高中北师大版数学必修2(45分钟课时作业):第1章单元测试二 点、线、面之间的位置关系 Word版含解析
2018年高一北师大版数学必修2(45分钟课时作业与单元测试卷):第1章章末检测 Word版含解析

第一章章末检测一、选择题(本大题10个小题,每小题5分,共50分)1.若a、b为异面直线,直线c∥a,c与b的位置关系是()A.相交B.异面C.平行D.异面或相交答案:D2.在正方体ABCD-A1B1C1D1中,E,F分别是线段C1D,BC的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直答案:A解析:因为A1B∥D1C,D1C∩EF=E,又E,F,A1,B四点都在平行四边形A1BCD1上,所以E,F,A1,B四点共面,所以EF与A1B相交,故选A.3.如图为一零件的三视图,根据图中所给数据(单位:cm)可知这个零件的体积为() A.(64-π)cm3B.(64-4π)cm3C.(48-π)cm3D.(48-4π)cm3答案:B解析:由三视图,可知这个零件是一个棱长为4的正方体,中间挖去了一个底面半径为1、高为4的圆柱所形成的几何体,其体积为43-π×12×4=(64-4π)cm3.4.若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为() A.1:2:3 B.2:3:4C.3:2:4 D.3:1:2答案:D5.已知正方体的棱长为2,则外接球的表面积和体积分别为()A.48π,32 3πB.48π,4 3πC.12π,4 3πD.12π,32 3π答案:C6.正方体ABCD-A1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点.那么正方体的过P、Q、R的截面图形是()A.三角形B.四边形C.五边形D.六边形答案:D7.已知α,β为两个不同的平面,m,n为两条不同的直线,下列结论正确的是()A .若m ⊥α,m ⊥n ,则n ∥αB .若m ∥α,n ∥α,则m ∥nC .若m β,且α⊥β,则m ⊥αD .若m ⊥β,且α∥β,则m ⊥α 答案:D解析:A 中可能n α;B 中m ,n 还可能相交或异面;C 中m ,α还可能平行或斜交;一条直线垂直于两平行平面中的一个,也垂直于另一个,所以D 正确.8.四面体S -ABC 中,各个面都是边长为2的正三角形,E ,F 分别是SC 和AB 的中点,则异面直线EF 与SA 所成角等于( )A .90°B .60°C .45°D .30° 答案:C9.设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n②若α∥β,β∥γ,m ⊥α,则m ⊥γ ③若m ∥α,n ∥α,则m ∥n ④若α⊥γ,β⊥γ,则α∥β 其中正确命题的序号是( ) A .①和② B .②和③ C .③和④ D .①和④ 答案:A10.直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .[4 2-52,4 2+52]B .[2 2-2,2 2+2]C .[3-2 22,3+2 22]D .[3 2-2,3 2+2] 答案:B 解析:由题意,直线BC 与动点O 的空间关系: 点O 是以BC 为直径的球面上的点,所以O 到AD 的距离为四面体上以BC 为直径的球面上的点到AD 的距离, 最大距离为AD 到球心的距离(即BC 与AD 的公垂线)+半径=2 2+2. 最小距离为AD 到球心的距离(即BC 与AD 的公垂线)-半径=2 2-2.∴点O 到直线AD 的距离的取值范围是:[2 2-2,2 2+2]. 二、填空题(本大题5个小题,每小题5分,共25分)11.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为________.答案: 212.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B -B 1EF 的体积为________.答案:1313.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为BB 1和CD 的中点,则直线AM 和D 1N 所成的角为________.答案:90° 14.如图,梯形A ′B ′C ′D ′是水平放置的四边形ABCD 的用斜二测画法画出的直观图.若A ′D ′∥y ′轴,A ′B ′∥C ′D ′,A ′B ′=23C ′D ′=2,A ′D ′=O ′D ′=1,则四边形ABCD 的面积为________.答案:5 解析:如图,建立直角坐标系xOy ,在x 轴上截取OD =O ′D ′=1,OC =O ′C ′=2.过点D 作y 轴的平行线,并在平行线上截取DA =2D ′A ′=2.过点A 作x 轴的平行线,并在平行线上截取AB =A ′B ′=2.连接BC ,即得到了四边形ABCD .可知四边形ABCD 是直角梯形,上、下底边分别为AB =2,CD =3,高AD =2,所以四边形ABCD 的面积S =2+32×2=5.15.如图,在正方体ABCD -A 1B 1C 1D 1中,给出以下四个结论:①直线D 1C ∥平面A 1ABB 1; ②直线A 1D 1与平面BCD 1相交; ③直线AD ⊥平面D 1DB ; ④平面BCD 1⊥平面A 1ABB 1.其中正确结论的序号为________. 答案:①④解析:因为平面A 1ABB 1∥平面D 1DCC 1,D 1C平面D 1DCC 1,所以D 1C ∥平面A 1ABB 1,①正确;直线A 1D 1在平面BCD 1内,②不正确;显然AD 不垂直于BD ,所以AD 不垂直于平面D 1DB ,③不正确;因为BC ⊥平面A 1ABB 1,BC 平面BCD 1,所以平面BCD 1⊥平面A 1ABB 1,④正确.三、解答证明题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.)16.(12分)圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.解:x cm,3x cm. 延长AA 1交OO 1的延长线于S , 在Rt △SOA 中,∠ASO =45°,则∠SAO =45°, ∴SO =AO =3x ,∴OO 1=2x ,又S 轴截面=12(6x +2x )·2x =392,∴x =7.故圆台的高OO 1=14 cm ,母线长l = 2O 1O =14 2 cm ,两底面半径分别为7 cm,21 cm.17.(12分)如图,在圆锥SO 中,AB ,CD 为底面圆的两条直径,AB ∩CD =O ,SO =OB =2,P 为SB 的中点.(1)求证:SA ∥平面PCD ; (2)求圆锥SO 的表面积. 解:(1)连接PO ,∵P ,O 分别为SB ,AB 的中点,∴PO ∥SA .又PO 平面PCD ,SA 平面PCD ,∴SA ∥平面PCD .(2)设母线长为l ,底面圆半径为r ,则r =2,l =SB =22, ∴S 底=πr 2=4π,S 侧=πrl =42π, ∴S 表=S 底+S 侧=4(2+1)π.18.(12分)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,AB ⊥BC ,DE 垂直平分PC ,且分别交AC ,PC 于D ,E 两点,PB =BC ,P A =AB .(1)求证:PC ⊥平面BDE ;(2)试确定线段P A 上点Q 的位置,使得PC ∥平面BDQ . 解:(1)∵PB =BC ,E 为PC 的中点,∴PC ⊥BE . ∵DE 垂直平分PC ,∴PC ⊥DE .又BE 平面BDE ,DE 平面BDE ,且BE ∩DE =E ,∴PC ⊥平面BDE .(2)不妨令P A =AB =1,则有PB =BC =2,计算得AD =33=13AC . ∴点Q 在线段P A 上靠近点A 的三等分点处,即AQ =13AP 时,PC ∥QD ,从而PC ∥平面BDQ .19.(13分)如图,在直三棱柱ADF -BCE 中,AB =AD =DF =a ,AD ⊥DF ,M ,G 分别是AB ,DF 的中点.(1)求该直三棱柱的体积与表面积;(2)在棱AD 上确定一点P ,使得GP ∥平面FMC ,并给出证明.解:(1)由题意,可知该直三棱柱的体积为12×a ×a ×a =12a 3,表面积为12a 2×2+2a 2+a 2+a 2=(3+2)a 2.(2)当点P 与点A 重合时,GP ∥平面FMC . 取FC 的中点H ,连接GH ,GA ,MH .∵G 是DF 的中点,∴GH 綊12CD .又M 是AB 的中点,AB 綊CD ,∴AM 綊12CD .∴GH ∥AM 且GH =AM ,∴四边形GHMA 是平行四边形, ∴GA ∥MH .∵MH 平面FMC ,GA 平面FMC , ∴GA ∥平面FMC ,即当点P 与点A 重合时,GP ∥平面FMC .20.(13分)如图①,有一个等腰直角三角板ABC 垂直于平面α,BC α,AB =BC =5,有一条长为7的细线,其两端分别位于B ,C 处,现用铅笔拉紧细线,在平面α上移动.(1)图②中的PC (PC <PB )的长为多少时,CP ⊥平面ABP ?并说明理由. (2)在(1)的情形下,求三棱锥B -APC 的高. 解:(1)当CP =3时,CP ⊥平面ABP .证明如下:若CP =3,则BP =4,而BC =5, 所以三角形BPC 为直角三角形,且CP ⊥PB . 又平面ABC ⊥平面α,AB ⊥BC ,所以AB ⊥平面α,于是CP ⊥AB .又PB 平面ABP ,AB 平面ABP ,PB ∩AB =B , 所以CP ⊥平面ABP .(2)解法一:如图,过点B 作BD ⊥AP 于点D ,由(1),知CP ⊥平面ABP ,则CP ⊥BD .又AP 平面APC ,CP 平面APC ,AP ∩CP =P , 所以BD ⊥平面APC ,即BD 为三棱锥B -APC 的高. 由于PB =4,AB =5,AB ⊥平面α,所以AP =AB 2+PB 2=25+16=41,由AP ·BD =AB ·PB ,得BD =4×541=204141.即三棱锥B -APC 的高为204141.解法二:由(1),知CP ⊥平面ABP ,所以CP ⊥AP . 又CP =3,BP =4,AB =5,AB ⊥BP , 所以AP =AB 2+PB 2=25+16=41,所以S △APC =12·CP ·AP =3412.设三棱锥B -APC 的高为h ,则V B -APC =13·S △APC ·h =412h .又V A -PBC =13·S △PBC ·AB =13×12×CP ×BP ×AB =10,而V B -APC =V A -PBC ,得412h =10,所以h =204141.即三棱锥B -APC 的高为204141.21.(13分)已知正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,M 为AC 上一点,N 为BF 上一点,且AM =FN =x ,设AB =a(1)求证:MN ∥平面CBE ; (2)求证: MN ⊥AB ;(3)当x 为何值时,MN 取最小值?并求出这个最小值.证明:(1)在平面ABC 中,作MG ∥AB ,在平面BFE 中,作NH ∥EF ,连接GH ,∵AM =FN ,∴MC =NB ,∵MG AB =MC NC =NBEF∴MG ∥NH ,∴MNHG 为平行四边形,∴MN ∥GH又∵GH ⊆面BEC ,MN 面BEC ,∴MN ∥面BEC (2)∵AB ⊥BC ,AB ⊥BE ,∴AB ⊥面BEC ,∵GH ⊆面GEC ,∴AB ⊥GH ,∵MN ∥GH ,∴MN ⊥AB (3)∵面ABCD ⊥面ABEF ,∴BE ⊥面ABCD ,∴BE ⊥BC∵BG =x2,BH =2a -x 2∴MN =GH =BG 2+BH 2=x 2+x 2-22ax +2a 22=x 2-2ax +a 2(0<a <2a )=⎝⎛⎭⎫x -22a 2+a 22≤22a当且仅当x =22a 时,等号成立;∴当x =22a 时,MN 取最小值22a .。
2018学年高中北师大版数学必修245分钟课时作业与单元测试卷:第1章6.2 垂直关系的性质 含解析

6.2 垂直关系的性质时间:45分钟 满分:80分班级________ 姓名________ 分数________一、选择题(每小题5分,共5×6=30分)1.已知△ABC 和两条不同的直线l ,m ,l ⊥AB ,l ⊥AC ,m ⊥AC ,m ⊥BC ,则直线l ,m 的位置关系是( )A .平行B .异面C .相交D .垂直答案:A解析:因为直线l ⊥AB ,l ⊥AC ,所以直线l ⊥平面ABC ,同理直线m ⊥平面ABC ,根据线面垂直的性质定理得l ∥m .2.PO ⊥平面ABC ,O 为垂足,∠ACB =90°,∠BAC =30°,BC =5,P A =PB =PC =10,则PO 的长等于( )A .5B .5 2C .5 3D .20答案:C解析:∵P A =PB =PC ,∴P 在面ABC 上的射影O 为△ABC 的外心.又△ABC 为直角三角形,∴O 为斜边BA 的中点.在△ABC 中,BC =5,∠ACB =90°,∠BAC =30°,∴PO = PC 2-(AB 2)2=5 3. 3.已知平面α⊥β,直线l α,直线m β,若l ⊥m ,则l 与β的位置关系是( )A .l ⊥βB .l ∥βC .l βD .以上都有可能答案:D解析:若l 垂直于两平面的交线,则l ⊥β;若l 平行两平面的交线,m 垂直两平面的交线,则l ∥β;若l 就是两平面的交线,m 垂直两平面的交线,则l β.故这三种情况都有可能.4.如图,BC 是Rt △BAC 的斜边,P A ⊥平面ABC ,PD ⊥BC 于点D ,则图中直角三角形的个数是( )A .3B .5C .6D .8答案:D解析:由P A⊥平面ABC,知△P AC,△P AD,△P AB均为直角三角形,又PD⊥BC,P A ⊥BC,P A∩PD=D,∴BC⊥平面P AD.∴AD⊥BC,易知△ADC,△ADB,△PDC,△PDB 均为直角三角形.又△BAC为直角三角形,所以共有8个直角三角形,故选D.5.下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β答案:D解析:对于命题A,在平面α内存在直线l平行于平面α与平面β的交线,则l平行于平面β,故命题A正确.对于命题B,若平面α内存在直线垂直于平面β,则平面α与平面β垂直,故命题B正确.对于命题C,设α∩γ=m,β∩γ=n,在平面γ内取一点P不在m,n上,过P作直线a,b,使a⊥m,b⊥n.∵γ⊥α,a⊥m,则a⊥α,∴a⊥l,同理有b⊥l.又a∩b=P,aγ,bγ,∴l⊥γ.故命题C正确.对于命题D,设α∩β=l,则lα,lβ.故在α内存在直线不垂直于平面β,即命题D错误.故选D.6.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部答案:A解析:连接AC1,∵BA⊥AC,BC1⊥AC,BA∩BC1=B,∴AC⊥平面ABC1.∵AC平面ABC,∴平面ABC⊥平面ABC1,且交线是AB.故平面ABC1上的点C1在底面ABC上的射影H必在交线AB上.二、填空题(每小题5分,共5×3=15分)7.已知P A垂直于平行四边形ABCD所在的平面,若PC⊥BD,则平行四边形ABCD 一定是__________.答案:菱形解析:因为P A⊥平面ABCD,所以P A⊥BD,又因为PC⊥BD,所以BD⊥平面P AC,又AC⊂平面P AC,所以AC⊥BD.8.如图,四棱锥P-ABCD的底面ABCD是边长为a的正方形,侧棱P A=a,PB=PD =2a,则它的五个面中,互相垂直的平面有________对.答案:5解析:由勾股定理逆定理得P A⊥AD,P A⊥AB,∴P A⊥面ABCD,P A⊥CD,P A⊥CB.由直线与平面垂直的判定定理及平面与平面垂直的判定定理易得结论.平面P AB⊥平面P AD,平面P AB⊥平面ABCD,平面P AB⊥平面PBC,平面P AD⊥平面ABCD,平面P AD⊥平面PCD.9.如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,则下列说法正确的是________(填序号).①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置,都有MN⊥AE;③不论D折至何位置(不在平面ABC内),都有MN∥AB;④在折起过程中,一定存在某个位置,使EC⊥AD.答案:①②④解析:分别取CE,DE的中点Q,P,连接MP,PQ,NQ,可证MNQP是矩形,所以①②正确;因为MN∥PQ,AB∥CE,若MN∥AB,则PQ∥CE,又PQ与CE相交,所以③错误;当平面ADE⊥平面ABCD时,有EC⊥AD,④正确.故填①②④.三、解答题(共35分,11+12+12)10.在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=60°,P A⊥平面ABCD,E 为PD的中点,P A=2AB.若F为PC的中点,求证:PC⊥平面AEF.证明:∵P A=2AB,∠ABC=90°,∠BAC=60°,∴P A=CA.又F为PC的中点,∴AF⊥PC.∵P A⊥平面ABCD,∴P A⊥CD.∵AC⊥CD,P A∩AC=A,∴CD⊥平面P AC,∴CD⊥PC.∵E为PD的中点,F为PC的中点,∴EF∥CD,∴EF⊥PC.又AF⊥PC,AF∩EF=F,∴PC⊥平面AEF.11.如图,△ABC是边长为2的正三角形,AE⊥平面ABC,平面BCD⊥平面ABC,BD =CD,BD⊥CD,且AE=1.(1)求证:AE∥平面BCD;(2)求证:平面BDE⊥平面CDE.证明:(1)取BC的中点M,连接DM,AM,因为BD=CD,且BD⊥CD,BC=2,所以DM=1,DM⊥BC.又平面BCD⊥平面ABC,平面BCD∩平面ABC=BC,所以DM⊥平面ABC,所以AE∥DM,又DM平面BCD,AE平面BCD,所以AE∥平面BCD.(2)由(1)知AE∥DM,又AE=1,DM=1,所以四边形DMAE是平行四边形,所以DE∥AM.因为△ABC为正三角形,所以AM⊥BC.又平面BCD⊥平面ABC,平面BCD∩平面ABC=BC,所以AM⊥平面BCD,所以DE⊥平面BCD.又CD平面BCD,所以DE⊥CD.因为BD⊥CD,BD∩DE=D,所以CD⊥平面BDE.因为CD平面CDE,所以平面BDE⊥平面CDE.12.如图所示,已知在△BCD中,∠=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且AEAC=AFAD=λ,(0<λ<1).求证:不论λ为何值,总有平面BEF⊥平面ABC.证明:∵AB⊥平面BCD,∴AB⊥CD.∵CD⊥BC且AB∩BC=B,∴CD⊥平面ABC.又∵AEAC=AFAD=λ(0<λ<1),∴不论λ为何值,恒有EF∥CD,∴EF⊥平面ABC.又EF⊂平面BEF,∴不论λ为何值恒有平面BEF⊥平面ABC.。
高中北师大版数学必修2(45分钟课时作业与单元测试卷)第1章单元测试三 Word版含解析

单元测试三本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分分,考试时间分钟.第Ⅰ卷(选择题共分)一、选择题:本大题共小题,每小题分,共分.在下列各题的四个选项中,只有一个选项是符合题目要求的..过两直线:-+=和:++=的交点和原点的直线的方程为( ).-=.+=.-=.+=答案:解析:解方程组(\\(-+=,++=,))得(\\(=-(),=().))∴=-.又过原点,∴直线方程为+=..已知点(+),(-),直线的倾斜角是直线倾斜角的一半,则直线的斜率为( )..不存在答案:解析:=,∴直线的倾斜角为°.∴的倾斜角为°,=°=..已知点()(>)到直线:-+=的距离为,则=( ).--+答案:解析:由=得=-,=--(舍去)..三条直线:-=,:+-=,:--=构成一个三角形,则的范围是( ).∈.∈且≠±,≠.∈且≠±,≠-.∈且≠±,≠答案:.若点()和点(,)关于直线--=对称,则( ).=,=-.=,=-.=,=.=,=答案:解析:由题意,知(\\((--)=-,(+)-(+)-=)),解得(\\(==)),故选..和直线-+=关于轴对称的直线方程是( ).+-=.++=.-+-=.--=答案:解析:设对称直线上任一点坐标为(,)它关于轴对称的点的坐标为(,-).(,-)在直线-+=上∴有-(-)+=即++=即所求直线方程为++=..直线过原点(),且不过第三象限,那么的倾斜角α的取值范围是( ).[°,°] .[°,°].[°,°)或α=°.[°,°]答案:解析:画图知的倾斜角应是钝角或坐标轴上的角,中含锐角不正确,中°不在其倾斜角的范围内应被排除,中含的角不全面..设直线与轴的交点为,且倾斜角为α,若将其绕点按逆时针方向旋转°,得到直线的倾斜角为α+°,则( ).°≤α<°.°≤α<°.°<α≤°.°<α<°答案:解析:解答本题应紧扣直线的倾斜角的取值范围,还要注意到与轴相交的直线的倾斜角不为°.从而有(\\(°<α<°,°≤α+°<°)),所以°<α<°,故选..直线过点(),且与点(-)的距离最远,则的方程为( ).--=.-+=.++=.+-=答案:解析:当⊥时符合要求,∵==,∴的斜率为-.∴的方程为-=-(-),即+-=..一条直线被两条直线++=和--=截得的线段的中点恰好是坐标原点,则这条直线的方程是( ).+=.-=.+=.-=答案:解析:设与++=交于(,--),与直线--=,交于点(,),由()为的中点,故可得(-,),由,两点确定.第Ⅱ卷(非选择题共分)二、填空题:本大题共小题,每小题分,共分.把答案填在题中横线上..已知直线:(+)+--=(∈)在轴上的截距是在轴上的截距的倍,则的值为.答案:-或解析:当直线:(+)+--=(∈)过原点,即--=时,解得=-,此时该直线在两坐标轴上的截距都为,所以在轴上的截距是在轴上的截距的倍,即=-符合题意;当直线:(+)+--=(∈)不过原点,即--≠,即≠-时,易知≠-,该直线在轴上的截距是+,在轴上的截距是,所以由直线在轴上的截距是在轴上的截距的倍,得×=+,解得=.综上所述,的值为-或..直线经过(),(,)(∈)两点,则直线的倾斜角的取值范围为.答案:[°,°]∪(°,°)解析:直线的斜率==-≤.若直线的倾斜角为α,则α≠°,且α≤.又°=,且°≤α<°,∴°≤α≤°或°<α<°..已知直线:(+)+(-)=与:(-)+(+)+=互相垂直,则的值为.答案:-或解析:①若的斜率不存在,此时=,的方程为=,的方程为=-,显然⊥,符合条件;若的斜率不存在,此时=-,易知与不垂直.②当,的斜率都存在时,直线的斜率=-,直线的斜率=-,∵⊥,∴·=-,即·=-,所以=-.综上可知=-或=..已知,,为某一直角三角形的三边长,为斜边,若点(,)在直线++=上,则+的最小值为.答案:解析:求+的最小值就是在直线++=上求一点,使这点到原点的距离的平方最小,因而其最小值为原点到直线++=的距离.由题意得到+≥===,∴+的最小值为..已知直线过点(),且与轴、轴的正半轴分别交于、两点,为坐标原点,则三角形面积的最小值为.答案:。
最新北师大版高中数学必修2全册同步课时练习

北师大版高中数学必修2全册课时练习第一章《立体几何初步》简单旋转体1.给出以下说法:①圆台的上底面缩小为一点时(下底面不变),圆台就变成了圆锥;②球面就是球;③过空间四点总能作一个球.其中正确说法的个数是( )A.0 B.1 C.2 D.3答案 B解析根据圆锥和圆台的形状之间的联系可知①正确;球面是曲面,球是球体的简称,是实心的几何体,故②不正确;当空间四点在同一条直线上时,过这四点不能作球,故③不正确.2.如图阴影部分,绕中间轴旋转一周,形成的几何体形状为( )A.一个球体B.一个球体中间挖去一个圆柱C.一个圆柱D.一个球体中间挖去一个棱柱答案 B解析按旋转体的定义得到几何体B.3.有下列三个命题:①圆柱是将矩形旋转一周所得的几何体;②圆台的任意两条母线的延长线,可能相交也可能不相交;③圆锥的轴截面是等腰三角形.其中错误命题的个数是( )A.0 B.1 C.2 D.3答案 C解析①将矩形的一边作为旋转轴旋转一周得到的几何体是圆柱.②圆台的两条母线的延长线必相交,故①②错误,③是正确的.4.如图所示的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个竖直的平面去截这个几何体,则所截得的图形可能是( )A.(1)(2) B.(1)(3) C.(1)(4) D.(1)(5)答案 D解析轴截面为(1),平行于圆锥轴截面的截面是(5).5.下列命题中,错误的是( )A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆面D.圆锥所有的轴截面都是全等的等腰三角形答案 B解析当圆锥的截面顶角大于90°时,面积不是最大.6.圆锥被平行于底面的平面所截,若截面面积与底面面积之比为1∶2,则此圆锥的高被分成的两段之比为( )A.1∶2 B.1∶4C.1∶(2+1) D.1∶(2-1)答案 D解析根据相似性,若截面面积与底面面积之比为1∶2,则对应小圆锥与原圆锥高之比为1∶2,那么圆锥的高被截面分成的两段之比为1∶(2-1).7.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的( )答案 B解析由组合体的结构特征知,球只与正方体的六个面相切,而与两侧棱相离,故正确答案为B.8.将等边三角形绕它的一条中线旋转180°,形成的几何体是________.答案圆锥解析 由旋转体的概念可知,得到的几何体是圆锥.9.圆台两底面半径分别是2 cm 和5 cm ,母线长是310 cm ,则它的轴截面的面积是________.答案 63 cm 2解析 画出轴截面,如图,过A 作AM ⊥BC 于M ,则BM =5-2=3(cm),AM =AB 2-BM 2=9(cm),∴S 四边形ABCD =+2=63(cm 2).10.如图所示的四个几何体中,哪些是圆柱与圆锥,哪些不是,并指出圆柱与圆锥的结构名称.解 ②是圆锥,圆面AOB 是圆锥的底面,SO 是圆锥的高,SA ,SB 是圆锥的母线. ③是圆柱,圆面A ′O ′B ′和圆面AOB 分别为上、下底面,O ′O 为圆柱的高,A ′A 与B ′B 为圆柱的母线.①不是圆柱,④不是圆锥.简单多面体1.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A .20B .15C .12D .10 答案 D解析 如图,在五棱柱ABCDE -A 1B 1C 1D 1E 1中,从顶点A 出发的对角线有两条:AC 1,AD 1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).2.有两个面平行的多面体不可能是( )A.棱柱 B.棱锥C.棱台 D.长方体答案 B解析棱锥的各面都相交,故有两个面平行的多面体不可能是棱锥.3.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定答案 A解析形成的几何体前后两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,符合棱柱的定义.4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2 B.1∶4C.2∶1 D.4∶1答案 B解析由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.5.某同学制作了一个对面图案相同的正方体礼品盒(如下图1),则这个正方体礼品盒的表面展开图应该为( )答案 A 解析 两个不能相邻,B 、D 错误;两个不能相邻,C 错误,故选A.也可通过制作模型来判断.6.如下图所示,在三棱台A ′B ′C ′-ABC 中,截去三棱锥A ′-ABC 后,剩余部分是( )A .三棱锥B .四棱锥C .三棱柱D .三棱台 答案 B解析 剩余部分是四棱锥A ′-BB ′C ′C .7.若一个正棱锥有6个顶点,所有侧棱长的和为20 cm ,则每条侧棱的长为________cm. 答案 4解析 依题意,正棱锥有6个顶点,则该正棱锥为正五棱锥,所以每条侧棱长为205=4 cm.8.在下面的四个平面图形中,属于侧棱都相等的四面体的展开图的是________(填序号).答案①②解析③④中的图不能组成四面体,只有①②行.9.一个正方体内接于一个球,过球心作一截面,则截面的可能图形有________.答案①②③解析当截面平行于正方体的一个侧面时得③,当截面过正方体的对角线时得②,当截面不平行于任何侧面也不过对角线时得①,但无论如何都不能截出④.10.已知长方体ABCD-A1B1C1D1(如下图所示).(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用截面BCFE把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,请说明理由.解(1)是棱柱,并且是四棱柱.因为以长方体相对的两个面作底面,这两个面都是四边形且平行,其余各面都是矩形,当然是平行四边形,并且四条侧棱互相平行.(2)截面BCFE上方部分是棱柱,且是三棱柱BEB1-CFC1,其中△BEB1和△CFC1是底面.截面BCFE下方部分也是棱柱,且是四棱柱ABEA1-DCFD1,其中四边形ABEA1和四边形DCFD1是底面.2 直观图1.关于斜二测画法的叙述,其中正确的个数为( ) (1)两条相交直线的直观图可能是平行直线; (2)两条互相垂直的直线的直观图仍然垂直; (3)正方形的直观图可能是梯形; (4)平行四边形的直观图是平行四边形; (5)相等线段的直观图仍然相等. A .1 B .2 C .3 D .4 答案 A解析 由于斜二测画法保共点性,所以(1)错;保平行性,所以(3)错,(4)对;原来垂直的两线段,在直观图中夹角为45°,所以(2)错;与y 轴平行的线段长度变为原来的一半,所以(5)错.2.如下图建立坐标系,得到的正三角形ABC 的直观图不是全等三角形的一组是( )答案 C解析 在A 、B 、D 中,三角形ABC 的直观图的底面边长和高均相等,它们是全等的,只有C 不全等.3.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( ) A.34a 2 B.38a 2 C.68a 2 D.616a 2 答案 D解析 先根据题意,画出直观图,然后根据直观图△A ′B ′C ′的边长及夹角求解.图(2)所示为实际图形的直观图,由(2)可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图(2)中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.4.如下图,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则原来图形的形状是( )答案 A解析 直观图边长为1,对角线为2,则原图形中对应的对角线为2 2.故选A.5.如图所示是水平放置的正方形ABCO ,在平面直角坐标系xOy 中,点B 的坐标为(4,4),则由斜二测画法画出的正方形的直观图中,顶点B ′到x ′轴的距离为( )A. 2B.22C .2 2D .2 答案 A解析 由斜二测画法规则画出直观图如图所示,作B′E⊥x′轴于点E,在Rt△B′C′E中,B′C′=2,∠B′C′E=45°,B′E=B′C′sin45°=2×22= 2.6.如下图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是( )A.正方形B.矩形C.菱形D.一般的平行四边形答案 C解析如图,在原图形OABC中,OD=2O′D′=2×22=4 2 cm,CD=C′D′=2 cm.∴OC=OD2+CD2=22+22=6 cm,∴OA=OC,故四边形OABC是菱形.7.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图的周长是( )A.8 cm B.6 cmC.2(1+3) cm D.2(1+2) cm答案 A解析根据直观图的画法,原几何图形如图所示,四边形OABC为平行四边形,OB=22,OA=1,AB=3,从而原图周长为8 cm.8.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的________倍.答案24解析 从这个三角形的一边所在的直线为x 轴建立坐标系,则在直观图中,该边边长不变,高变为原来的24倍. 9.如图所示,四边形ABCD 是一平面图形的水平放置的斜二测直观图.在斜二测直观图中,ABCD 是一直角梯形,AB ∥CD ,AD ⊥CD ,且BC 与y ′轴平行.若AB =6,CD =4,AD =2,则这个平面图形的实际面积是________.答案 20 2解析 由斜二测直观图作图规则知,该平面图形是梯形,且AB 与CD 的长度不变,仍为6和4,高为42,故面积为20 2.10.已知直角梯形ABCD 中,AD =22,AB =3,CD =1,用斜二测画法画出其直观图如图所示,求直观图中的梯形A ′B ′C ′D ′的周长.解 由斜二测画法可知,A ′D ′=12AD =2,A ′B ′=AB =3,C ′D ′=CD =1.在直观图中,如图,过D ′作D ′E ′⊥A ′B ′于E ′, 过C ′作C ′F ′⊥A ′B ′于F ′.∵∠D ′A ′E ′=45°,∴C′F′=D′E′=A′E′=2×sin45°=2×22=1,∴F′B′=3-1-1=1,∴B′C′=12+12=2,故梯形A′B′C′D′的周长为4+2 2.三视图1.以下说法错误的是( )A.三视图相同的几何体只有球B.直立圆锥的主视图与左视图都是等腰三角形,俯视图是圆和圆心C.直立圆柱的主视图与左视图都是矩形,俯视图是圆D.长方体的三视图都是矩形,正方体的三视图都是正方形(有一面正对观察者)答案 A解析选项A中错在“只有”这两个字上,例如正方体的三视图可以都为正方形;根据圆锥、圆柱、长方体、正方体的几何特征易知B、C、D均正确.故选A.2.下列选项是正六棱柱的三视图,其中画法正确的是( )答案 A解析主视图的矩形中应有两条实线,左视图应为两个全等的矩形且中间为实线.故选A.3.如图所示,下列几何体各自的三视图(阴影面为主视面)中,有且仅有两个视图相同的是( )A.①② B.①③ C.①④ D.②④答案 D解析在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.4.请根据图中三视图,想象物体的形状,用小正方块搭出这个物体,并数一数有多少个小正方块( )A.7 B.6 C.8或10 D.9或10答案 D解析物体的立体图如图所示,由9个或10个小正方块搭成.5.已知三棱锥的俯视图与左视图如下图所示,俯视图是边长为2的正三角形,左视图是有一条直角边为2的直角三角形,则该三棱锥的主视图可能为( )答案 C解析由题设条件知,该三棱锥的直观图可能如图所示,其底面ABC为正三角形,侧棱PC垂直于底面,在主视图中,PA的投影是虚线.故选C.6.若一个正三棱柱(底面为正三角形,侧面为矩形的棱柱)的三视图如下图所示,则这个正三棱柱的侧棱长和底面边长分别为( )A.2,2 3 B.22, 2C.4,2 D.2,4答案 D解析从三视图可以看出,底面三角形的高为23,侧棱长为2,∴底面边长为4.7.某几何体的主视图与左视图均为边长为1的正方形,则下面四个图形中,可能是该几何体俯视图的个数为( )A.1 B.2 C.3 D.4答案 C解析俯视图从左到右依次记为:如果几何体为棱长为1的正方体,则俯视图如图①;如果几何体为圆柱,它的底面直径为1,高为1,则俯视图如图④;如果几何体为从棱长为1的正方体中挖去直径为2,高为1的圆柱的14,则俯视图如图②;以图③为俯视图的几何体的正视图不是正方形.故选C.8.如图所示,正三棱柱ABC -A 1B 1C 1的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为________.答案 8 3解析 由主视图可知三棱柱的高为4,底面边长为4,所以底面正三角形的高为23,所以左视图的面积为4×23=8 3.9.如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AA 1、D 1C 1的中点,G 是正方形BCC 1B 1的中心,则空间四边形AEFG 在该正方体各面上的正投影不可能是下图中的________.答案 (2)解析 四边形在面ABCD 与面A 1B 1C 1D 1的投影为(1);在面AA 1B 1B 与面DD 1C 1C 的投影为(3);在面ADD 1A 1与面BCC 1B 1的投影为(4).10.如图,物体的三视图有无错误?如果有,请指出并改正.解主视图正确,左视图和俯视图错误,正确的画法如图所示.空间图形基本关系的认识空间图形的公理(一)1.如果空间四点A,B,C,D不共面,那么下列判断中正确的是( )A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行答案 B解析若A,B,C,D四点中有三点共线,则A,B,C,D四点共面;若AB与CD相交(或平行),则AB与CD共面,即得A,B,C,D四点共面.故选B.2.若点A∈平面α,点B∈平面α,点C∈直线AB,则( )A.C∈αB.C∉αC.AB⊆/αD.AB∩α=C答案 A解析因为点A∈平面α,点B∈平面α,所以ABα.又点C∈直线AB,所以C∈α.3.如图所示,用符号语言可表示为( )A.α∩β=m,nα,m∩n=AB.α∩β=m,n∈α,m∩n=AC.α∩β=m,nα,A m,A nD.α∩β=m,n∈α,A∈m,A∈n答案 A解析很明显,α与β交于m,n在α内,m与n交于A,故选A.4.如图,平面α∩平面β=l,点A∈α,点B∈α,且点C∈β,点C∉l.又AB∩l=R,设A,B,C三点确定的平面为γ,则β∩γ是( )A.直线AC B.直线BCC.直线CR D.直线AR答案 C解析∵C∈平面ABC,AB平面ABC,而R∈AB,∴R∈平面ABC,而C∈β,lβ,R ∈l,∴R∈β,∴点C,点R为两平面ABC与β的公共点,∴β∩γ=CR.5.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M不在AC上,也不在BD上答案 A解析因为E,F,G,H分别是四面体ABCD的棱AB,BC,CD,DA上的点,EF与HG交于点M,所以点M为平面ABC与平面ACD的公共点,而两个平面的交线为AC,所以M一定在直线AC上.6.在正方体ABCD-A1B1C1D1中,E、F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1、EF、CD都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条答案 D解析如下图:在直线CD上任取一点H,则直线A1D1与点H确定一平面A1D1HG.显然EF与平面A1D1HG有公共点O且A1D1∥HG.又O∉HG.连接HO并延长,则一定与直线A1D1相交.由于点H有无数个,所以与A1D1、EF、CD都相交的直线有无数条.7.如图,在这个正方体中,①BM与ED平行;②CN与BM是异面直线;③CN与BE是异面直线;④DN与BM是异面直线.以上四个命题中,正确命题的序号是________.答案②④解析观察图形可知①③错误,②④正确.8.有下面几个说法:①如果一条线段的中点在一个平面内,那么它的两个端点也在这个平面内;②两组对边分别相等的四边形是平行四边形;③两组对边分别平行的四边形是平行四边形;④四边形有三条边在同一平面内,则第四条边也在这个平面内;⑤点A在平面α外,点A和平面α内的任意一条直线都不共面.其中正确的序号是________(把你认为正确的序号都填上).答案③④解析①中线段可与平面α相交;②中的四边形可以是空间四边形;③中平行的对边能确定平面,所以是平行四边形;④中三边在同一平面内,可推知第四条边的两个端点也在这个平面内,所以第四条边在这个平面内;⑤中点A与α内的任意直线都能确定一个平面.9.已知α,β为两个不同的平面,A,B,M,N为四个不同的点,a为直线,下列推理错误的是________(填序号).①A ∈a ,B ∈a ,A ∈β,B ∈β⇒a β; ②M ∈α,M ∈β,N ∈α,N ∈β⇒α∩β=MN ; ③A ∈α,A ∈β⇒α∩β=A . 答案 ③解析 ∵A ∈α,A ∈β,∴A ∈α∩β,由公理3知α∩β为经过点A 的一条直线而不是一个点A ,故③错误.故填③.10.如下图,四面体ABCD 中,E 、G 分别为BC 、AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC =2∶3,DH ∶HA =2∶3.求证:EF 、GH 、BD 交于一点.证明 如图所示,连接GE 、HF ,∵E 、G 分别为BC 、AB 的中点, ∴GE ∥AC ,GE =12AC .又∵DF ∶FC =2∶3,DH ∶HA =2∶3, ∴HF ∥AC ,HF =25AC ,∴GE ∥HF ,GE >HF . ∴G 、E 、F 、H 四点共面. ∴EF 与GH 相交,设交点为O .则O ∈平面ABD ∩平面BCD ,而平面ABD ∩平面BCD =BD , ∴O ∈BD .即EF 、GH 、BD 交于一点.空间图形的公理(二)1.若直线a∥b,b∩c=A,则a与c的位置关系是( )A.异面 B.相交C.平行 D.异面或相交答案 D解析a与c不可能平行,若a∥c,又因为a∥b,所以b∥c,这与b∩c=A矛盾,而a与c异面、相交都有可能.2.如图所示,在三棱锥P-ABC的六条棱所在的直线中,异面直线共有( )A.2对 B.3对C.4对 D.6对答案 B解析据异面直线的定义可知共有3对.AP与BC,CP与AB,BP与AC.3.如图所示,在长方体木块ABCD-A1B1C1D1中,E,F分别是B1O和C1O的中点,则长方体的各棱中与EF平行的有( )A.3条 B.4条 C.5条 D.6条答案 B解析由于E、F分别是B1O、C1O的中点,故EF∥B1C1,因为和棱B1C1平行的棱还有3条:AD、BC、A1D1,所以共有4条.4.异面直线a,b,有aα,bβ且α∩β=c,则直线c与a,b的关系是( ) A.c与a,b都相交B.c与a,b都不相交C.c至多与a,b中的一条相交D.c至少与a,b中的一条相交答案 D解析若c与a、b都不相交,∵c与a在α内,∴a∥c.又c 与b 都在β内,∴b ∥c .由基本性质4,可知a ∥b ,与已知条件矛盾. 如图,只有以下三种情况.故直线c 至少与a ,b 中的一条相交.5.已知E ,F ,G ,H 分别为空间四边形ABCD 的各边AB ,BC ,CD ,DA 的中点,若对角线BD =2,AC =4,则EG 2+HF 2的值是(平行四边形的对角线的平方和等于四条边的平方和)( )A .5B .10C .12D .不能确定 答案 B解析 如图所示,由三角形中位线的性质可得EH 綊12BD ,FG 綊12BD ,再根据公理4可得四边形EFGH 是平行四边形,那么所求的是平行四边形的对角线的平方和,所以EG 2+HF 2=2×(12+22)=10.6.如图所示的是正三棱锥的展开图(D ,E 分别为PB ,PA 的中点),则在正三棱锥中,下列说法正确的是( )A .直线DE 与直线AF 相交成60°角B .直线DE 与直线AC 相交 C .直线DE 与直线AB 异面D .直线AF 与直线BC 平行 答案 A解析 将题中的展开图还原成正三棱锥,如图所示,点F 与点P 重合,易知在△PDE 中,PD =PE =DE ,△PDE 是等边三角形,故∠PED =60°,即直线DE 与AF 相交成60°角,A 项正确.由图易知其余选项均错误.7.如图所示,在三棱锥A -BCD 中,M ,N 分别为AB ,CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )答案 D解析 如图所示,取BC 的中点E ,连接ME ,NE ,则ME =12AC ,NE =12BD ,所以ME +NE =12(AC +BD ).在△MNE 中,有ME +NE >MN ,所以MN <12(AC +BD ).8.如图,在正方体ABCD -A 1B 1C 1D 1中,BD 和B 1D 1是正方形ABCD 和A 1B 1C 1D 1的对角线,(1)∠DBC 的两边与________的两边分别平行且方向相同; (2)∠DBC 的两边与________的两边分别平行且方向相反. 答案 (1)∠D 1B 1C 1 (2)∠B 1D 1A 1解析 (1)B 1D 1∥BD ,B 1C 1∥BC 并且方向相同,所以∠DBC 的两边与∠D 1B 1C 1的两边分别平行且方向相同;(2)B 1D 1∥BD ,D 1A 1∥BC 且方向相反,所以∠DBC 的两边与∠B 1D 1A 1的两边分别平行且方向相反.9.如图,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱C 1D 1,C 1C 的中点.有以下四个结论:①直线AM 与CC 1是相交直线 ②直线AM 与BN 是平行直线 ③直线BN 与MB 1是异面直线 ④直线AM 与DD 1是异面直线其中正确的结论为________(注:把你认为正确结论的序号都填上). 答案 ③④解析 由异面直线的定义知③④正确.10.如图,设E ,F ,G ,H 依次是空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且AEAB=AH AD =λ,CF CB =CGCD=μ.(1)当λ=μ时,求证:四边形EFGH 是平行四边形;(2)当λ≠μ时,求证:①四边形EFGH 是梯形;②三条直线EF ,HG ,AC 交于一点. 证明 在△ABD 中,AE AB =AH AD=λ, 故EH 綊λBD .同理FG 綊μBD . 由公理4得EH ∥FG ,又可得FG =μλEH .(1)若λ=μ,则FG =EH ,故EFGH 是平行四边形. (2)①若λ≠μ,则EH ≠FG ,故EFGH 是梯形.②若λ≠μ,则EH ≠FG ,则在平面EFGH 中EF 、HG 不平行,必然相交. 不妨设λ>μ,EF ∩HG =O ,如图所示. 由O ∈EF ,EF 平面ABC ,得O ∈平面ABC . 同理有O ∈HG 平面ACD .而平面ABC ∩平面ACD =AC ,所以O ∈AC , 即EF 、HG 、AC 交于点O .平行关系的判定1.已知两条相交直线a ,b ,a ∥α,则b 与平面α的位置关系是( ) A .b ∥α B .b 与α相交 C .b α D .b ∥α或b 与α相交答案 D解析 ∵a ,b 相交,∴a ,b 确定一个平面β,如果β∥α,则b ∥α,如果β不平行于α,则b 与α相交.2.不同直线m 、n 和不同平面α、β,给出下列命题:其中错误的有( )A.0个 B.1个 C.2个 D.3个答案 D解析由面面平行与线面平行的定义知:①是正确的.对于②,n可能在平面β内.对于③,在正方体ABCD-A1B1C1D1中,如图,AA1平面ADD1A1,CC1平面CDD1C1,而AA1∥C1C,从而A1A与CC1可确定一个平面AA1C1C.即AA1,C1C可以共面.对于④,m可能在平面β内.故②③④错,选D.3.如图,在四面体ABCD中,若M,N,P分别为线段AB,BC,CD的中点,则直线BD 与平面MNP的位置关系为( )A.平行B.可能相交C.相交或BD平面MNP D.以上都不对答案 A解析因为N,P分别为BC,CD的中点.∴NP∥BD.又NP平面MNP,BD⊆/平面MNP,∴BD∥平面MNP.4.平面α与△ABC的两边AB,AC分别交于点D,E,且AD∶DB=AE∶EC,如图所示,则BC与α的位置关系是( )A .平行B .相交C .异面D .BC α 答案 A解析 在△ABC 中,AD DB =AEEC,∴DE ∥BC . ∵DE α,BC ⊆/ α,∴BC ∥平面α.5.直线l ∥平面α,直线m ∥平面α,直线l 与m 相交于点P ,且l 与m 确定的平面为β,则α与β的位置关系是( )A .相交B .平行C .异面D .不确定 答案 B解析 因为l ∩m =P ,所以过l 与m 确定一个平面β.又因l ∥α,m ∥α,l ∩m =P ,所以β∥α.6.一条直线l 上有相异三个点A 、B 、C 到平面α的距离相等,那么直线l 与平面α的位置关系是( )A .l ∥αB .l ⊥αC .l 与α相交但不垂直D .l ∥α或l α答案 D解析 l ∥α时,直线l 上任意点到α的距离都相等,l α时,直线l 上所有的点到α的距离都是0;l ⊥α时,直线l 上有两个点到α的距离相等;l 与α斜交时,也只能有两点到α的距离相等.7.已知不重合的直线a ,b 和平面α.给出下列命题: ①若a ∥α,b α,则a ∥b ; ②若a ∥α,b ∥α,则a ∥b ; ③若a ∥b ,b α,则a ∥α; ④若a ∥b ,a ∥α,则b ∥α或b α. 其中正确的是________(填序号). 答案 ④解析 ①若a ∥α,b α,则a ,b 平行或异面; ②若a ∥α,b ∥α,则a ,b 平行或相交或异面;③若a ∥b ,b α,则a ∥α或a α. ④正确.8.对于平面α与平面β,有下列条件:①α,β都平行于平面γ;②α内不共线的三点到β的距离相等;③l ,m 为两条平行直线,且l ∥α,m ∥β;④l ,m 是异面直线,且l ∥α,m ∥α,l ∥β,m ∥β.则可判定平面α与平面β平行的条件是________(填序号).答案 ①④解析 由面面平行的传递性可知①能得出α∥β.对于④,l ,m 是异面直线,则分别在α,β内作l ′∥l ,m ′∥m 及l ″∥l ,m ″∥m ,则l ′与m ′,l ″与m ″都分别相交,故α∥β.对于②③,平面α与平面β可能相交.9.在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案 平面ABC 、平面ABD解析 如图,连接AM 并延长交CD 于点E ,连接BN 并延长交CD 于点F .由重心的定义及性质可知,E ,F 重合为一点,设为E ,且该点为CD 的中点,由EM MA =EN NB =12,得MN ∥AB , 因此,MN ∥平面ABC 且MN ∥平面ABD .10.如图所示,在三棱锥S -ABC 中,D ,E ,F 分别是棱AC ,BC ,SC 的中点,求证:平面DEF ∥平面SAB .证明 因为D ,E 分别是棱AC ,BC 的中点,所以DE 是△ABC 的中位线,DE ∥AB . 因为DE ⊆/ 平面SAB ,AB 平面SAB ,所以DE ∥平面SAB , 同理可证:DF ∥平面SAB ,又因为DE ∩DF =D ,DE 平面DEF ,DF 平面DEF ,所以平面DEF∥平面SAB.平行关系的性质1.a∥α,b∥β,α∥β,则a与b位置关系是( )A.平行 B.异面C.相交 D.平行或异面或相交答案 D解析如图(1),(2),(3)所示,a与b的关系分别是平行、异面或相交.2.三棱锥S-ABC中,E、F分别是SB、SC上的点,且EF∥平面ABC,则( ) A.EF与BC相交 B.EF与BC平行C.EF与BC异面 D.以上均有可能答案 B解析由线面平行的性质定理可知EF∥BC.3.如图,四棱锥P-ABCD中,M,N分别为AC,PC上的点,且MN∥平面PAD,则( )A.MN∥PDB.MN∥PAC.MN∥ADD.以上均有可能答案 B解析∵MN∥平面PAD,MN平面PAC,平面PAD∩平面PAC=PA,∴MN∥PA.4.下列说法正确的个数是( )①两个平面平行,夹在两个平面间的平行线段相等;②两个平面平行,夹在两个平面间的相等线段平行;③如果一条直线和两个平行平面中的一个平行,那么它和另一个也平行;④平行于同一条直线的两个平面平行.A.1 B.2 C.3 D.4答案 A解析只有①正确.②中的两线段还可能相交或异面;③中的直线可能在另一个平面内;④中的两个平面可能相交.5.平面α截一个三棱锥,如果截面是梯形,那么平面α必定和这个三棱锥的( ) A.一个侧面平行 B.底面平行C.仅一条棱平行 D.某两条相对的棱都平行答案 C解析当平面α∥平面ABC时,如下图(1)所示,截面是三角形,不是梯形,所以A、B 不正确;当平面α∥SA时,如上图(2)所示,此时截面是四边形DEFG.又SA平面SAB,平面SAB∩α=DG,所以SA∥DG.同理,SA∥EF,所以EF∥DG.同理,当平面α∥BC时,GF∥DE,但是截面是梯形,则四边形DEFG中仅有一组对边平行,所以平面α仅与一条棱平行.所以D不正确,C正确.6.下列说法正确的是( )A.平行于同一条直线的两个平面平行B.平行于同一个平面的两个平面平行C.一个平面内有三个不共线的点到另一个平面的距离相等,则这两个平面平行D.若三直线a,b,c两两平行,则在过直线a的平面中,有且只有一个平面与b,c 均平行答案 B解析平行于同一条直线的两个平面可以平行也可以相交,所以A错;B显然正确;C 中没有指明这三个点在平面的同侧还是异侧,不正确;D不正确,因为过直线a的平面中,只要b ,c 不在其平面内,则与b ,c 均平行.7.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构成三个命题,写出你认为正确的一个命题:________.(用序号表示)答案 ①②⇒③(或①③⇒②) 解析 ①②⇒③设过m 的平面β与α交于l .∵m ∥α,∴m ∥l ,∵m ∥n ,∴n ∥l ,∵n ⊆/ α,l α,∴n ∥α.8.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.答案2解析 因为直线EF ∥平面AB 1C ,EF 平面ABCD ,且平面AB 1C ∩平面ABCD =AC ,所以EF ∥AC ,又因为E 是DA 的中点,所以F 是DC 的中点,由中位线定理可得:EF =12AC ,又因为在正方体ABCD -A 1B 1C 1D 1中,AB =2,所以AC =22,所以EF = 2.9.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱A 1B 1,B 1C 1的中点,P 是棱AD 上一点,AP =a3,过P ,M ,N 的平面与棱CD 交于Q ,则PQ =________.答案22a3解析 ∵MN ∥平面AC ,PQ =平面PMN ∩平面ABCD , ∴MN ∥PQ ,易知DP =DQ =2a3,故PQ =PD 2+DQ 2=2DP =22a 3.10.如图,在正方体ABCD -A 1B 1C 1D 1中,点N 在BD 上,点M 在B 1C 上,且CM =DN .求证:MN ∥平面AA 1B 1B .证明 如图,作MP ∥BB 1交BC 于点P ,连接NP ,∵MP ∥BB 1,∴CM MB 1=CP PB. ∵BD =B 1C ,DN =CM , ∴B 1M =BN ,∴CM MB 1=DN NB ,∴CP PB =DN NB, ∴NP ∥CD ∥AB .∵NP ⊆/ 平面AA 1B 1B ,AB 平面AA 1B 1B , ∴NP ∥平面AA 1B 1B .∵MP ∥BB 1,MP ⊆/ 平面AA 1B 1B ,BB 1平面AA 1B 1B , ∴MP ∥平面AA 1B 1B .又∵MP 平面MNP ,NP 平面MNP ,MP ∩NP =P , ∴平面MNP ∥平面AA 1B 1B .∵MN 平面MNP ,∴MN ∥平面AA 1B 1B .平面与平面垂直的判定1.下列说法中正确的是( )A .平面α和β分别过两条互相垂直的直线,则α⊥βB .若平面α内的一条直线垂直于平面β内的两条平行直线,则α⊥βC .若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥β。
高中北师大版数学必修2(45分钟课时作业与单元测试卷):第1章7.3 球的表面积和体积 Word版含解析

7.3 球的表面积和体积时间:45分钟 满分:80分班级________ 姓名________ 分数________一、选择题(每小题5分,共5×6=30分)1.已知一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π 答案:C解析:设该正方体的棱长为a ,内切球的半径为r ,则a 3=8,∴a =2,∴正方体的内切球直径为2,r =1,∴内切球的表面积S =4πr 2=4π.2.已知两个球的半径之比为,那么这两个球的表面积之比为( ) A ....答案:A解析:设两球的半径分别为r 1,r 2,表面积分别为S 1,S 2,∵r 1∶r 2=1∶3,∴S 1∶S 2=4πr 21∶4πr 22=r 21∶r 22=1∶9.故选A.3.已知正方体、球、底面直径与母线相等的圆柱,它们的表面积相等,则它们的体积的大小关系是( )A .V 正方体=V 圆柱=V 球B .V 正方体<V 圆柱<V 球C .V 正方体>V 圆柱>V 球D .V 圆柱>V 正方体>V 球 答案:B解析:设正方体的棱长、球的半径、圆柱底面圆的半径分别为a ,R ,r ,则S 正方体=6a 2,S 球=4πR 2,S 圆柱=6πr 2,由题意,知S 正方体=S 球=S 圆柱,所以a =πr ,R =32r ,所以V 正方体=a 3=ππr 3,V 球=43πR 3=6πr 3,V 圆柱=2πr 3,显然可知V 正方体<V 圆柱<V 球.4.已知一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在一个球面上,则该球的表面积为( )A.499πB.73πC.283πD.289π答案:C解析:由三视图,知该几何体是一个正三棱柱,其底面是边长为2的正三角形,侧棱长是2,三棱柱的两个底面中心连线的中点与三棱柱的顶点的连线就是其外接球的半径,设其外接球的半径为r ,则r =⎝⎛⎭⎫23×32+12=73,所以该球的表面积为4πr 2=283π. 5.设球内切于圆柱,则此圆柱的全面积与球的表面积之比为( ) A .1:1 B .2:1 C .3:2 D .4:3 答案:C解析:如图为球的轴截面,由题意,设球的半径为r ,则圆柱的底面圆半径为r ,圆柱的高为2r ,于是圆柱的全面积为S 1=2πr 2+2πr ·2r =6πr 2,球的表面积为S 2=4πr 2.∵S 1S 2=6πr 24πr 2=32. 6.球O 的截面把垂直于截面的直径分成两部分,若截面圆半径为3,则球O 的体积为( )A .16π B.16π3C.32π3 D .4 3π 答案:C解析:设直径被分成的两部分分别为r 、3r ,易知(3)2=r ·3r ,得r =1,则球O 的半径R =2,故V =43π·R 3=323π.二、填空题(每小题5分,共5×3=15分)7.已知球的某截面圆的面积为16π,球心到该截面的距离为3,则球的表面积为________.答案:100π解析:因为截面圆的面积为16π,所以截面圆的半径为4.又球心到截面的距离为3,所以球的半径为5,所以球的表面积为100π.8.把直径分别为6 cm,8 cm,10 cm 的三个铁球熔成一个大铁球,则这个大铁球的半径为________cm.答案:6解析:设大铁球的半径为R cm ,由43πR 3=43π×⎝⎛⎭⎫623+43π×⎝⎛⎭⎫823+43π×⎝⎛⎭⎫1023,得R 3=216,得R =6.9.长方体的共顶点的三个侧面面积分别为3、5、15,则它的外接球的表面积为__________.答案:9π解析:设长方体的有公共顶点的三条棱的长分别为x 、y 、z ,则由已知得⎩⎨⎧xy =3,yz =5,zx =15,解得⎩⎨⎧x =3,y =1,z =5所以球的半径R =12x 2+y 2+z 2=32.所以S 球=4πR 2=9π.三、解答题(共35分,11+12+12) 10.如图所示,扇形所含中心角为90°,弦AB 将扇形分成两部分,这两部分各以AO 为轴旋转一周,求这两部分旋转所得旋转体的体积V 1和V 2之比.解:△ABO 旋转成圆锥,扇形ABO 旋转成半球,设OB =R .V半球=23πR 3,V 锥=π3·R ·R 2=π3R 3, ∴(V 半球-V 锥V 锥= 11.某甜品店制作一种蛋筒冰淇淋,其上半部分呈半球形,下半部分呈圆锥形(如图).现把半径为10 cm 的圆形蛋皮等分成5个扇形,用一个扇形蛋皮围成圆锥的侧面(蛋皮厚度忽略不计),求该蛋筒冰淇淋的表面积和体积.解:设圆锥的底面半径为r ,高为h .∵2πr =25π·10,∴r =2.h =102-22=4 6.∴该蛋筒冰淇淋的表面积S =π·1025+2π·22=28π(cm 2).体积V =1 3π·22×4 6+23π·23=163(6+1)π(cm 3).12.如果一个几何体的主视图与左视图是全等的长方形,边长分别是4,2,如图所示,俯视图是一个边长为4的正方形.(1)求该几何体的表面积;(2)求该几何体的外接球的体积.解:(1)由题意可知,该几何体是长方体,其底面是边长为4的正方形,高为2, 因此该几何体的表面积是2×4×4+4×4×2=64.(2)由长方体与球的性质,可得长方体的体对角线是其外接球的直径,则外接球的半径r =1242+42+22=3,因此外接球的体积V =43πr 3=43×27π=36π,所以该几何体的外接球的体积是36π.给高中生的建议初中学生学数学,靠的是一个字:练!高中学生学数学靠的也是一个字:悟!学好数学的核心就是悟,悟就是理解,为了理解就要看做想。
2018年高一北师大版数学必修2(45分钟课时作业与单元测试卷):第2章单元测试五 圆与圆的方程 Word版

单元测试五 圆与圆的方程班级____ 姓名____ 考号____ 分数____本试卷满分100分,考试时间90分钟.一、选择题:本大题共10小题,每小题4分,共40分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.过点A (1,2),且与两坐标轴相切的圆的方程是( )A .(x -1)2+(y -1)2=1或(x -5)2+(y -5)2=25B .(x -1)2+(y -3)2=2C .(x -5)2+(y -5)2=25D .(x -1)2+(y -1)2=1答案:A解析:由图形易知满足此条件的圆有两个.2.两圆x 2+y 2=9和x 2+y 2-8x +6y +9=0的位置关系是( )A .相离B .相交C .内切D .外切答案:B解析:4-3<5<4+3.3.过圆x 2+y 2=25上一点P (-4,-3)的圆的切线方程为( )A .4x -3y -25=0B .4x +3y +25=0C .3x +4y -25=0D .3x -4y -25=0答案:B解析:k ==,则切线的斜率为-,且经过(-4,-3)这一点,直线方程为-3-0-4-034434x +3y +25=0.4.若圆x 2+y 2+2x -4y +1=0关于直线2ax -by +1=0对称,则a +b 等于( )A .1B .-1 C. D .-1212答案:C解析:∵圆心(-1,2),∴-2a -2b +1=0,∴a +b =.125.以A (-1,2),B (5,-6)为直径两端点的圆的标准方程是( )A .(x -2)2+(y +2)2=25B .(x +2)2+(y +2)2=25C .(x -2)2+(y -2)2=25D .(x +2)2+(y -2)2=25答案:A解析:A (-1,2),B (5,-6)两点连线的中点为圆心,其圆心坐标为(2,-2),可知选A.6.若直线ax +by -1=0与圆x 2+y 2=1相切,则点P (a ,b )的位置是( )A .在圆上B .在圆外C .在圆内D .以上皆有可能答案:A解析:∵直线与圆相切,∴=1,1a 2+b 2P (a ,b )到圆心的距离d ==1,a 2+b 2∴点P 在圆上.7.圆心为A (1,-2)且与直线x -3y +3=0相切的圆的方程为( )A .(x -1)2+(y +2)2=10B .(x -1)2+(y +2)2=10C .(x +1)2+(y -2)2=10D .(x +1)2+(y -2)2=10答案:B解析:圆半径r ==,故圆的标准方程为(x -1)2+(y +2)2=10.|1+6+3||1+9|108.直线x =2被圆(x -a )2+y 2=4所截得的弦长等于2 ,则a 的值等于( )3A .1或3 B.或- 22C. D .-1或33答案:A解析:由题意|a -2|2+()2=22,解得a =1或3.39.若直线-2ax -by +2=0(a >0,b >0)始终平分圆x 2+y 2-2x -4y +1=0的周长,则+的最小值是( )1a 1b A .4 B .2 C. D.1412答案:A解析:由题意可知,直线过圆心得a +b =1.∴+=+=2++≥2+2 =4.1a 1b a +b a a +b b b a a b ba ×ab 10.直线y =-x +b 与曲线y =有且只有两个公共点,则b 的取值范围是( )4-x 2A .2<b <2 B .2≤b <222C .2≤b ≤2D .2<b ≤222答案:B解析:由图可知,2≤b <2.2二、填空题:本大题共3小题,每小题4分,共12分.把答案填在题中横线上.11.以点C (-3,4)为圆心,2 为半径的圆的方程是________.3答案:(x +3)2+(y -4)2=12.12.点P 在圆x 2+y 2-8x -4y +11=0上,点Q 在圆x 2+y 2+4x +2y =4上,则|PQ |的最小值是________.答案:3 -65解析:P 在圆x 2+y 2-8x -4y +11=0上,即(x -4)2+(y -2)2=9,圆心O 1(4,2),半径为3.Q 在圆x 2+y 2+4x +2y =4上,即(x +2)2+(y +1)2=9,圆心O 2(-2,-1),半径为3,∴|O 1O 2|=[4-(-2)]2+[2-(-1)]2==3 .36+95∴|PQ |min =|O 1O 2|-R 1-R 2=3 -6.513.直线mx +ny =1与圆x 2+y 2=4的交点为整点(横纵坐标均为整数的点),这样的直线的条数是________条.答案:8解析:圆上的点为整点的有四个(±2,0),(0,±2),显然直线mx +ny =1不能过原点.若直线与圆有两个交点,则这样的直线有4条;若直线与圆相切,则这样的直线也有4条,故8条直线.三、解答题:本大题共5小题,共48分,其中第14小题8分,第15~18小题各10分.解答应写出文字说明、证明过程或演算步骤.14.求过点A (1,6)和B (5,6)且与直线2x -3y +16=0相切的圆的方程.解:显然圆心在线段AB 的垂直平分线x =3上设圆心为(3,b ),半径为r ,则(x -3)2+(y -b )2=r 2,得(1-3)2+(6-b )2=r 2,而r =,|6-3b +16|13∴b =3,r =,13∴(x -3)4+(y -3)4=13.15.已知圆C 1:x 2+y 2-10x -10y =0,圆C 2:x 2+y 2+6x -2y -40=0.(1)求圆C 1与圆C 2的公共弦所在的直线的方程;(2)求它们的公共弦长.解:(1)x 2+y 2-10x -10y =0,①;x 2+y 2+6x -2y -40=0,②;②-①得:2x +y -5=0为公共弦所在直线的方程;(2)弦长的一半为=,公共弦长为2.50-20303016.求以两圆C 1:x 2+y 2+2x -3=0,C 2:x 2+y 2-4x -5=0的交点为直径的圆的方程.解:设过C 1、C 2交点的圆的方程为:x 2+y 2+2x -3+λ(x 2+y 2-4x -5)=0,整理即得圆心为(-,0).1-2λ1+λ又∵两圆公共弦为3x +1=0,圆心在公共弦上,∴-3×+1=0,∴λ=.1-2λ1+λ27∴所求圆的方程为9x 2+9y 2+6x -31=0.即x 2+y 2+x -=0.2331917.已知曲线C :x =与直线y =k (x -1)+3只有一个交点,求实数k 的取值范4-y 2围.解:曲线C 的方程可化为x 2+y 2=4,x ≥0,∴曲线C 表示以(0,0)为圆心,2为半径的圆的右半部分,直线过定点M (1,3).如图所示.由图可得k AM =1,k BM =5,∴1≤k <5.又=2,化简得3k 2+6k -5=0,|-k +3|1+k 2解得k =-1±(舍去正根).2 63综上,实数k 的取值范围是1≤k <5或k =-1-.2 6318.已知圆C :x 2+y 2+2x -4y +3=0.(1)若圆C 的切线在x 轴、y 轴上的截距相等,求切线的方程;(2)从圆C 外一点P (x 1,y 1)向圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求使|PM |最小的点P 的坐标.解:(1)由方程x 2+y 2+2x -4y +3=0知,圆心为(-1,2),半径为.2当切线过原点时,设切线方程为y =kx ,则=.|k +2|k 2+12所以k =2±,即切线方程为y =(2±)x .66当切线不过原点时,设切线方程为x +y =a ,则=.所以a =-1或a =3,|-1+2-a |22即切线方程为x +y +1=0或x +y -3=0.所以切线方程为y =(2+)x 或y =(2-)x 或x +y +1=0或x +y -3=0.66(2)设P (x 1,y 1).∵|PO |2+r 2=|PC |2,∴x +y +2=(x 1+1)2+(y 1-2)2,2121即2x 1-4y 1+3=0.要使|PM |最小,只要|PO |最小即可.当直线PO 垂直于直线2x -4y +3=0时,即直线PO 的方程为2x +y =0时,|PM |最小,此时P 点即为两直线的交点,得P 点坐标(-,).31035。
高中北师大版数学必修2(45分钟课时作业与单元测试卷):第1章2 直观图 Word版含解析

2直观图时间:45分钟满分:80分班级________姓名________分数________一、选择题(每小题5分,共5×6=30分)1.水平放置的梯形的直观图是()A.梯形B.矩形C.三角形D.任意四边形答案:A解析:斜二测画法的规则中平行性保持不变,故选A.2.利用斜二测画法可以得到:①水平放置的三角形的直观图是三角形;②水平放置的平行四边形的直观图是平行四边形;③水平放置的正方形的直观图是正方形;④水平放置的菱形的直观图是菱形.以上结论正确的是()A.①②B.①C.③④D.①②③④答案:A解析:因为斜二测画法是一种特殊的平行投影画法,所以①②正确;对于③④,只有平行于x轴的线段长度不变,所以不正确.3.用斜二测画法得到的一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()答案:A解析:直观图中的多边形为正方形,对角线的长为2,所以原图形为平行四边形,位于y轴上的对角线的长为2 2.4.已知一条边在x轴上的正方形的直观图是一个平行四边形,此平行四边形中有一边长为4,则原正方形的面积是()A.16 B.64C.16或64 D.以上都不对答案:C解析:根据直观图的画法,平行于x轴的线段长度不变,平行于y轴的线段变为原来的一半,于是直观图中长为4的边如果平行于x ′轴,则正方形的边长为4,面积为16;长为4的边如果平行于y ′轴,则正方形的边长为8,面积是64.5.若用斜二测画法把一个高为10 cm 的圆柱的底面画在x ′O ′y ′平面上,则该圆柱的高应画成( )A .平行于z ′轴且长度为10 cmB .平行于z ′轴且长度为5 cmC .与z ′轴成45°且长度为10 cmD .与z ′轴成45°且长度为5 cm 答案:A解析:平行于z 轴的线段,在直观图中平行性和长度都不变,故选A.6.若一个水平放置的图形的直观图是一个底角为45°且腰和上底均为1的等腰梯形如图所示,则原平面图形的面积是( )A.2+22B.1+22C .2+ 2D .1+ 2 答案:C解析:由题意,知直观图中等腰梯形的下底为2+1,根据斜二测画法规则,可知原平面图形为直角梯形,上底为1,下底为2+1,高为2,所以其面积为2+ 2.二、填空题(每小题5分,共5×3=15分)7.一条边在x 轴上的正方形的面积是4,按斜二测画法所得的直观图是一个平行四边形,则这个平行四边形的面积是________.答案: 2解析:正方形的面积为4,则边长为2,由斜二测画法的规则,知平行四边形的底为2,高为22,故面积为 2.8.一个水平放置的平面图形的直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,则这个平面图形的面积为________.答案:4+22解析:由直观图,可知原图形为直角梯形,且上底为1,下底为22+1,高为2,故面积为12×⎝⎛⎭⎫1+22+1×2=2+22.9.给出下列各命题:(1)利用斜二测画法得到的三角形的直观图还是三角形;(2)利用斜二测画法得到的平行四边形的直观图还是平行四边形; (3)利用斜二测画法得到的正方形的直观图还是正方形; (4)利用斜二测画法得到的菱形的直观图还是菱形;(5)在画直观图时,由于选轴的不同所画的直观图可能不同; (6)水平放置的矩形的直观图可能是梯形. 其中正确的命题序号为____________.答案:(1)(2)(5)三、解答题(共35分,11+12+12)10.将图中所给水平放置的直观图绘出原形.解:11.用斜二测画法画出图中水平放置的△OAB 的直观图.解:(1)在已知图中,以O 为坐标原点,以OB 所在的直线及垂直于OB 的直线分别为x 轴与y 轴建立平面直角坐标系,过点A 作AM 垂直x 轴于点M ,如图1.另选一平面画直观图,任取一点O ′,画出相应的x ′轴、y ′轴,使∠x ′O ′y ′=45°.(2)在x ′轴上取点B ′,M ′,使O ′B ′=OB ,O ′M ′=OM ,过点M ′作M ′A ′∥y ′轴,取M ′A ′=12MA .连接O ′A ′,B ′A ′,如图2.(3)擦去辅助线,则△O ′A ′B ′为水平放置的△OAB 的直观图. 12.画正六棱柱的直观图. 解:画法如下:(1)画轴:画x ′轴、y ′轴、z ′轴,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°; (2)画底面:画正六边形的直观图ABCDEF (O ′为正六边形的中心);(3)画侧棱:过A ,B ,C ,D ,E ,F 各点分别作z ′轴的平行线,在这些平行线上分别截取AA ′,BB ′,CC ′,DD ′,EE ′,FF ′,使AA ′=BB ′=CC ′=DD ′=EE ′=FF ′;(4)连线成图:连接A ′B ′,B ′C ′,C ′D ′,D ′E ′,E ′F ′,F ′A ′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到正六棱柱ABCDEF -A ′B ′C ′D ′E ′F ′,如图所示.给高中生的建议初中学生学数学,靠的是一个字:练!高中学生学数学靠的也是一个字:悟!学好数学的核心就是悟,悟就是理解,为了理解就要看做想。
高中北师大版数学必修2(45分钟课时作业与单元测试卷):第2章2.1 圆的标准方程 Word版含解析

2.1圆的标准方程时间:45分钟满分:80分班级________姓名________分数________一、选择题(每小题5分,共5×6=30分)1.以(2,-1)为圆心,4为半径的圆的标准方程为()A.(x+2)2+(y-1)2=4B.(x+2)2+(y-1)2=16C.(x-2)2+(y+1)2=16D.(x-2)2+(y+1)2=4答案:C解析:由圆心为(a,b),半径为r的圆的标准方程为(x-a)2+(y-b)2=r2,易知答案为C.2.圆C:(x-2)2+(y+3)2=4的面积等于()A.π B.2πC.4π D.8π答案:C解析:由圆C的方程为(x-2)2+(y+3)2=4,知半径r=4=2,则圆的面积S=πr2=4π.故选C.3.若直线x+y-3=0始终平分圆(x-a)2+(y-b)2=2的周长,则a+b=()A.3 B.2C.5 D.1答案:A解析:由题可知,圆心(a,b)在直线x+y-3=0上,∴a+b-3=0,即a+b=3.4.已知点P(a,a+1)在圆x2+y2=25的内部,那么实数a的取值范围是()A.(-4,3) B.(-5,4)C.(-5,5) D.(-6,4)答案:A解析:由a2+(a+1)2<25,可得2a2+2a-24<0,解得-4<a<3.5.圆心为(2,-3),一条直径的两端点分别在x轴、y轴上,则此圆的方程是() A.(x-2)2+(y+3)2=13B.(x+2)2+(y-3)2=13C.(x-2)2+(y+3)2=52D.(x+2)2+(y-3)2=52答案:A解析:利用平面几何知识得r=(2-0)2+(-3-0)2=13.6.在圆(x-2)2+(y+3)2=2上与点(0,-5)距离最大的点的坐标是()A.(5,1) B.(4,1)C.(2+2,2-3) D.(3,-2)答案:D解析:点(0,-5)与圆心(2,-3)所在的直线方程为y=x-5,解方程组⎩⎪⎨⎪⎧ y =x -5(x -2)2+(y +3)2=2得⎩⎪⎨⎪⎧ x =3y =-2或⎩⎪⎨⎪⎧x =1y =-4,经检验点(3,-2)符合题意. 二、填空题(每小题5分,共5×3=15分)7.与圆(x -2)2+(y +3)2=16同圆心且过点P (-1,1)的圆的方程为________.答案:(x -2)2+(y +3)2=25解析:因为已知圆的圆心为(2,-3),所以所求圆的圆心为(2,-3).又r =(2+1)2+(-3-1)2=5,所以所求圆的方程为(x -2)2+(y +3)2=25.8.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于第______象限.答案:四解析:(-a ,-b )为圆的圆心,由直线经过一、二、四象限,得到a <0,b >0,即-a >0,-b <0,故圆心位于第四象限.9.已知圆O 的方程为(x -3)2+(y -4)2=25,则点M (2,3)到圆上的点的距离的最大值为________.答案:5+ 2解析:由题意,知点M 在圆O 内,MO 的延长线与圆O 的交点到点M (2,3)的距离最大,最大距离为(2-3)2+(3-4)2+5=5+ 2.三、解答题(共35分,11+12+12)10.求圆心在x 轴上,且过A (1,4),B (2,-3)两点的圆的方程.解:设圆心为(a,0), 则(a -1)2+16=(a -2)2+9,所以a =-2.半径r =(a -1)2+16=5,故所求圆的方程为(x +2)2+y 2=25.11.已知圆过点A (1,-2),B (-1,4).(1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小,即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径. 则所求圆的方程为x 2+(y -1)2=10.(2)解法一:直线AB 的斜率k =4-(-2)-1-1=-3, 则线段AB 的垂直平分线的方程是y -1=13x ,即x -3y +3=0. 由⎩⎪⎨⎪⎧ x -3y +3=02x -y -4=0,解得⎩⎪⎨⎪⎧x =3y =2, 即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20.∴所求圆的方程是(x -3)2+(y -2)2=20.解法二:设圆的方程为(x -a )2+(y -b )2=R 2. 则⎩⎪⎨⎪⎧ (1-a )2+(-2-b )2=R 2(-1-a )2+(4-b )2=R22a -b -4=0⇒⎩⎪⎨⎪⎧ a =3b =2R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.12.已知点A (-2,-2),B (-2,6),C (4,-2),点P 在圆x 2+y 2=4上运动,求|P A |2+|PB |2+|PC |2的最值.解:设P 点坐标(x ,y ),则x 2+y 2=4.|P A |2+|PB |2+|PC |2=(x +2)2+(y +2)2+(x +2)2+(y -6)2+(x -4)2+(y +2)2=3(x 2+y 2)-4y +68=80-4y .∵-2≤y ≤2,∴72≤|P A |2+|PB |2+|PC |2≤88.即|P A |2+|PB |2+|PC |2的最大值为88,最小值为72.给高中生的建议初中学生学数学,靠的是一个字:练!高中学生学数学靠的也是一个字:悟!学好数学的核心就是悟,悟就是理解,为了理解就要看做想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试二点、线、面之间的位置关系
班级____姓名____考号____分数____
本试卷满分100分,考试时间90分钟.
一、选择题:本大题共10小题,每小题4分,共40分.在下列各题的四个选项中,只有一个选项是符合题目要求的.
1.若点M在直线a上,a在平面α内,则M、a、α间的关系可记为()
A.M∈a,a∈αB.M∈a,a⊂α
C.M⊂a,a⊂αD.M⊂a,a∈α
答案:B
2.下列说法正确的是()
A.经过空间三点有且只有一个平面
B.经过圆心和圆上两点有且只有一个平面
C.若三条直线两两相交,则这三条直线共面
D.经过两条平行直线有且只有一个平面
答案:D
3.a、b是异面直线,则()
A.存在α⊥a,α⊥b
B.一定存在a⊂α且b⊥α
C.一定存在a⊂α且α∥b
D.一定存在α∥a且α⊥b
答案:C
解析:A与线面垂直性质定理矛盾;B当a与b不垂直时不成立;D不一定成立.
4.若平面α外有一条直线l与α内的两条平行线都垂直,则()
A.l⊥αB.l∥α
C.l与α斜交D.以上都有可能
答案:D
解析:因为平面外的直线与α内的两条平行线垂直,所以不能确定l与α的具体位置关系,它们可能垂直,也可能斜交或平行.
5.下列说法不正确的是()
A.同一平面内没有公共点的两条直线平行
B.已知a,b,c,d是四条直线,若a∥b,b∥c,c∥d,则a∥d
C.在正方体ABCD-A1B1C1D1中,E是BC的中点,F是CC1的中点,则直线AE,D1F异面
D.梯形一定是平面图形
答案:C
6.直线l不垂直于α,则α内与l垂直的直线有()
A.0条B.1条
C.无数条D.α内所有直线
答案:C
解析:不管l与平面α关系如何,过l一定可找到一平面β,在β内可做一直线l′⊥l,然后将l′平行平移到α内,再在α内作l′的平行线,由空间两直线垂直的定义可知,在α内有无数条直线与l垂直.故选C.
7.对于直线m、n和平面α、β,能得出α⊥β的一个条件是()
A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂α
C.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β
答案:C
解析:两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.
8.如右图所示,A ∈α,B ∈l ,C ∈l ,D ∈β,AB ⊥BC ,BC ⊥CD ,AB =BC =1,CD =2,P 是棱l 上的一个动点,则AP +PD 的最小值为( )
A . 5
B .2 2
C .3
D .10 答案:D
解析:把α、β展开成一个平面,如图,作AE ∥BC ,延长DC 交AE 于E ,则AE =BC =1,EC =1,∴在Rt △AED 中有AD =32+12=10.
9.已知三平面α、β、γ互相平行,两条直线l ,m 分别与平面α,β,γ相交于点A ,B ,
C 和
D ,
E ,
F ,若AB =10,DE DF =1
2
,则AC 等于( )
A .5
B .10
C .15
D .20 答案:D
解析:连接AF 交β于G ,连接AD ,BG ,GE ,CF ,在△ACF 中,由β∥γ得BG ∥CF ,∴AB AC =AG AF ,在△AFD 中,由α∥β得AD ∥GE ,∴AG AF =DE DF ,∴AB AC =DE DF =1
2,又AB =10,∴AC =20.
10.在下列四个正方体中(如图所示),能得出AB ⊥CD 的是( )
答案:A
解析:由线面垂直可判定异面直线是否垂直.
二、填空题:本大题共3小题,每小题4分,共12分.把答案填在题中横线上. 11.在棱长都相等的三棱锥P -ABC 中,相互垂直的棱的对数为__________. 答案:3
12.已知∠ABC =120°,∠ABC 与∠A 1B 1C 1的两边分别平行,则∠A 1B 1C 1=________. 答案:60°或120°
13.已知三条相交于一点的线段PA 、PB 、PC 两两垂直,且A 、B 、C 在同一平面内,P 在平面ABC 外,PH ⊥平面ABC 于H ,则垂足H 是△ABC 的________.(填内心、外心、垂心、重心中的一个)
答案:垂心
解析:如图所示,
∵PA ⊥PB ,PA ⊥PC ,
∴PA ⊥平面PBC ,BC ⊂平面PBC , ∴BC ⊥PA.又∵BC ⊥PH
∴BC ⊥平面PAH ,AH ⊂平面PAH ∴AH ⊥BC ,同理BH ⊥AC ,CH ⊥AB. ∴H 是△ABC 的垂心.
三、解答题:本大题共5小题,共48分,其中第14小题8分,第15~18小题各10分.解答应写出文字说明、证明过程或演算步骤.
14.如图所示,已知三角形ABC 中∠ACB =90°,SA ⊥面ABC ,AD ⊥SC ,求证:AD ⊥面SBC.
证明:∵∠ACB =90°,∴BC ⊥AC. 又SA ⊥面ABC ,∴SA ⊥BC. ∴BC ⊥面SAC , ∴BC ⊥AD.
又SC ⊥AD ,SC ∩BC =C , ∴AD ⊥面SBC.
15.在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN.求证:MN ∥平面BB 1C 1C.
证明:如图所示
作NE ∥AB 交BC 于E ,作MF ∥AB 交B 1B 于F ,连结EF ,则NE ∥MF.
∵NE ∥AB ,∴NE AB =CN
CA
又MF ∥AB ∥A 1B 1, ∴MF A 1B 1=BM BA 1
∵CA =BA 1,AN =A 1M , ∴CN =BM. ∴NE AB =MF A 1B 1
. 又AB =A 1B 1,∴NE =MF.
∴四边形MNEF 是平行四边形,∴MN 綊EF. 又MN ⊄平面B 1BCC 1,EF ⊂平面B 1BCC 1, ∴MN ∥平面B 1BCC 1. 16.
如图所示,AD ⊥平面ABC ,CE ⊥平面ABC ,AC =AD =AB =1,BC =2,CE =2,G 、F 分别为BE 、BC 的中点.求证:
(1)AB ⊥平面ACED ; (2)平面BDE ⊥平面BCE.
解:(1)∵AD ⊥平面ABC ,AD ⊂平面ACED ,∴平面ABC ⊥平面ACED , ∵BC 2=AC 2+AB 2,∴AB ⊥AC ,
∵平面ABC ∩平面ACED =AC ,AB ⊂平面ABC ,∴AB ⊥平面ACED. (2)∵AB =AC ,F 为BC 的中点,∴AF ⊥BC.
∵CE ⊥平面ABC ,∴CE ⊥AF ,又∵BC ∩CE =C ,∴AF ⊥平面BCE ,
又GF 是△BCE 的中位线,∴GF 綊1
2
CE.
∵AD ⊥平面ABC ,CE ⊥平面ABC ,AD =1,CE =2,∴AD 綊1
2
CE ,
∴AD 綊GF ,∴四边形GFAD 为平行四边形,∴AF ∥GD , ∴GD ⊥平面BCE ,又GD ⊂平面BDE ,∴平面BDE ⊥平面BCE. 17.
如图,在三棱柱ABC -A 1B 1C 1中,每个侧面均为正方形,D 为底边AB 的中点,E 为侧棱CC 1的中点.
(1)求证:CD ∥平面A 1EB ; (2)求证:AB 1⊥平面A 1EB.
解:(1)设AB 1和A 1B 的交点为O ,连结EO 、OD ,
∵O 为AB 1的中点,D 为AB 的中点,∴OD ∥BB 1,且OD =1
2
BB 1.
又E 是CC 1中点,
∴EC ∥BB 1,且EC =1
2
BB 1,∴EC ∥OD 且EC =OD.
∴四边形ECDO 为平行四边形,∴EO ∥CD.
又CD ⊄平面A 1BE ,EO ⊂平面A 1BE ,则CD ∥平面A 1BE. (2)∵三棱柱各侧面都是正方形,∴BB 1⊥AB ,BB 1⊥BC. ∴BB 1⊥平面ABC.
∵CD ⊂平面ABC ,∴BB 1⊥CD.
由已知得AB =BC =AC ,∴CD ⊥AB ,∴CD ⊥平面A 1ABB 1. 由(1)可知EO ∥CD ,∴EO ⊥平面A 1ABB 1,∴EO ⊥AB 1. ∵侧面是正方形,所以AB 1⊥A 1B.
又EO ∩A 1B =O ,EO ⊂平面A 1EB ,A 1B ⊂平面A 1EB , ∴AB 1⊥平面A 1BE.
18.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图2、图3分别是该标识墩的正(主)视图和俯视图.
(1)请画出该安全标识墩的侧(左)视图;
(2)证明:直线BD⊥平面PEG.
解:(1)该安全标识墩左视图,如图所示.
(2)证明:由题设知四边形ABCD和四边形EFGH均为正方形,
∴FH⊥EG,
又ABCD-EFGH为长方体,
∴BD∥FH,
设点O是EFGH的对称中心,
∵P-EFGH是正四棱锥,
∴PO⊥平面EFGH,而FH⊂平面EFGH,
∴PO⊥FH.
∵FH⊥PO,FH⊥EG,PO∩EG=O,
PO⊂平面PEG,EG⊂平面PEG,
∴FH⊥平面PEG.
而BD∥FH,故BD⊥平面PEG.。