整式的加减

合集下载

整式的加减

整式的加减
决定把平时节省下来的零花钱捐给希望工程,已知甲 同学捐资x元,乙同学捐资比甲同学捐资的3倍少8元, 丙同学捐资数是甲和乙同学捐资数的总和的3/4,求甲、 乙、丙三位同学的捐资总数。
解:根据题意,知 甲同学捐资x元,乙同学捐资(3x-8)元 那么,丙同学捐资3/4[x+(3x-8)]元 则甲、乙、丙的捐资总数为: x+(3x-8)+3/4[x+(3x-8)] =x+3x-8+3/4(4x-8) =x+3x-8+3x-6 =7x-14 答:甲、乙、丙的捐资总数为(7x-14)元。
1.整式加减的意义
就是求几个整式的和或者差的代数运算。要注意 的是整式的加减包括单项式的加减、多项式的加 减、单项式与多项式之间的加减。 例1.求单项式2x2y3、-4x2y3与-3x2y3的和。 解:2x2y3+(-4x2y3)+(-3x2y3) = 2x2y3+(-4x2y3)+(-3x2y3) =(-3x2-2x2)+(x+6x+6x)+(-3-4) =-5x2+13x-7
思考:若代数式(2x2+ax-5y+b)-(2bx2-3x+5y-1)的 值与字母x的取值无关, 求代数式3(a2-ab-b2)-(4a2+ab+b2)的值。
1.计算: 3x2-2x+1-(3+x+3x2)
(3a2+2a+1)-(2a2+3a-5)
2.在多项式ax5+bx3+cx-5中,当x=-3时,它的 值为7;当x=3时, Nhomakorabea的值是多少?
这是一个利用整式加减计算的应用问题,首先要根 据题意列出各量的代数式,然后求和进行加减运算。

《整式》整式的加减

《整式》整式的加减

合并同类项
在处理函数表达式时,需要合并同 类项,以简化表达式。
化简二次根式
对于包含二次根式的函数表达式, 需要利用化简二次根式的方法,将 表达式转化为更简单的形式。
03
整式加减的注意事项
确定符号
确定符号
01
在进行整式加减时,首先要确定每个项的符号,以便正确进行
运算。
括号内的项要一起加减
02
在处理括号时,需要将括号内的每一项都按照运算顺序进行加
减。
先化简,再加减
03
为了使运算更加简便,可以先对每个项进行化简,例如合并同
类项、提取公因式等,然后再进行加减运算。
符号运算规则
同号相加
同号是指相同的符号,如两个正 数或两个负数相加。同号相加时
,只需要将系数相加即可。
异号相加
异号是指不同的符号,如一个正 数和一个负数相加。异号相加时 ,需要先取绝对值较大的数的符 号作为结果的符号,然后将绝对
掌握有理数的加减法规则
有理数的加减法包括同号有理数相加、异号有理数相加、有理数的减法等,相加时需要将 绝对值相加,符号相同的数相加结果仍为同号有理数,异号有理数相加时需要取绝对值较 大的有理数的符号。
运用有理数的加减法解决实际问题
有理数的加减法可以用于解决一些实际问题,例如计算数值、解方程等。
THANK YOU
抽象思维
整式的加减涉及到抽象的数学概念,教师需要培养学生的抽象思维 能力,让学生能够将具体问题抽象成数学模型。
批判性思维
教师需要引导学生对解题方法和答案进行批判性思考,鼓励学生提 出疑问和不同的观点,培养学生的批判性思维能力。
06
整式加减的进一步学习建议
学习因式分解

整式的加减运算

整式的加减运算

整式的加减运算整式是指由常数、变量及它们的积和积的幂次和(其中幂次是非负整数)构成的式子。

整式的加减运算是指将两个整式进行相加或相减的操作。

在进行整式的加减运算时,需注意一些规则和步骤。

一、加法运算整式的加法运算是将两个整式的各项按照同类项进行相加,并将得到的同类项合并。

下面通过几个具体的例子来介绍整式的加法运算。

例一:将多项式3x^2+2x+5和4x^2-3x+1相加。

解:首先将同类项相加,即将x^2的系数相加,x的系数相加,常数项相加。

3x^2 + 2x + 5+ 4x^2 - 3x + 1_______________7x^2 - x + 6因此,3x^2+2x+5和4x^2-3x+1相加的结果为7x^2-x+6。

例二:将多项式2x^3+4x^2-3x+7和-3x^3-2x^2+5x-2相加。

解:按照同类项相加的原则进行计算。

2x^3 + 4x^2 - 3x + 7+ (-3x^3) + (-2x^2) + 5x + (-2)_____________________________-x^3 + 2x^2 + 2x + 5因此,2x^3+4x^2-3x+7和-3x^3-2x^2+5x-2相加的结果为-x^3+2x^2+2x+5。

二、减法运算整式的减法运算是将两个整式的各项按照同类项进行相减,并将得到的同类项合并。

下面通过几个具体的例子来介绍整式的减法运算。

例一:将多项式6x^2+2x-3和2x^2-5x-2相减。

解:将减数的每一项加上相反数再按照同类项相加。

6x^2 + 2x - 3- (2x^2 - 5x - 2)________________4x^2 + 7x - 1因此,6x^2+2x-3和2x^2-5x-2相减的结果为4x^2+7x-1。

例二:将多项式5x^3-4x^2+3x-1和-2x^3+5x^2+4x-2相减。

解:按照同类项相减的原则进行计算。

5x^3 - 4x^2 + 3x - 1- (-2x^3 + 5x^2 + 4x - 2)________________________7x^3 - 9x^2 - x + 1因此,5x^3-4x^2+3x-1和-2x^3+5x^2+4x-2相减的结果为7x^3-9x^2-x+1。

整式的加减法运算

整式的加减法运算

整式的加减法运算整式是指由数字、字母和加减乘除符号组成的表达式,其中字母表示数,整式的加减法运算主要是对整式中的相同项进行合并和整理。

下面将分为两个部分,分别介绍整式的加法运算和减法运算。

一、整式的加法运算整式的加法运算是指将两个或多个整式相加得到一个简化的整式。

在加法运算中,我们首先需要对整式中的相同项进行合并。

相同项是指具有相同字母和相同幂次的项。

具体的步骤如下:1. 将所有的整式按照相同的字母和幂次进行分类,将相同的项放在一起。

2. 对于每一组相同项,将系数相加得到合并后的系数,并保留相同的字母和幂次。

3. 将合并后的每一组项按照字母和幂次的顺序排列。

4. 最后将合并后的项按照加号连接起来并进行简化。

举例说明:假设有两个整式:3a^2b-2ab^2和2ab^2+5a^2b-4ab。

我们按照上述步骤进行计算。

首先,按照相同的字母和幂次进行分类:3a^2b、5a^2b:系数3和5相加得到8;字母和幂次不变,为a^2b。

-2ab^2、2ab^2:系数-2和2相加得到0;字母和幂次不变,为ab^2。

-4ab:和其他项没有相同的字母和幂次,无需合并。

然后,将合并后的每一组项按照字母和幂次的顺序排列:8a^2b、0ab^2、-4ab。

最后,将合并后的项按照加号连接起来并进行简化:8a^2b+0ab^2-4ab。

因为0ab^2的系数为0,所以可以省略该项,简化后的结果为:8a^2b-4ab。

二、整式的减法运算整式的减法运算是指将一个整式减去另一个整式得到一个简化的整式。

在减法运算中,我们可以通过将减数取相反数,再进行整式的加法运算,从而将减法运算转化为加法运算。

具体的步骤如下:1. 将减数的每一项取相反数,得到相反数式。

2. 将相反数式与被减数进行整式的加法运算。

3. 对加法运算得到的整式进行简化。

举例说明:假设有两个整式:4x^2-3xy和2x^2+xy+3ab。

我们按照上述步骤进行计算。

首先,将减数的每一项取相反数:相反数式为:-2x^2-xy-3ab。

整式的加减

整式的加减

整式的加减概念总汇1、整式加减的有关概念(1)同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

几个常数项也是同类项。

如: 6x 2y 2和-4x 2y 2就是同类项,-3和5也是同类项;但b a 24与23ab 就不是同类项,因为相同字母的指数不相同。

(2)合并同类项:把多项式中的同类项合并成一项,即把同类项的系数相加,字母和字母的指数不变。

如:6x 2y 2+(-4x 2y 2)=2x 2y 2说明:①只有同类项才可合并,不是同类项的不能合并;②合并同类项,只合并系数,字母与字母的指数不变;③合并同类项后若其系数是带分数,要把它化成假分数;④多项式中,如果两同类项的系数互为相反数,合并后这两项互相抵消,结果为0。

(3)去括号法则:括号前面是正号,把括号和括号前的正号去掉后,括号里的各项不改变符号;括号前是负号,把括号和括号前的负号去掉,括号里的各项都要改变符号。

如:A +(5A +3B )—(A —2B )=A +5A +3B -A +2B =5A +5B 。

说明:去括号法则相当于乘法分配律的应用,如:A +(5A +3B )—(A —2B )=A +1×(5A +3B )+(-1)×(A -2B )=A +5A +3B +(-1)A +(-1)×(-2B )=A +5A +3B -A +2B =5A +5B 。

如果括号前面有数字因数,就按乘法分配律去括号。

如: 21(3a 2-2ab +4b 2)-2(43a 2-ab -3b 2) =23a 2-ab +2b 2-23a 2+2ab +6b 2=ab +8b 2 (4)添括号法则:给括号前添正号,括在括号里的各项都不改变符号;给括号前添负号,括到括号里的各项都要改变符号。

说明:去括号与添括号是互逆的过程,它们的依据是乘法分配律的顺逆运用。

可把+(a -b )看作(+1)(a -b ),把-(a -b )看作(-1)(a -b )则有+(a -b )=a -b , -(a -b )= -a +b ,这样乘法分配律的一个应用便是去括号;添括号可理解为乘法分配律的逆用。

整式的加减

整式的加减

整式的加减整式加减的三种形式:直接的整式加减问题,间接的整式加减问题,正式的化简求值问题。

1、直接的整式加减问题:这类问题是最简单的整式加减问题,可以按照去括号法则去掉括号,然后再合并同类项。

当算式中没有同类项时,这个算式就是运算的最后结果。

例:计算2x 2y-5x 2y+32x 2y+5xy 2练一练:计算:(21+2x-x 2)-2(3x 2+7x-2)2、间接的整式加减问题:这类问题可根据题意列出代数式。

即用加减符号将各个多项式连接成整式加减的算式,每一个多项式都要用括号括起来,然后去括号、合并同类项。

例:求多项式-8ab 2+3a 2b 与-2ab 2+5a 2b 的差。

练一练:若多项式(2ax 2-x 2+3x+2)-(5x 2-4x 2+3x )的值与x 无关,求啊的值。

3、整式的化简求值问题:求多项式的时候,一般思路是先化简,再把字母的取值代入到化简后的算式中求值。

例:当a=31时,求5a 2-5a+4-3a 2+6a-5的值。

练一练:化简并求值,5a 2b-{2a 2b-【3ab 2-(4ab 2-12a 2b)】}其中a=2、b=-1同步练习1一、填空题:1.单项式2xy,6x 2y 2,-3xy,-4x 2y 2的和为__________.2.单项式-3x 2依次减去单项式-4x 2y ,-5x 2,2x 2y 的差为_________.3.283m n x y +与2342m n x y+-是同类项,则m+n=_________. 4.计算(3a 2+2a+1)-(2a 2+3a-5)的结果是_________.5.个位上数字是a,十位上数字是b,百位上的数字是c 的三位数与把该三位数的个位数字、百位数字对调位置后所得的三位数的差为________.6.已知A=3x 2y-4y 3,B=-x 2y 2+2y 3,则2A-3B=___________.7.(3)23ππ--- =_________。

整式的加减

整式的加减
整式加减的注意事项
确定符号
在进行整式加减前,应先把每个整式简化到最简形式,以避免干扰计算。
化简
在整式加减中,需要把同类项合并在一起,以便于计算。
合并同类项
没有化简
有些学生在计算时没有化简就进行计算,导致计算结果复杂。
忽略符号
在计算时很容易忽略符号,造成计算结果错误。
没有合并同类项
有些学生没有把同类项合并在一起,导致计算复杂。
整式加减在生物学中有着广泛的应用。例如,在研究生物分子的结构与功能、基因的表达与调控、细胞信号转导等生物学问题时,需要用到整式加减来建立生物模型并进行计算。通过对这些整式的加减运算,可以得出实验数据、预测生物学现象的规律和性质。
化学
生物学
整式加减在其他学科中的应用
05
整式加减的注意事项和易错点
在整式加减中,需要先确定每个整式的符号,以防计算时出现错误。
总结词
这类题目需要先运用多项式的乘法、除法等法则进行化简,再合并同类项,要注意符号的变化。
详细描述
先移项,再合并同类项
总结词
这类题目需要先移项,再合并同类项,要注意移项时符号的变化以及如何运用乘法分配律进行合并同类项。
详细描述
详细描述
这类题目需要运用整式的加减法运算法则与方程的知识进行综合解题,要注意方程的解法和如何运用乘法分配律进行合并同类项。
整式加减中的合并同类项规则
03
整式加减的例题解析
简单的整式加减例题
直接合并同类项
总结词
详细描述
总结词
详细描述
这类题目主要考察对于整式加减法运算法则的掌握,解题时直接合并同类项即可。
去括号,再合并同类项
这类题目需要先去括号,再合并同类项,要注意去括号时各项符号的变化。

整式的加减运算

整式的加减运算

整式的加减运算整式是由数字与字母的乘积及其相加、相减而得到的式子。

整式的加减运算是指将两个或多个整式进行相加或相减的过程。

本文将详细介绍整式的加减运算及其相关性质。

一、整式的加法运算整式的加法运算是指将两个或多个整式相加的过程。

在进行整式的加法运算时,我们需要注意以下几点:1. 同类项相加:整式中具有相同字母的指数和变量的系数相加。

例如:3a + 2a = 5a。

2. 合并同类项:将整式中的同类项合并到一起,即将具有相同字母的指数和变量的系数相加,而不改变其他项的位置。

例如:2a + 3b + 4a = 6a + 3b。

3. 不同字母的项直接相加:不同字母的项不能合并,直接写在一起即可。

例如:2a + 3b + 4c。

二、整式的减法运算整式的减法运算是指将一个整式减去另一个整式的过程。

在进行整式的减法运算时,我们需要注意以下几点:1. 减去一个整式,等价于加上这个整式的相反数。

例如:5a - 3a 等价于 5a + (-3a)。

2. 合并同类项:减法运算也需要按照加法运算的规则合并同类项。

例如:5a - 3a = 2a。

3. 注意符号:减法运算中,当减数为正时,减法可视为加上相反数;当减数为负时,则减法可视为加上一个正数。

例如:5a - (-3a) 可视为5a + (3a)。

三、整式的加减混合运算整式的加减混合运算是指在一个式子中同时存在加法运算和减法运算的过程。

在进行整式的加减混合运算时,我们需要按照以下规则进行操作:1. 先进行括号内的运算:如果整式中存在括号,首先进行括号内的加减运算。

2. 合并同类项:将整式中同类项合并到一起。

3. 按照运算顺序进行计算:按照从左到右的顺序依次进行加法和减法运算。

四、整式的加减运算的性质整式的加减运算具有以下性质:1. 交换律:a + b = b + a,a和b为整式。

即整式的加法运算满足交换律。

2. 结合律:(a + b) + c = a + (b + c),a、b、c为整式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的加减
1、 多项式274a ab -b 2-8ab 2+5a 2b 2-9ab+ab 2-3中,________与-8ab 2是同类项,5a 2b 2与_______是同类项,是同类项的还有_____________________________.
2、 3a-4b-5的相反数是_______________.
3、代数式-3+(x-a)2的最小值为_______,这时x=_______.
4、k=______时,-12341+k y x 与933
2y x 的和是单项式. 5、在括号内填上适当的项:(a+b-c)(a-b+c)=[][](_______)(________)-+a a .
6、多项式32327453.0xy y x y x ---的次数是____,常数项为_____,四次项为_______.
7、多项式365922-+-y x xy xy 的二次项是___________.
8、三个连续偶数中间一个是2n ,第一个是______,第三个是_______,这三个数的平方和是_____________(只列式子,不计算)
9、.单项式-4πxy 2的系数是_______,次数是__________.
10、一个多项式加上-5+3x-x 2得到x 2-6,这个多项式是___________,当x=-1时,这个多项式的值是________.
11、如果a-b=
12
,那么-3(b-a )的值是( ). A .-35 B .23 C .32 D .16 12、若a <0, 则2a+5a 等于( )
A.7a
B.-7a
C.-3a
D.3a
13、下列代数式a+bc, 5a, mx 2+nx+p, -x., 1, 5xyz, n
m ,其中整式有( )个 A.7 B.6 C.5 D.4
14、一个正方形的边长减少10%,则它的面积减少( )
A.19%
B.20%
C.1%
D.10%
15、先化简,再求值:(4x 2-3x) +(2+4x-x 2 ) - (2x 2+x+1), 其中x= -2 .
16、 已知x 2+y 2=7,xy= -2. 求5x 2-3xy-4y 2-11xy-7x 2+2y 2的值.
17、已知A=2x 2+3xy-2x-1, B= -x 2+xy-1, 且3A+6B 的值与x 无关,求y 的值.
18、 若0)23(22=++-b b a ,求:
63)(31)(41)(21b a b a b a b a b a -+++--++-值.
19、规定一种新运算:a *b= ab+a-b, 求 2*3+(3-2)*3.
20、 如果关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,求m 、n 的值.
21、如果0.65x 2y 2a-1 与–0.25x b-1y 3是同类项,求a,b 的值.
22、 a >0>b >c ,且c b a +〉 化简c b b a c b a c a ++--++++
23、先化简,再求值.b a a b ba ab b a 2222254325.0315.0-++-
,其中a=-5,b=-3.
24、 计算:
6
3)(41)(21y x y x y x y x --++++- O . a . b . c .。

相关文档
最新文档