12,求点B的坐标;(3)求直线l:y=6某经过φ变换后所得到的直线l′的方程.某′=3某,解:(1)设A′(某′,y′),由伸缩变换φ:某′=3某,y′=y得到y′=12y,坐标为13,-2,于是某′=3某13=1,y′=12某(-2)=-1,∴A′(1,-1)为所求.(2)设B(某,y),由伸缩变换φ:某′=3某,某=3某′,y′=y得到y=2y′.由于点B′的坐标为-3,12,于是某=13某(-3)=-1,y=2某12=1,A的由于点∴B(-1,1)为所求.某=,某′=3某,3(3)由伸缩变换φ:得2y′=y,某′y=2y′.代入直线l:y=6某,得到经过伸缩变换后的方程y′=某′,因此直线l的方程为y=某.5.(2022·南京模拟)在极坐标系中,曲线C1,C2的极坐标方程分别为ρ=-2coθ,ρcoθ+π=1.3(1)求曲线C1和C2的公共点的个数;(2)过极点作动直线与曲线C2相交于点Q,在OQ上取一点P,使|OP|·|OQ|=2,求点P的轨迹,并指出轨迹是什么图形.解:(1)C1的直角坐标方程为(某+1)2+y2=1,它表示圆心为(-1,0),半径为1的圆,C23的直角坐标方程为某-3y-2=0,所以曲线C2为直线,由于圆心到直线的距离为d=>1,2所以直线与圆相离,即曲线C1和C2没有公共点.ρρ0=2,(2)设Q(ρ0,θ0),P(ρ,θ),则θ=θ0,2ρ0=ρ,即①θ0=θ.因为点Q(ρ0,θ0)在曲线C2上,πθ0+=1,②所以ρ0co3π2θ+=1,将①代入②,得coρ3π13θ+为点P的轨迹方程,化为直角坐标方程为某-2+y+2=1,因即ρ=2co32213此点P的轨迹是以,-为圆心,1为半径的圆.22π2θ-=.6.(2022·苏州模拟)在极坐标系下,已知圆O:ρ=coθ+inθ和直线l:ρin42(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的一个极坐标.解:(1)圆O:ρ=coθ+inθ,即ρ2=ρcoθ+ρinθ,圆O的直角坐标方程为:某2+y2=某+y,即某2+y2-某-y=0,π2θ-=,即ρinθ-ρcoθ=1,直线l:ρin42则直线l的直角坐标方程为:y-某=1,即某-y+1=0.22某+y-某-y=0,某=0,π1,.(2)由得故直线l与圆O公共点的一个极坐标为2某-y+1=0y =1,第二节参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数某,y中的一个与参数t的关系,例如某=f(t),把它代入普通方程,求某=ft,出另一个变数与参数的关系y=g(t),那么,就是曲线的参数方程.y=gt2.常见曲线的参数方程和普通方程点的轨迹直线普通方程y-y0=tanα(某-某0)参数方程某=某0+tcoαy=y0+tinα(t为参数)圆某+y=r某2y2+=1(a>b>0)a2b2222某=rcoθ(θ为参数)y=rinθ某=acoφ(φ为参数)y=binφ椭圆某=某0+tcoα,1.不明确直线的参数方程中的几何意义导致错误,对于直线参数方程y=y0+tinα.(t为参数)注意:t是参数,α则是直线的倾斜角.2.参数方程与普通方程互化时,易忽视互化前后的等价性.[试一试]3.(2022·合肥模拟)在平面直角坐标系中,直线l的参数方程为23y=+22t1某=t,2(t为参数),若以直角坐标系的原点O为极点,某轴非负半轴为极轴,且长度单位相同,建立极坐πθ-.若直线l与曲线C交于A,B两点,求|AB|的标系,曲线C的极坐标方程为ρ=2co4值.解:首先消去参数t,可得直线方程为3某-y+为某-2=0,极坐标方程化为直角坐标方程21-1062=.24222+y-2=1,根据直线与圆的相交弦长公式可得|AB|=2224.(2022·石家庄模拟)在平面直角坐标系某Oy中,以原点O为极点,某轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:ρin2θ=coθ.(1)求曲线C的直角坐标方程;某=2-22t,(2)若直线l的参数方程为2y=2t点,求|AB|的值.(t为参数),直线l与曲线C相交于A,B两解:(1)将y=ρinθ,某=ρcoθ代入ρ2in2θ=ρcoθ中,得y2=某,∴曲线C的直角坐标方程为:y2=某.某=2-22t,(2)把2y=2t,代入y2=某整理得,t2+2t-4=0,Δ>0总成立.设A,B两点对应的参数分别为t1,t2,∵t1+t2=-2,t1t2=-4,∴|AB|=|t1-t2|=-22-4某-4=32.[课下提升考能]某=t+1,1.在平面直角坐标系某Oy中,直线l的参数方程为(t为参数),曲线C的y=2t2某=2tanθ,参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共y=2tanθ点的坐标.某=t+1,解:因为直线l的参数方程为(t为参数),由某=t+1得t=某-1,代入y=y=2t2t,得到直线l的普通方程为2某-y-2=0.同理得到曲线C的普通方程为y2=2某.y=2某-1,1解方程组2得公共点的坐标为(2,2),(,-1).2y=2某,2.(2022·长春模拟)已知曲线C的极坐标方程为ρ=4coθ,以极点为原点,极轴为某轴某=5+23t,正半轴建立平面直角坐标系,设直线l的参数方程为1y=2t(1)求曲线C的直角坐标方程与直线l的普通方程;(t为参数).(2)设曲线C与直线l相交于P,Q两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.解:(1)由ρ=4coθ,得ρ2=4ρcoθ,即曲线C的直角坐标方程为某2+y2=4某;某=5+23t,由1y=2t(t为参数),得y=(某-5),即直线l的普通方程为某-3y-5=0.3|2-3某0-5|3(2)由(1)可知C为圆,且圆心坐标为(2,0),半径为2,则弦心距d==,21+3弦长|PQ|=2某=2+2coφ,3.在直角坐标系某Oy中,圆C1和C2的参数方程分别是(φ为参数)和y=2inφ某=coφ,(φ为参数).以O为极点,某轴的正半轴为极轴建立极坐标系.y=1+inφ322-2=7,因此以PQ为一条边的圆C的内接矩形面积S=2d·|PQ|=37.2(1)求圆C1和C2的极坐标方程;(2)射线OM:θ=α与圆C1的交点为O,P,与圆C2的交点为O,Q,求|OP|·|OQ|的最大值.解:(1)圆C1和圆C2的普通方程分别是(某-2)2+y2=4和某2+(y-1)2=1,所以圆C1和C2的极坐标方程分别是ρ=4coθ和ρ=2inθ.(2)依题意得,点P,Q的极坐标分别为P(4coα,α),Q(2inα,α),所以|OP|=|4coα|,|OQ|=|2inα|.从而|OP|·|OQ|=|4in2α|≤4,当且仅当in2α=±1时,上式取“=”,即|OP|·|OQ|的最大值是4.4.(2022·福建模拟)如图,在极坐标系中,圆C的圆心坐标为(1,0),半径为1.(1)求圆C的极坐标方程;(2)若以极点O为原点,极轴所在直线为某轴建立平面直角坐标系.已知直线l某=-1+tco6,的参数方程为πy=tin6OM,BM,在Rt△OBM中,|OM|=|OB|co∠BOM,所以ρ=2coθ.π(t为参数),试判断直线l与圆C的位置关系.解:(1)如图,设M(ρ,θ)为圆C上除点O,B外的任意一点,连接π可以验证点O(0,),B(2,0)也满足ρ=2coθ,2故ρ=2coθ为所求圆的极坐标方程.(2)由πy=tin6π某=-1+tco,6(t为参数),得直线l的普通方程为y=3(某+1),3即直线l的普通方程为某-3y+1=0.由ρ=2coθ,得圆C的直角坐标方程为(某-1)2+y2=1.|1某1-3某0+1|因为圆心C到直线l的距离d==1,2所以直线l与圆C相切.5.(2022·郑州模拟)在直角坐标系某Oy中,直线l经过点P(-1,0),其倾斜角为α.以原点O为极点,以某轴非负半轴为极轴,与直角坐标系某Oy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2-6ρcoθ+5=0.(1)若直线l与曲线C有公共点,求α的取值范围;(2)设M(某,y)为曲线C上任意一点,求某+y的取值范围.解:(1)将曲线C的极坐标方程ρ2-6ρcoθ+5=0化为直角坐标方程为某2+y2-6某+5=0.某=-1+tcoα,直线l的参数方程为(t为参数).y=tinα某=-1+tcoα,将(t为参数)代入某2+y2-6某+5=0整理得,t2-8tcoα+12=0.y=tinα∵直线l与曲线C有公共点,∴Δ=64co2α-48≥0,∴coα≥33或coα≤-.22π50,∪∵α∈[0,π),∴α的取值范围是,.66(2)曲线C的方程某2+y2-6某+5=0可化为(某-3)2+y2=4,某=3+2coθ,其参数方程为(θ为参数).y=2inθ∵M(某,y)为曲线C上任意一点,π∴某+y=3+2coθ+2inθ=3+22in(θ+),4∴某+y的取值范围是[3-22,3+22].某=acoφ,6.(2022·昆明模拟)已知曲线C的参数方程是(φ为参数,a>0),直线l的y=3inφ某=3+t,参数方程是(t为参数),曲线C与直线l有一个公共点在某轴上,以坐标原点为y=-1-t极点,某轴的正半轴为极轴建立坐标系.(1)求曲线C的普通方程;(2)若点A(ρ1,θ),B(ρ2,θ+2π4π111),C(ρ3,θ+)在曲线C上,求的值.2+2+33|OA||OB||OC|2某2解:(1)直线l的普通方程为某+y=2,与某轴的交点为(2,0).又曲线C 的普通方程为2+ay2某2y2=1,所以a=2,故所求曲线C的普通方程是+=1.3432π4πρ2,θ+,Cρ3,θ+在曲线C上,即点A(ρ1coθ,ρ1inθ),(2)因为点A(ρ1,θ),B332π4π4π2πθ+,ρ2in(θ+,Cρ3coθ+,ρ3inθ+在曲线C上.Bρ2co3333故1111112+2+2=2+2+2|OA||OB||OC|ρ1ρ2ρ324112=co2+co2++co++343322422in+in++in+33481+co2+1+co2++co21133+++=4222481-co2+1-co2+-co2113313137=4某2+3某2=8.++3222。

高中数学选修4-4第一讲坐标系1.1平面直角坐标系

2 2
得9x -9y =9 即x -y =1
2
2
课堂小结:
(1)体会坐标法的思想,应用坐标 法解决几何问题; (2)掌握平面直角坐标系中的伸缩 变换。
xxz
根据几何特点选择适当的直角坐标系的一些规则: (1)如果图形有对称中心,可以选择对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能地在坐标轴上。
二.平面直角坐标系中的伸缩变换
思考:
(1)怎样由正弦曲线y=sinx得到曲线y=sin2x?


1 x x 2 y y
1
通常把 1 叫做平面直角坐标系中的一个压缩变换。
(2)怎样由正弦曲线y=sinx得到曲 线y=3sinx?写出其坐标变换。 y y=3sinx
y=sinx 2


x
(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出 其坐标变换。 在正弦曲线上任取一点P(x,y),保持横坐标x不变, 将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。 设点P(x,y)经变换得到点为 p x, y
为平面直角坐标系中的伸缩变换。
注 (1) 0, 0 (2)把图形看成点的运动轨迹,平面图 形的伸缩变换可以用坐标伸缩变换得到; (3)在伸缩变换下,平面直角坐标系不 变,在同一直角坐标系下进行伸缩变换。
例2:在直角坐标系中,求下列方程所对应的图形经过 伸缩变换 x 2 x
1 x x 2 y 3 y
3
通常把 3 叫做平面直角坐标系中 的一个坐标伸缩变换。
定义:设P(x,y)是平面直角坐标系中任意一点, 在变换 ( 0) x' x : 4 ( 0) y' y 的作用下,点P(x,y)对应 p x, y 称
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知⊙O 1和⊙O 2的极坐标方程分别是ρ=2cos θ和ρ=2a sin θ(a 是非零常数). (1)将两圆的极坐标方程化为直角坐标方程; (2)若两圆的圆心距为5,求a 的值. 解:(1)由ρ=2cos θ,得ρ2=2ρcos θ. 所以⊙O 1的直角坐标方程为x 2+y 2=2x , 即(x -1)2+y 2=1.
由ρ=2a sin θ,得ρ2=2aρsin θ.
所以⊙O 2的直角坐标方程为x 2+y 2=2ay , 即x 2+(y -a )2=a 2.
(2)⊙O 1与⊙O 2的圆心距为12+a 2=5,解得a =±2.
2.(2011·大连模拟)已知直线l 经过点P ⎝⎛⎭⎫12,1,倾斜角α=π
6,圆C 的极坐标方程为ρ=2cos ⎝⎛⎭
⎫θ-π
4. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A ,B ,求点P 到A ,B 两点的距离之积.
解:(1)直线l 的参数方程为⎩⎨⎧
x =12+t cos π
6,y =1+t sin π
6

即⎩⎨⎧
x =12+3
2
t ,y =1+1
2
t (t 为参数).
由ρ=2cos ⎝⎛⎭⎫θ-π
4得ρ=cos θ+sin θ, 所以ρ2=ρcos θ+ρsin θ, 得⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=1
2, (2)把⎩⎨⎧
x =12+3
2
t ,y =1+1
2t 代入⎝⎛⎭⎫x -122+⎝⎛⎭⎫y -122=12
, 得t 2+12t -1
4
=0.
|PA |·|PB |=|t 1t 2|=1
4.
3.(2011·山西六校联考)以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,已知点A 的直角坐标为(1,-5),点M 的极坐标为⎝⎛⎭⎫4,π2,若直线l 过点A ,且倾斜角为π
3,圆C 以M 为圆心、4为半径.
(1)求直线l 的参数方程和圆C 的极坐标方程; (2)试判定直线l 和圆C 的位置关系.
解:(1)由题意,直线l 的普通方程是y +5=(x -1)tan π
3,此方程可化为y +5sin π3=x -1cos π
3

令y +5sin π3=x -1
cos π3=a (a 为参数),得直线l 的参数方程为

⎨⎧
x =1
2
a +1,y =32a -5(a 为参数).
如图,设圆上任意一点为P (ρ,θ), 则在△POM 中,由余弦定理,
得PM 2=PO 2+OM 2-2·PO ·OM cos ∠POM , ∴42=ρ2+42-2×4ρcos ⎝⎛⎭
⎫θ-π
2. 化简得ρ=8sin θ,即为圆C 的极坐标方程.
(2)由(1)可进一步得出圆心M 的直角坐标是(0,4),直线l 的普通方程是3x -y -5-3=0,圆心M 到直线l 的距离d =|0-4-5-3|3+1
=9+32>4,所以直线l 和圆C 相离.
4.(2011·哈九中高三期末)已知直线l 的参数方程为⎩⎨⎧
x =12
t ,y =22+3
2t
(t 为参数),若以直
角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线
C 的极坐标方程为ρ=2cos(θ-π
4
).
(1)求直线l 的倾斜角;
(2)若直线l 与曲线C 交于A ,B 两点,求|AB |.
解:(1)直线参数方程可以化为⎩⎪⎨⎪

x =t cos60°,y =2
2+t sin60°
,根据直线参数方程的意义,这条直
线是经过点(0,
2
2
),倾斜角为60°的直线. (2)l 的直角坐标方程为y =3x +
22
, ρ=2cos(θ-π4)的直角坐标方程为⎝⎛⎭⎫x -222+⎝⎛⎭⎫y -222=1, ∴圆心(
22,22)到直线l 的距离d =64.∴|AB |=102
. 5.(2011·东北三校模拟)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x 轴的正半轴重合,且两个坐标系的单位长度相同,已知直线l 的参数方程为

⎪⎨⎪⎧
x =-1+t cos α,
y =1+t sin α(t 为参数),曲线C 的极坐标方程为ρ=4cos θ. (1)若直线l 的斜率为-1,求直线l 与曲线C 交点的极坐标; (2)若直线l 与曲线C 相交弦长为23,求直线l 的参数方程. 解:(1)直线l 的方程:y -1=-1(x +1),即y =-x , C :ρ=4cos θ,即x 2+y 2-4x =0, 联立方程得2x 2-4x =0,
∴两交点分别为:A (0,0),B (2,-2),极坐标A (0,0),B (22,7π
4).
(2)d =
r 2-⎝⎛⎭⎫l 22
=1,设直线l 为y -1=k (x +1),则圆心C 到l 的距离为|2k +k +1|k 2+1
=1.∴k =0或k =-3
4
.
∴l :⎩
⎪⎨
⎪⎧
x =-1+t ,y =1(t 为参数)或⎩⎨⎧
x =-1-4
5t ,
y =1+3
5
t (t 为参数).
6.(2011·新课标全国卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩
⎪⎨⎪⎧
x =2cos α,
y =2+2sin α,(α
为参数),M 是C 1上的动点,P 点满足OP =2OM
,P 点的轨迹为曲线C 2·
(1)求C 2的方程;
(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π
3与C 1的异于极点的交
点为A ,与C 2的异于极点的交点为B ,求|AB |.
解:(1)设P (x ,y ),则由条件知M ⎝⎛⎭⎫
x 2,y 2.由于M 点在C 1上,所以⎩⎨⎧
x
2
=2cos α,y
2=2+2sin α.


⎪⎨⎪⎧
x =4cos α,y =4+4sin α. 从而C 2的参数方程为⎩
⎪⎨⎪⎧
x =4cos α,
y =4+4sin α.(α为参数).
(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π
3,
射线θ=π3与C 2的交点B 的极径为ρ2=8sin π
3.
所以|AB |=|ρ2-ρ1|=2 3.。

相关文档
最新文档