高考通关卷(学生)

合集下载

考点巩固卷12 等差、等比数列(七大考点)(学生版) 2025年高考数学一轮复习考点通关卷(新高考

考点巩固卷12  等差、等比数列(七大考点)(学生版) 2025年高考数学一轮复习考点通关卷(新高考

考点巩固卷12 等差等比数列(七大考点)考点01:单一变量的秒解当数列的选择填空题中只有一个条件时,可将数列看成常数列,即每一项均设为x ,(注意:如果题目中出现公差不为0或公比不为1,则慎用此法)1.已知等差数列{}n a 的前n 项和为123456,6,12n S a a a a a a ++=++=,则12S =( )A .18B .36C .54D .602.已知等差数列{}n a 满足12318a a a ++=,则2a =( )A .5B .6C .7D .83.若{}n a 是正项无穷的等差数列,且396a a +=,则{}n a 的公差d 的取值范围是( )A .[)12,B .305æöç÷èø,C .35¥æö+ç÷èø,D .305éö÷êëø,4.等差数列{}n a 前n 项和为7,4n S a =,则13S =( )A .44B .48C .52D .565.已知等差数列{}n a 满足25815a a a ++=,记{}n a 的前n 项和为n S ,则9S =( )A .18B .24C .27D .456.在等差数列{}n a 中,若354a a +=,则其前7项和为( )A .7B .9C .14D .187.已知等差数列{}n a 的前n 项和为n S ,若91S =,则37a a +=( )A .2-B .73C .1D .298.在等比数列{}n a 中,25,a a 是方程2780x x --=的两个根,则16a a =( )A .7B .8C .8-或8D .8-9.已知等差数列{}n a 的前n 项和为S n ,若5414a a a +=+,则15S =( )A .4B .60C .68D .13610.设等差数列{}n a 的前n 项和为n S ,已知2410268a a a ++=,则9S =( )A .272B .270C .157D .153考点02:秒解等差数列的前n 项和等差数列中,有()⇒-=-n n a n S 1212奇偶有适用.()()()()nn n n an n a n a a 12212221212112-=-=-+=--⇒将12-n 换为n 11.在等差数列{}n a 中,公差3d =,n S 为其前n 项和,若89S S =,则17S =( )A .2-B .0C .2D .412.已知n S 是等差数列{}n a 的前n 项和,且7287026S a a =+=,,则{}n a 的公差d =( )A .1B .2C .3D .4.13.已知等差数列{}n a 的公差为d ,前n 项和为n S ,若12413,22a a S +==,则d =( )A .7B .3C .1D .1-14.等差数列 {}n a 中,n S 是其前 n 项和,53253S S -=,则公差 d 的值为( )A .12B .1C .2D .315.记n S 为等差数列{}n a 的前n 项和,已知510S S =,51a =,则1a =( )A .72B .73C .13-D .711-16.已知等差数列{}n a 的前15项之和为60,则313a a +=( )A .4B .6C .8D .1017.已知等差数列{}n a 的前n 项和为n S ,23a =,221n n a a =+,若1100n n S a ++=,则n =( )A .8B .9C .10D .1118.n S 是等差数列{}n a 的前n 项和,若1236a a a ++=,7916+=a a ,则9S =( )A .43B .44C .45D .4619.已知n S 是等差数列{}n a 的前n 项和,若23a =,525S =,则442S a a =-( )A .1B .2C .3D .420.已知n S 为等差数列{}n a 的前n 项和,已知848,16S S =-=,则56223839a a a a a ++++=( )A .215B .185C .155D .135考点03:数列片段和问题k k k k k S S S S S 232,,--这样的形式称之为“片段和”①当}{n a 是等差数列时:k k k k k S S S S S 232,,--也为等差数列,且公差为d k 2.②当}{n a 是等比数列时:k k k k k S S S S S 232,,--也为等比数列,且公比为kq .21.已知等差数列{}n a 的前n 项和为n S ,36S =,()*3164,n S n n -=³ÎN ,20n S =,则n 的值为( )A .16B .12C .10D .822.已知等差数列{}n a 的前n 项和为n S ,若330S =,651S =,则9S =( )A .54B .63C .72D .13523.已知等差数列{}n a 的前n 项和为n S ,且365,15S S ==,则9S =( )A .35B .30C .20D .1524.记n S 为等差数列{}n a 的前n 项和,若4127,45S S ==.则8S =( )A .28B .26C .24D .2225.已知等差数列{}n a 的前n 项和为n S ,若42S =,812S =,则20S =( )A .30B .58C .60D .9026.在等差数列{}n a 中,若363,24S S ==,则12S =( )A .100B .120C .57D .1827.等差数列{}n a 的前n 项和为n S .若10111012101310148a a a a +++=,则2024S =( )A .8096B .4048C .4046D .202428.若正项等比数列{}n a 的前n 项和为n S ,且8426S S -=,则9101112a a a a +++的最小值为( )A .22B .24C .26D .2829.设n S 是等比数列{}n a 的前n 项和,若23S =,346a a +=,则108S S =( )A .157B .3115C .2D .633130.在正项等比数列{}n a 中,n S 为其前n 项和,若301010303,80S S S S =+=,则20S 的值为( )A .10B .20C .30D .40考点04:秒杀和比与项比结论1:若两个等差数列}{n a 与}{n b 的前n 项和分别为n n T S ,,若DCn B An T S n n ++=,则()()Dn C B n A T S b a n n n n +-+-==--12121212结论2:若两个等差数列}{n a 与}{n b 的前n 项和分别为n n T S ,,若DCn B An T S n n ++=,则()()Dm C B n A b a m n +-+-=121231.已知等差数列{}n a 与{}n b 的前n 项和分别为,n n S T ,且231n n S n T n +=+,则19119a ab b ++的值为( )A .1311B .2110C .1322D .212032.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且335n n S n T n +=+,则526a b b =+( )A .1417B .417C .313D .1533.已知数列{}{}n n a b ,均为等差数列,其前n 项和分别为n n S T ,,满足(23)(31)n n n S n T +=-,则789610a a ab b ++=+( )A .2B .3C .5D .634.设数列{}n a 和{}n b 都为等差数列,记它们的前n 项和分别为n S 和n T ,满足21n n n a b n =+,则55S T =( )A .12B .37C .59D .3535.已知等差数列{}n a 和{}n b 的前n 项和分别为,n n S T ,若342n n S n T n +=+,则58211a a b b +=+( )A .1713B .3713C .207D .37736.等差数列{}{},n n a b 的前n 项和分别是,n n S T ,若542n n S n T n +=+,则44a b = .37.设等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若对任意正整数n 都有2343n n S n T n -=-,则839457a ab b b b +=++ .38.已知n S ,n T 分别是等差数列{}n a ,{}n b 的前n 项和,且2131n n S n T n +=-,那么44a b = .39.两个等差数列{}n a 和{}n b 的前n 项和分别为n S 、n T,且523n n S n T n +=+,则220715a a b b ++等于40.已知等差数列{}n a , {}n b 的前n 项和分别为n S ,n T ,且214n nS n T n +=,则537a b b =+ .考点05:等差数列奇偶规律结论()*ÎNn n 2则1,+==-n n a aS S nd S S 偶奇奇偶n 2,则它的奇数项分别为135721,,,......n a a a a a -则它的偶数项分别为24682,,,......na a a a a 则奇数项之和()1212=22n nnn a a n a S na -+×==奇则偶数项之和()22+1+12=22n n n n a a n a S na +×==偶代入公式得1-S =n( )n n S a a nd +-=奇偶,11=S n n n n S na ana a ++=奇偶()*Î+Nn n 12则()()111,11,+++=+=+==-n n n na S a n S nn S S a S S 偶奇偶奇偶奇∵12-n 项,则它的奇数项为127531,,,+n a a a a a 则它的偶数项分别为na a a a 2642,, 则奇数项之和()()()1121112+++=+×+=n n an n a a S 奇则偶数项之和()1222+=×+=n n nan a a S 偶代入公式得()1111+++=-+=-n n n a na a n S S 偶奇()nn na a n S S n n 1111+=+=++偶奇说明:偶奇,S S 分别表示所有奇数项与所有偶数项的和41.已知等差数列{}n a 的项数为()21Ν,m m *+Î其中奇数项之和为140, 偶数项之和为 120,则m =( )A .6B .7C .12D .1342.一个等差数列共100项,其和为80,奇数项和为30,则该数列的公差为( )A .14B .2C .13D .2543.已知等差数列{}n a 的前30项中奇数项的和为A ,偶数项的和为B ,且45B A -=,2615A B =+,则n a =( )A .32n -B .31n -C .31n +D .32n +44.已知数列{}n a 的前n 项和为n S ,且11a =,22a =,13++=n n a a n ,则( )A .45a =B .20300S =C .31720S =D .n 为奇数时,2314+=n n S 45.已知等差数列{}n a 共有21n -项,奇数项之和为60,偶数项之和为54,则n =.46.已知数列{}n a 满足11a =,12,3,n n na n a a n ++ì=í+î为奇数为偶数,则{}n a 的前40项和为.47.已知等差数列{}n a 的项数为21m +()*m ÎN ,其中奇数项之和为140,偶数项之和为120,则数列{}n a 的项数是 .48.数列{}n a 满足:2212212121,2,2n n n na a a a a a ++-==-==,数列{}n a 的前n 项和记为n S ,则23S = .49.在等差数列{}n a 中,已知公差12d =,且1359960+++×××+=a a a a ,求12399100a a a a a +++×××++的值.50.已知{}n a 是等差数列,其中222a =,610a =.(1)求{}n a 的通项公式;(2)求24620a a a a ++++ 的值.考点06: 等差数列前n 项和最值规律方法一:函数法⇒利用等差数列前n 项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解.bn an S n +=2模型演练()n d a n d S d n n na S n n ×÷øöçèæ-+=⇒×-+=222112121122222÷÷÷÷øöççççèæ--÷÷÷÷øöççççèæ-+=⇒d d a d d d a n d S n 2121212212÷øöçèæ--⎥⎦⎤êëé÷øöçèæ--=⇒d a d d a n d S n 由二次函数的最大值、最小值可知,当n 取最接近da 121-的正整数时,n S 取到最大值(或最小值)注意:最接近da 121-的正整数有时1个,有时2个51.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则n S 取最大值时,n =( ).A .9B .10C .9或10D .10或1152.已知等差数列{}n a 的前n 项和为n S ,若50a <,380a a +>,则当n S 取得最小值时,n =( )A .4B .5C .6D .753.设数列{}n a 的前n 项和为11,1,321n nn S S S S n n+-=-=+,则下列说法正确的是( )A .{}n a 是等比数列B .36396,,S S S S S --成等差数列,公差为9-C .当且仅当17n =时,n S 取得最大值D .0n S ³时,n 的最大值为3354.数列{}n a 的前n 项和211n S n n =-,则( )A .110a =B .32a a >C .数列{}n S 有最小项D .n S n ìüíýîþ是等差数列55.已知等差数列{}n a 的首项为1a ,公差为d ,前n 项和为n S ,若1089S S S <<,则下列说法正确的是( )A .1a d>B .使得0n S >成立的最大正整数18n =C .891011a a a a +<+D .n n S a ìüíýîþ中最小项为1100S a 56.等差数列 {}n a 的前 n 项和为 1214,0,0n S a a a >+=,则( )A .80a =B .1n na a +<C .79S S <D .当 0n S < 时, n 的最小值为 1657.已知无穷数列{}n a 满足:110a =-,12n n a a +=+()*N n Î.则数列{}n a 的前n 项和最小值时n 的值为 .58.设等差数列{}n a 的公差为d ,其前n 项和为n S ,且满足991,27a S =-=.(1)求d 的值;(2)当n 为何值时n S 最大,并求出此最大值.59.已知数列{}n a 是公差不为零的等差数列,111a =-,且256,,a a a 成等比数列.(1)求{}n a 的通项公式;(2)设n S 为{}n a 的前n 项和,求n S 的最小值.60.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.考点07:等比数列奇偶规律结论()*ÎNn n 2则qS S =奇偶n 2,则它的奇数项分别为135721,,,......n a a a a a -则它的偶数项分别为24682,,,......na a a a aq a a q a a q a a ×=×=×=342312,,∵()q a a a a a a a a a a q a a a a a a a a a a n n n n n n n n =++++++++=++++++++∴-------123253112325311232531222642()*Î+Nn n 12则q S a S =-偶奇112+n ,则它的奇数项分别为13572+1,,,......n a a a a a 则它的偶数项分别为24682,,,......na a a a a q a a q a a q a a ×=×=×=453423,,∵q S a S q a a a a a a a a a a a a a a a a a a a n n n n n n n n =-⇒=+++++++=++++++++∴-+--+-偶奇12226421212532226421212531 说明:偶奇,S S 分别表示所有奇数项与所有偶数项的和61.已知等比数列{}n a 有21n +项,11a =,所有奇数项的和为85,所有偶数项的和为42,则n =( )A .2B .3C .4D .562.已知等比数列{}n a 的前n 项和为n S ,其中10a >,则“31a a >”是“n S 无最大值”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件63.已知一个等比数列的项数是是偶数,其奇数项之和1011,偶数项之和为2022,则这个数列的公比为( ).A .8B .2-C .4D .264.已知等比数列{}n a 的公比为13-,其前n 项和为n S ,且1a ,243a +,3a 成等差数列,若对任意的*n ÎN ,均有2nnA SB S £-£恒成立,则B A -的最小值为( )A .2B .76C .103D .5365.已知一个项数为偶数的等比数列{}n a ,所有项之和为所有偶数项之和的4倍,前3项之积为64,则1a =( )A .1B .4C .12D .3666.已知数列}{n a 的前n 项和121n n S -=+,则数列}{n a 的前10项中所有奇数项之和与所有偶数项之和的比为( )A .12B .2C .172341D .34117267.等比数列{}n a 的首项为2,项数为奇数,其奇数项之和为8532,偶数项之和为2116,则这个等比数列的公比q = .68.等比数列的性质已知{}n a 为等比数列,公比为q ,n S 为其前n 项和.(1)若()0,0,1n n S Aq B A q q =+¹¹¹,则A B += ;(2)当0n S ¹时,n S , ,32,n n S S - 为等比数列;(3)若等比数列{}n a 共2k 项,记S 奇为诸奇数项和,S 偶为诸偶数项和,则S S =奇偶 ;69.已知首项均为32的等差数列{}n a 与等比数列{}n b 满足32a b =-,43a b =,且{}n a 的各项均不相等,设n S 为数列{}n b 的前n 项和,则n S 的最大值与最小值之差为 .70.(1)在等比数列{}n a 中,已知248,60n n S S ==,求3n S ;(2)一个等比数列的首项是1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数.。

专题突破卷02 函数零点分布问题 (学生版) 2025年高考数学一轮复习考点通关卷(新高考通用)

专题突破卷02 函数零点分布问题 (学生版) 2025年高考数学一轮复习考点通关卷(新高考通用)

专题突破卷02 函数零点分布问题题型一 根据函数零点的个数求参数范围问题1.若当[]0,2πx Î时,函数sin 2x y =与π2sin (0)4y x w w æö=->ç÷èø的图象有且仅有4个交点,则w 的取值范围是( )A .91388éö÷êëø,B .913,88æùçúèûC .1317,88éö÷êëøD .1317,88æöç÷èø2.已知函数2ln ,0()2,0xx f x x x x x ì>ï=íï+£î;若方程()f x a =恰有三个根,则实数a 的取值范围是( )A .1(0,)e B .1[0,e C .1(1,)e -D .1(0,{1}e-U 3.已知函数()()21,01ln 1,0x ax x f x a x x x ì-+£ï=í-++>ïî,图象与x 轴至少有一个公共点,则实数a 的取值范围为( )A .[)2,-+¥B .()1,0-C .(][),20,-¥-+¥U D .(){}1,2-+¥È-4.()2ln x f x x=,()()()21g x f x mf x éù=--ëû,若()g x 在其定义域上有且仅有两个零点,则m 的取值范围是( )A .21,e æö++¥ç÷èøB .2e e 2,e 22e æö--ç÷èøC .2e ,e 2æö-¥-ç÷èøD .ee 1,122æö-+ç÷èø5.已知函数()432,0,ln ,0,x x x x f x x x x ì+-<=í>î若关于x 的方程()0f x m x -=有两个不同的实根,则实数m 的取值范围是( )A .(],0-¥B .[]0,1C .(){},01¥-ÈD .(]{},01-¥U 6.已知函数()223sin 1,sin 0sin 1,sin 0x x f x x x ì-³=í-<î且()0,2πx Î,若方程()1f x a =+与方程()1f x a =-共有6个不同的实数根,则实数a 的取值范围为( )A .12,63æöç÷èøB .12,33æöç÷èøC .()0,1D .1,16æöç÷èø7.定义在R 上的偶函数()f x 满足()()11f x f x +=-,且当[]0,1x Î时,()1e xf x =-,若关于x 的方程()()()10f x m x m =+<恰有5个实数解,则实数m 的取值范围为( )A .()0,e 1-B .1e 1e ,56--æöç÷èøC .e 1e 1,86--æöç÷èøD .1e 1e ,46--æöç÷èø8.已知函数()2()3e xf x x =-,若方程()f x a =有三个实数解,则实数a 的取值范围为( )A .360,e æöç÷èøB .(2e,0)-C .362e,e æö-ç÷èøD .32,6e e æö-ç÷èø9.已知函数()ln f x a x x =-有两个零点,则( )A .0a £B .0ea <<C .ea ³D .ea >10.若不等式ln 0a x x -³有且仅有三个整数解,则实数a 的取值范围是( )A .25,ln 2ln5éö÷êëøB .25,ln 2ln5æùçúèûC .35,ln 3ln5éö÷êëøD .35,ln 3ln 5æùçúèû11.设()321f x x ax bx =++-.函数()y f x =在1x =处取得极大值3,则以下说法中正确的数量为( )个.①320a b +=;②对任意的1m <,曲线()y f x =在点()(),m f m 处的切线一定与曲线()y f x =有两个公共点;③若关于x 的方程()f x k =有三个不同的根123,,x x x ,且这三个根构成等差数列,则1k =.A .0B .1C .2D .312.设函数()()2e1ln 2ax f x a x x -=+---有2个零点,则实数a 的取值范围是( )A .(),e ¥-B .10,e æöç÷èøC .1,e e æöç÷èøD .()0,e 13.若函数()()22e e 4e e 2x x x xf x b --=+-++(b 是常数)有且只有一个零点,则b 的值为( )A .2B .3C .4D .514.若函数121,02()πsin(π6xx x f x x x w ìæö--£ïç÷ïèø=íï-<<ïî有4个零点,则正数w 的取值范围是( )A .1319,66éö÷êëøB .1319,66æùçúèûC .1925,66éö÷êëøD .1925,66æùçúèû15.若函数()2341f x ax x =-+-在区间()1,1-内恰有一个零点,则实数a 的取值范围为( )A .5,13æö-ç÷èøB .54,33éù-êúëûC .54,133éùìü-íýêúëûîþU D .24,133éùìü-íýêúëûîþU 题型二 根据一次函数零点的分布求参数范围问题16.若函数f (x )=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是( )A .1,5æö+¥ç÷èøB .11,5æö-ç÷èøC .(-∞,-1)D .(-∞,-1)∪1,5æö+¥ç÷èø17.若方程2222|1|0x ax a x -+++-=在区间()0,3内有两个不等实根,则实数a 的取值范围为( )A .192,5æöç÷èøB.19(,3)15æö-¥-ç÷èøUC .19(,115æö-¥+ç÷èøU D .1915æöç÷èø18.当||1x £时,函数21y ax a =++的值有正也有负,则实数a 的取值范围是( )A .1,3éö-+¥÷êëøB .(,1]-¥-C .11,3æö--ç÷èøD .11,3æù--çúèû19.已知函数()312f x ax a =--在区间(1,1)-上存在零点,则( )A .115a <<B .15a >C .15a <-或1a >D .15a <-20.已知函数f (x )=3ax -1-2a 在区间(-1,1)上存在零点,则( )A .1a <或15a >B .15a >C .15a <-或1a >D .15a <-21.若函数1y ax =+在(0,1)内恰有一解,则实数a 的取值范围是( )A .1a >-B .1a <-C .1a >D .1a <22.已知函数()312f x ax a =--在区间()1,1-上存在零点,则实数a 的取值范围是A .1(,1),5æö-¥-È+¥ç÷èøB .1,5æö+¥ç÷èøC .1,(1,)5æö-¥-È+¥ç÷èøD .1,5æö-¥-ç÷èø23.已知直线:3l y x =与函数3,1,(), 1.x x x f x ax a x ì-£=í->î的图像交于三点,其横坐标分别是1x ,2x ,3x .若1230x x x ++<恒成立,则实数a 的取值范围是A .3a >B .04a <£C .36a <£D .6a >24.已知函数2|log ,0(),21,0x x f x x x ìï=í+-£ïî若函数()1y f x m =-+有四个零点,零点从小到大依次为,,,,a b c d 则a b cd ++的值为( )A .2B .2-C .3-D .325.已知函数2()21f x mx x =--在区间(2,2)-恰有一个零点,则m 的取值范围是( )A .31,88éù-êúëûB .31,88æö-ç÷èøC .31,88éö-÷êëøD .13,88æù-çúèû26.已知()213,(0)(1)f x ax a f f =-+<且在()1,2内存在零点,则实数a 的取值范围是( )A .(11,53)B . 11(,64C .11(,75D .11(,)8627.已知函数()()221,03,(0)ax x x f x ax x ì++£=í->î有3个零点,则实数a 的取值范围是( )A .1a <B .01a <<C .1a ³D .0a >28.“4a <-”是“函数()3f x ax =+在区间[]1,1-上存在零点”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件29.设函数2()3f x x ax a =-++,()2g x ax a =-,若0R x $Î,使得0()0f x <和0()0g x <同时成立,则a 的取值范围为A .(7,)+¥B .(6,)(,2)+¥È-¥-C .(,2)-¥-D .(7,)(,2)+¥È-¥-30.“函数在区间上存在零点”是“”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件题型三 根据二次函数零点的分布求参数范围问题31.若函数()()2ln 0b cf x a x ac x x =++¹有且仅有极大值,则( )A .0a >B .0ab >C .280b ac +>D .0c <32.二次函数2,(,y ax bx c a b c =++是常数,且0)a ¹的自变量x 与函数值y 的部分对应值如下表:x…-1012…y…m 22n…且当32x =时,对应的函数值0y <.下列说法正确的有( )A .0abc >B .1009mn >C .关于x 的方程20ax bx c ++=一定有一正、一负两个实数根,且负实数根在12-和0之间D .()112,P t y +和()222,P t y -在该二次函数的图象上,则当实数12t <时,12y y >33.已知函数()()ln 1f x a x ax a =-+ÎR ,()()2312g x f x x =+-,则下列说法正确的是( )A .当1a =时,()0f x £在定义域上恒成立B .若经过原点的直线与函数()f x 的图像相切于点()()3,3f ,则1ln31a =-C .若函数()g x 在区间3,42éùêúëû单调递减时,则a 的取值范围为[)16,¥+D .若函数()g x 有两个极值点为()1212,x x x x ¹,则a 的取值范围为(),12¥-34.已知1x ,2x 是关于x 的方程2220()x ax a -+=ÎR 的两个不相等的实数根,则下列说法正确的有( )A .若12112+=x x ,则2a =B .若121x x <<,则32a >C .若π02a b <<<,且1tan x a =,2tan x b =,则a b +为锐角D .若1x ,2x 均小于2,则(3,2a öÎ-¥÷øU 35.已知函数()23,021,0x x x x f x x -ì-£=í->î,若关于x 的方程()()()221630f x a f x a +-×-=有4个不同的实根,则实数a 可能的取值有( )A .112-B .38-C .14-D .18-36.已知函数()222,0log ,0x x x f x x x ì--£ï=í>ïî,且()()234230f x af x a -++=有5个零点,则a 的可能取值有( )A .1B .32-C .3-D .5-37.已知函数()()2222,41log 1,14x x f x x x +ì--££-ï=í+-<£ïî,若函数()()21f x mf x --恰有5个零点,则m的值可以是( )A .0B .1C .32D .238.已知函数()()()()2221,0,22log ,0x x f x g x f x mf x x x ì+£ï==-+í>ïî,下列说法正确的是( )A .若()y f x a =-有两个零点,则2a >B .()y f x =只有一个零点1x =C .若()y f x a =-有两个零点()1212,x x x x ¹,则121=x x D .若()g x 有四个零点,则32m >.39.已知函数()e xxf x =,且关于x 的方程()()20f x mf x m ++=éùëû有3个不等实数根,则下列说法正确的是( )A .当0x >时,()0f x >B .()f x 在()1,+¥上单调递减C .m 的取值范围是1,02æö-ç÷èøD .m 的取值范围是21,0e e æö-ç÷+èø40.设函数()2e ,0313,022x x f x x x x ì£ï=í-++>ïî,函数()()()222g x f x bf x b =-+-,则下列说法正确的是( )A .当1b =时,函数()g x 有3个零点B .当4140b =时,函数()g x 有5个零点C .若函数()g x 有2个零点,则2b <-或625b <<D .若函数()g x 有6个零点,则112b <<41.已知函数()224,021,0x x x x f x x -ì+<=í-³î,若关于x 的方程()()244230f x a f x a -×++=有5个不同的实根,则实数a 的取值可以为( )A .32-B .43-C .54-D .76-42.已知函数()()21,0,0x ax x f x f x x ì++³ï=í--<ïî,有4个零点()12341234,,,x x x x x x x x <<<,则( )A .实数a 的取值范围是(),2¥--B .函数()f x 的图象关于原点对称C .12342x x x x =D .1234357x x x x +++的取值范围是()8,¥+43.已知函数()21243,0log ,0x x x f x x x ì---£ï=í>ïî,若方程()()2[]10f x mf x ++=恰有6个不相等的实数根,则实数m 的值可能是( )A .53B .73C .103D .11344.在下列命题中,正确的是( )A .已知命题p :“0x "³,都有tan x x ³,则命题p 的否定:“0x $<,都有tan x x <”B .若函数()f x 满足()()2sin f x f x x +-=,则π162f æö=ç÷èøC .“方程210x ax -+=有两个不相等的正实数根”的充要条件是“2a >”D .若函数()1e 1x af x =-+是定义在区间[]2,a b -上的奇函数,则2b =45.已知函数()f x 的定义域为D ,且[,]a b D Í,若函数()f x 在[],x a b Î的值域为[],ka kb ,则称[],a b 为()f x 的“k 倍美好区间”.特别地,当1k =时,称[],a b 为()f x 的“完美区间”,则()A .函数21()2f x x x =-+存在“3倍美好区间”B .函数1()3f x x=-+不存在“完美区间”C.若函数()f x m =-“完美区间”,则1,04m æùÎ-çúèûD .若函数||1()||m x f x x -=存在“完美区间”,则(2,)m Î+¥题型四 根据指对幂函数零点的分布求参数范围问题46.已知函数()f x 的定义域为R ,且()10f ¹,若()()()f x y f x f y xy +-=-,则( )A .()01f =B .()23log 32f f æö>ç÷èøC .方程()21xf x =-有唯一的实数解D .函数()y xf x =有最小值47.已知函数()()ln ,12,1x a x x f x f x x +³ì=í-<î存在n 个零点12,,,,N n x x x n *×××Î,则( )A .n 为偶数B .e 1a -££-C .122n x x x +++=L D .1224n x x x ×××<L 48.已知实数,,x y z满足:22log xz ==,则下列不等式中可能成立的是( )A .y x z <<B .x y z <<C .y z x<<D .x z y<<49.已知函数()()()22124,1log 1,1x x f x x x +ì£-ï=í+>-ïî,若函数()y f x m =-有三个零点1x 、2x 、3x ,且123x x x <<,则( )A .14m <£B .3151162x -<£-C .函数()1f x +的增区间为[]2,1--D.2212log x x ++8+50.已知函数()14,0lg 1,0x x f x xx x ì++<ï=íï+>î,若方程()f x a =有4个不同实根()12341234,,,x x x x x x x x <<<,则( )A .2a >B .411110x x ->C .341100x x =D .221211214x x <+<51.已知1x ,2x 为函数()()32024log 3xf x x -=--的两个零点,则下列结论中正确的有( )A .()()12440x x --<B .()()120331x x <--<C .()()12331x x -->D .若12x x <,则1213320242024x x --<52.已知函数221,0()log ,0x kx x f x x x ì-+£=í>î,下列关于函数[()]1y f f x =+的零点个数的说法中,正确的是( )A .当1k >,有1个零点B .当1k >时,有3个零点C .当0k <时,有9个零点D .当4k =-时,有7个零点53.记函数1,0()lg ,0x x f x x x ì+£=í>î,若123()()()f x f x f x ==(1x ,2x ,3x 互不相等),则123x x x ++的值可以是( )A .2-B .6C .8D .954.已知函数()1231,0,log ,0,x x f x x x +ì-£ï=í>ïî1x ,2x ,3x ,4x 是函数()()g x f x m =-的4个零点,且1234x x x x <<<,则( )A .m 的取值范围是(]0,2B .122333x x+=C .344x x +的最小值是4D .1234332x x x x ++55.已知函数()121x f x -=-,若关于x 的方程()()f f x m =有6个不相等的实根,则实数m的值可能为( )A .14B .13C .12D56.已知函数()()()1101xf x x x x =--×>,()()()1lg 1g x x x x x =--×>的零点分别为12,x x ,则( )A .1210x x ×<B .12lg x x =C .12111x x +=D .124x x +>57.已知函数()222,0log ,0x x x f x x x ì--£ï=í>ïî,若1234x x x x <<<,且()()()()1234f x f x f x f x k ====,则下列结论正确的是( )A .121x x +=-B .341x x =C .412x <<D .01k <<58.已知函数()21,144,1x x f x x x x ì-<ï=í+-³ïî,若存在实数m 使得方程()f x m =有四个互不相等的实数根()12343124,,,x x x x x x x x >>>,则下列叙述中正确的有( )A .140x x +<B .124x x ×=C .()3f m<D .()32f x x +有最小值59.已知函数()2ln ,041,0x x f x x x x ì>=í--+£î,若关于x 的方程()()22210f x af x a -+-=有()k k ÎN 个不等的实根1x 、2x 、L 、k x 且12k x x x <<<L ,则下列判断正确的是( )A .当0a =时,5k =B .当2k =时,a 的范围为(),1-¥-C .当8k =时,14673x x x x ++=-D .当7k =时,a 的范围为()1,260.已知函数()()()lg2lg512xf x =+-,实数a 、()b a b <是函数()y f x m =-的两个零点,则下列结论正确的有( )A .1m >B .01m <<C .222a b +=D.0a b +<1.函数()ln 1f x x =-的零点是( )A .eB .1eC .10D .1102.已知函数()()()()221,log 111x x xf x xg x x x x x =->=->--的零点分别为,a b ,则11a b +的值是( )A .1B .2C .3D .43.已知正数a b c ,,满足e ln e ln 1a c a b b c ===,则a b c ,,的大小关系为( )A .c<a<bB .c b a<<C .a b c<<D .a c b<<4.已知a 是方程e 40x x +-=的实根,则下列各数为正数的是( )A .22a a -B .e 2a -C .ln aD .23a a -5.下列命题为真命题的是( )A .若22ac bc >,则a b>B .函数()1f x +的定义域为[]0,1,则()3xf 的定义域为[]3,9C .若幂函数()f x 的图像过点13,27A æöç÷èø,则()3f x x-=D .函数()3ln f x x x=-的零点所在区间可以是()1,26.关于函数()π2sin 213f x x æö=-+ç÷èø,下列结论正确的是( )A .π,06æöç÷èø是()f x 的一个对称中心B .函数()f x 在π0,6æöç÷èø上单调递增C .函数()f x 图像可由函数()2cos21g x x =+的图像向右平移5π12个单位得到D .若方程()20f x m -=在区间π12π,2éùêúëû上有两个不相等的实根,则2,6m éùÎëû7.对于函数()3e x xf x =,下列说法正确的是( )A .()f x 有最小值但没有最大值B .对于任意的(),0x Î-¥,恒有()0f x <C .()f x 仅有一个零点D .()f x 有两个极值点8.已知函数224,0()log ,0x x x f x x x ì--£ï=í>ïî,若1234x x x x <<<,且()()()()1234f x f x f x f x ===,则下列结论正确的是( ) A .124x x +=-B .341x x ×=C .414x <<D .123402x x x x <£9.(多选)已知函数()()22,02ln 11,0x x t x f x x x ì-+£ï=í+->ïî,若函数(())y f f x =恰好有4个不同的零点,则实数t 的取值可以是( )A .-3B .-2C .0D .210.已知函数3()34,[0,2]f x x x x =-+Î,则下列选项中正确的是( )A .()f x 的值域为[]2,6B .()f x 在1x =处取得极小值为2C .()f x 在[]0,2上是增函数D .若方程()f x a =有2个不同的根,则[2,4]a Î11.已知函数()1e ,01ln ,04x x x f x x x +ì-£ï=í->ïî,下列选项中正确的是( )A .()f x 在(),1-¥-上单调递增,在()1,0-上单调递减B .()f x 有极大值C .()f x 无最小值D .若函数()()()()2[]24h x f x af x a =-+ÎR 恰有6个零点,则实数a 的取值范围是5,2æö+¥ç÷èø12.方程()230x m x m +-+=有两个实根,则实数m 的取值范围是.13.若函数()cos2sin f x x m x =-在π,π6æöç÷èø上有2个零点,则m 的取值范围是.14.若关于x 的方程sin cos x x k -=无解,则实数k 的取值范围是.15.已知函数()22x f x x =+-,()2log 2g x x x =+-,()32h x x x =+-的零点分别为a ,b ,c ,则a b c ++=.若1x 满足22=5x x +,2x 满足222log (1)5x x +-=,则12=x x + .16.设函数 22,0()lg ,0x x x f x x x ì+£ï=í>ïî若关于x 的方程22()(12)()0f x m f x m m +-+-=有5个不的取值范围是.17.已知函数()44,4x f x f x x £<=-³ïî,若对于正数()*n k n ÎN ,直线n y k x =与函数()f x 的图像恰好有21n +个不同的交点,则22212n k k k +++=L.18.若函数 ()22ln 1f x ax x =--有两个零点,则a 的取值范围为 .19.已知函数()|ln |f x x b =+,关于以下四个结论:①函数()f x 的值域为[,)b +¥;②当a b >时,方程()f x a =有两个不等实根;③当0b =,0a >时,设方程()f x a =的两个根为1x ,2x ,则12x x +为定值;④当0b =,0a >时,设方程(1)f x a +=的两个根为1x ,2x ,则12120x x x x ++=.则所有正确结论的序号为 .20.已知函数2)()(e x f x x ax =-.(1)若曲线()y f x =在=1x -处的切线与y 轴垂直,求()y f x =的极值.(2)若()f x 在(0,)+¥只有一个零点,求a .。

2024年高考英语复习考点通关卷(新高考)完形填空之夹叙夹议文(原卷版)

2024年高考英语复习考点通关卷(新高考)完形填空之夹叙夹议文(原卷版)

完形填空之夹叙夹议文高考真题【2022▪浙江6月卷】Small children are easy to throw up in the air and catch-and they36it.“Again,Daddy,again!”Jacky shouts as I throw him skywards and catch him on the way back down again.He throws his arms and legs out37he were flying,his eyes wide with38.His trust in me is39which is quite a nice feeling,but at the same time gives me a huge sense of40.I hope Jacky will always trust me fully,but I know that,as he gets41,it will need more effort and sound judgment42.Trust is such an important part of a43relationship that it’s something that can’t44to lose.Every time I45Jacky to something new,he’ll do it only because he trusts me and feels46in the knowledge that he won’t get hurt.47,teaching Jacky to swim means he has to48that,when he’s swimming in the big pool,I’ll come to his rescue if his doggy paddle lets him down.49in the workplace,trust is important for strong50.It is something that every manager should work hard to51among their team.If people don’t trust you,they’re unlikely to 52your directions and willingly become a loyal(忠诚)team member.A53of trust can make people work against you rather than for you.At the very least,it means that people are not going to be54 you their best.Good55,like good parenting,is a long-term commitment.36.A.deserve B.miss C.love D.know37.A.as if B.in case C.even though D.so that38.A.fear B.excitement C.doubt D.astonishment39.A.reasonable B.limited C.absolute D.important40.A.relief B.satisfaction C.achievement D.responsibility41.A.older B.busier C.quieter D.healthier42.A.on my behalf B.on my part C.in my honor D.in my name43.A.long-distance B.high-risk C.parent-child D.teacher-student44.A.afford B.choose C.wait D.expect45.A.attach pare C.adjust D.introduce46.A.safe B.happy C.proud D.grateful47.A.Above all B.In addition C.At first D.For example48.A.admit B.believe C.suggest D.imagine149.A.However B.Therefore C.Similarly D.Fortunately50.A.affection B.determination C.friendship D.leadership51.A.assess anize C.develop D.understand52.A.repeat B.follow C.change D.forget53.A.gesture B.measure C.bond ck54.A.telling B.giving C.selling D.sending55.A.management B.personality munication cation试卷第2页,共12页3试卷第4页,共12页5试卷第6页,共12页7试卷第8页,共12页9试卷第10页,共12页11149.A.reminder B.symbol C.theme D.content 150.A.recovered B.suffered C.learned D.benefited试卷第12页,共12页。

电场中的图像专题和电容器专题(解析版)—2025年高考物理一轮复习考点通关卷(新高考通用)

电场中的图像专题和电容器专题(解析版)—2025年高考物理一轮复习考点通关卷(新高考通用)

电场中的图像专题和电容器专题建议用时:50分钟电场中的图像问题(A.粒子带正电C.电势能的最小值为零【答案】B【详解】A.粒子从静止开始沿强度方向先沿x轴负向,表明粒子带负电,故A .滑块在3m x =处所受合外力小于0.5NB .两场源电荷均带负电,且12Q Q <C .滑块向右一定可以经过4m x =处的位置D .滑块向右运动过程中,速度始终减小【答案】CA.a点场强大小小于b点的B.同一电荷在a点受到的电场力大小可能等于在C.同一正电荷在a点的电势能大于在D.将一负电荷从a点移到bA....【答案】C【详解】AC.在v-t图像中,斜率表示加速度,而加速度由电场力产生,由于电场线的疏密表示电场强弱,所以电子在运动过程中,电场先增强后减弱,电场力先增大后减小,所以加速度应先增大后减小,故斜率A.在x轴上,由O点到2x处的电场强度逐渐减小A.在x轴负半轴上,x₁处的电场强度最大B.两点电荷可能带同种电荷C.将负试探电荷沿+x方向移动到D.两点电荷中正电荷的电荷量大于负电荷的电荷量A.x轴上的电场强度方向沿B.A、B两点的电势相等C.电子从A点运动到B D.电子从A点运动到BA.点电荷A、B带电荷量大小之比为B.除无穷远处,x轴上有3处电势为零的点C.除无穷远处,x轴上只有1处场强为零的点D.从0x处静止释放的负试探电荷能再次经过该点【答案】CA....【答案】BD【详解】A.由题知该电场为非匀强电场,电子从M沿直线运动到N,电场线疏密程度非均匀变化,可知题中电场强度E随位移x非线性变化,电场强度随位移x在逐渐减小,.电场强度E随位移x在逐渐减小,粒子所受电场力在逐渐减小,故粒子的加速度在逐渐减小,A....【答案】AB【详解】AD.由于粒子只受电场力作用,因根据功能关系有-图像的斜率大小即为粒子所受电场力大小,从题图可知,图像的斜率随位移的增大而越来qEΔx E x电容器专题(A.A板带电量为3CEd4 B.P点的电势为3Ed4A.保持S接1,减小C两极板的正对面积,油滴会向上移动B.保持S接1,将C的下极板上移,油滴会向下移动C.将S从1掷到2,油滴将向下运动D.将S从1掷到2,同时将下极板上移,油滴将向下运动A.匀速向上运动时,C1减小,C2增加B.匀速向下运动时,C1减小,C2增加C.由静止突然加速向上运动时,C1减小,C2增加D.正在匀速向上运动的传感器突然停止运动时,C1减小,C2增加【答案】C【详解】AB.匀速运动时,多晶硅悬梁臂相对于顶层多晶硅上下极板间的距离均不变,根据:A.分子层间的距离增加了22πrkQSke¢BC.分子层间的距离增加了24πrkQSke¢DA.S闭合时,静电计的指针张角立即增大到某一角度后保持不变B.S闭合,稳定后将电阻箱R的阻值逐渐增大,静电计的指针张角不变C.S闭合,稳定后再断开S,仅将A板向上平移一小段距离,静电计的指针张角增大D.S闭合,稳定后再断开S,仅将A板向上平移一小段距离,A.带电油滴的电荷量mgd qU =A.电介质插入极板越深,电容器电容越大B.当传感器处于静止状态时,电容器不带电C.当传感器由静止突然向前加速时,会有电流由D.当传感器匀速直线运动时,达到稳定后电流表指针不偏转【答案】AD【详解】A.电介质插入极板越深,根据:A .R 中有从a 到b 的电流C .油滴的电势能不变【答案】CD【详解】A .将A 板向上移动时,由平行板电容器决定式可知:A .1Q 减小B .2Q 减小【答案】BD【详解】将绝缘介质抽出,由电容的决定式:可知2C 变小,1C 不变,其中:。

专题突破卷05 导数中的极值点偏移问题 (学生版) 2025年高考数学一轮复习考点通关卷(新高考通用

专题突破卷05 导数中的极值点偏移问题 (学生版) 2025年高考数学一轮复习考点通关卷(新高考通用

专题突破卷05 导数中的极值点偏移问题题型一 极值点偏移解决零点问题1.已知函数()ln 1f x x ax =+-有两个零点12,x x ,且12x x <,则下列命题正确的是( )A .1a >B .122x x a +<C .121x x ×<D .2111x x a->-2.已知函数()ln 1f x x ax =+-有两个零点1x 、2x ,且12x x <,则下列命题正确的个数是( )①01a <<;②122x x a +<;③121x x ×>;④2111x x a->-;A .1个B .2个C .3个D .4个3.已知函数()ln f x x ax =-有两个零点1x ,()212x x x <,则下列说法:①函数()f x 有极大值点0x ,且1202x x x +>;②212e x x >;③1232x x a+>;④若对任意符合条件的实数a ,曲线()y f x =与曲线1y b x=-最多只有一个公共点,则实数b 的最大值为ln2.其中正确说法的有( )A .1个B .2个C .3个D .4个4.已知函数()ln x f x x =,对于正实数a ,若关于t 的方程()a f t f t æö=ç÷èø恰有三个不同的正实数根,则a 的取值范围是( )A .()1,8B .()2,8e C .()8,+¥D .()2,e +¥5.关于函数()2ln f x x x=+,下列说法错误的是( )A .2x =是()f x 的极小值点B .函数()y f x x =-有且只有1个零点C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且12x x >,若()()12f x f x =,则124x x +>6.关于函数2()ln f x x x=+,下列说法正确的是( )A .2x =是()f x 的极大值点B .函数()y f x x =-有2个零点C .存在正整数k ,使得()f x kx >恒成立D .对任意两个正实数12,x x ,且12x x ¹,若()()12f x f x =,则124x x +>7.已知函数()x f x e ax =-有两个零点1x ,2x ,则下列判断:①a e <;②122x x +<;③121x x ×>;④有极小值点0x ,且1202x x x +<.则正确判断的个数是( )A .4个B .3个C .2个D .1个8.已知函数3()2f x x =+的图象与函数()g x kx =的图象有三个不同的交点11(,)x y 、22(,)x y 、33(,)x y ,其中123x x x <<.给出下列四个结论:①3k >;②12x <-;③232x x +>;④231x x >.其中正确结论的个数有( )个A .1B .2C .3D .49.已知()e x f x ax =-有两个零点12x x <,下列说法正确的是A .e a <B .122x x +>C .121x x ×>D .有极小值0x 且1202x x x +>10.已知函数()2πcos f x x x a =++在()0,π上有两个不同的零点()1212,x x x x <,给出下列结论:①()10f x ¢<;②()20f x ¢>;③12πx x +<.其中错误结论的个数是( )A .0B .1C .2D .311.已知a b >,c d >,e e 1.0111a b a b ==++,()()1e 1e 0.99c dc d -=-=,则( )A .0a b +<B .0c d +>C .0a d +>D .0b c +>12.已知1a >,1x ,2x ,3x 均为2x a x =的解,且123x x x <<,则下列说法正确的是( )A .1(2,1)x Î--B .2e (1,e )a ÎC .120x x +<D .232ex x +<题型二 极值点偏移解决不等式问题13.已知函数()e xf x x =-,则下列说法正确的是( )A .()f x 在R 上是增函数B .1x ">,不等式()()2ln f ax f x ³恒成立,则正实数a 的最小值为2eC .若()f x t =有两个零点12,x x ,则120x x +>D .若过点()1,M m 恰有2条与曲线()y f x =相切的直线,则1e 1m -<<-14.关于函数2()ln f x x x=+,下列说法正确的是( )A .2x =是()f x 的极大值点B .函数()y f x x =-有且只有1个零点C .存在正整数k ,使得()f x kx >恒成立D .对任意两个正实数12,x x ,且12x x ¹,若12()()f x f x =,则124x x +>15.设函数1cos ,0(),0e x x x f x x x -£ìï=í>ïî,下面四个结论中正确的是( )A .函数在()0,1上单调递增B .函数()y f x x =-有且只有一个零点C .函数的值域为[]1,e -D .对任意两个不相等的正实数12,x x ,若()()12f x f x =,则122x x +<16.已知函数()e xf x x =,()lng x x x =,则下列说法正确的是( )A .函数()f x 与函数()g x 有相同的极小值B .若方程()f x a =有唯一实根,则a 的取值范围为0a ³C .若方程()g x a =有两个不同的实根12,x x ,则212x x a>D .当0x >时,若()()12f x g x t ==,则12x x t =成立17.已知函数ln ()xf x x=,则( )A .(2)(3)f f >B .若()f x m =有两个不相等的实根1x ,2x ,则212ex x >C .ln 2<D .若23x y =,x ,y 均为正数,则23x y >18.关于函数()2ln f x x x=+,下列说法正确的是( )A .()f x 在()2,+¥上单调递增B .+12,R x x "Î且21x x >,若()()12f x f x =,则124x x +>C .R k +$Î,使得()f x kx >恒成立D .函数()y f x x =-有且只有1个零点19.定义在R 上的函数()f x 满足()()e xf x f x =¢+,且()01f =,则下列说法正确的是( )A .()f x 在2x =-处取得极小值B .()f x 有两个零点C .若0x ">,()f x k >恒成立,则1k <D .若1x $,2R x Î,12x x ¹,()()12f x f x =,则124x x +<-20.宠物很可爱,但身上会有寄生虫,小猫“墩墩”的主人每月定期给“墩墩”滴抺驱虫剂.刚开始使用的时候,寄生虫的数量还会继续增加,随着时间的推移,奇生虫增加的幅度逐渐变小,到一定时间,寄生虫数量开始减少.若已知使用驱虫剂t 小时后寄生虫的数量大致符合函数()()()47e 50(0720),t f t t t f t -=-+¢£<为()f t 的导数,则下列说法正确的是( )A .驱虫剂可以杀死所有寄生虫B .()100f ¢表示100t =时,奇生虫数量以10052e -的速度在减少C .若存在,,a b a b ¹,使()()f a f b =,则96a b +<D .寄生虫数量在48t =时的瞬时变化率为021.已知()()12()ln ,f x x x f x f x ==且12x x ¹,则( )A .1212ex x +>B .1212ex x +<C1e>D1e<22.已知关于x 的方程e 0x x a -=有两个不等的实根12,x x ,且12x x <,则下列说法正确的有( )A .1e 0a --<<B .122x x +<-C .2x a>D .11e 0xx +<23.已知函数()e xf x x =-,()lng x x x =-,则下列说法正确的是( )A .()ln f x 在()1,+¥上是增函数B .1x ">,不等式()()2ln f ax f x ³恒成立,则正实数a 的最小值为2eC .若()g x t =有两个根1x ,1x ,则121x x ×>D .若()()()122f x g x t t ==>,且210x x >>,则21ln t x x -的最大值为1e24.已知2.86ln ln a ba b==,ln ln 0.35c c d d ==-,a b <,c d <,则有( )A .2e a b +<B .2ec d +>C .1ad <D .1bc >题型三 极值点偏移解决双变量问题25.已知函数 ()()2e xx f x g x x ax ==+,,且曲线()y f x =在()0,0处切线也是曲线()y g x =的切线.(1)求a 的值;(2)求证:()()f x g x £;(3)若直线y k =与曲线()y f x =有两个公共点()11,A x y ,()22,B x y ,与曲线()y g x =有两个公共点()()33,C x g x ,()()44,D x g x ,求证:12341x x x x +++>26.已知函数()()2e ln 1xf x a x a -=+-ÎR .(1)若函数()f x 在()0,¥+上单调递增,求实数a 的取值范围;(2)若函数()f x 恰有两个极值点()1212,x x x x <,且21x x 的最大值为2e ,求证:2122e 1e 1x x ++£-.27.已知函数()22ln 1f x x x x =-+.(1)证明:()1f x <;(2)若120x x <<,且()()120f x f x +=,证明:122x x +>.28.设函数23115e ()e e (1),[0,)232x f x x x x =---+Î+¥.(1)判断函数()f x 的单调性;(2)若12x x ¹,且()()126e f x f x +=,求证:122x x +<.29.已知函数()()1ln f x x x =+.(1)求曲线()y f x =在1x =处的切线方程;(2)若关于x 的不等式()(1)f x m x >-在(1,)+¥上恒成立,求实数m 的最大值;(3)若关于x 的方程2()(1)10()f x ax a x a ++++=ÎR 有两个实根1x ,()212x x x ¹,求证:121123a a x x -<+<+.30.设()()()()1ln 1ln 0f x x x x a a =+-->.(1)若1a =,求函数()y f x =的图象在1x =处的切线方程;(2)若()0f x ³在 [)1,+¥上恒成立,求实数a 的取值范围;(3)若函数()y f x =存在两个极值点1212x x x x (<)、,求证:122x x +>.31.已知函数()11e ,0axf x x a a a -æö=-+>ç÷èø.(1)若()f x 的极小值为-4,求a 的值;(2)若()()ln g x f x a x =-有两个不同的极值点12,x x,证明:12x x +>32.已知函数()e 1xf x ax =--.(1)讨论函数()f x 的单调性;(2)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<;(3)若函数()()sin g x f x x =+,当0x ³时,()0g x ³恒成立,求实数a 的取值范围.33.已知函数()()2ln 2g x x ax a x =-+-(R a Î).(1)求()g x 的单调区间;(2)若函数()()()212f x g x a x x =++-,()1212,0x x x x <<是函数()f x 的两个零点,证明:1202x x f +æö¢<ç÷èø.34.已知函数()23ln 4(0)f x x ax x a =+->.(1)当1a =时,讨论()f x 的单调性;(2)当12a =时,若方程()f x b =有三个不相等的实数根123,,x x x ,且123x x x <<,证明:314x x -<.35.已知常数0a >,函数221()2ln 2f x x ax a x =--.(1)若20,()4x f x a ">>-,求a 的取值范围;(2)若1x 、2x 是()f x 的零点,且12x x ¹,证明:124x x a +>.36.已知函数()()2ln R af x x x a x=+Î有两个零点()1212,x x x x <.(1)求实数a 的取值范围;(2)证明:121x x +>.1.已知a b >,且e e 1.01a b a b -=-=,则下列说法正确的有( )①1b <-; ②102a << ;③0b a +<; ④1a b -<.A .①②③B .②③④C .②④D .③④2.已知函数()ln f x x x =-,过点()()1,1P b b >-作函数()f x 的两条切线,PA PB ,切点分别为,A B ,下列关于直线AB 斜率k 的正负,说法正确的是( )A .0k <B .0k =C .0k >D .不确定3.关于函数()22ln x f x x x =++,下列说法错误的是( )A .不存在正实数k ,使得()f x kx >恒成立B .对任意12,(0,)x x Î+¥,若12x x <,有()2112()x f x x f x <C .对任意121212()(),(0,1),()22x x f x f x x x f ++ΣD .若正实数12,x x ,满足12()()4f x f x +=,则122x x +³4.已知函数()()()e ,e xxxf x x a ag x =+Î=R ,下列说法正确的是( )A .若()()1212,x x g x g x ¹=,则122x x +>B .若0a =,则“120x x +=”是“()()120f x g x +=”的充要条件C .若不等式()()f x g x <恰有3个整数解,则实数a 的取值范围是22e e 212e ,e éö--÷êëøD .若不等式()()f x g x <恰有2023个整数解122023,,x x x ×××,则()()20232023112023kkk k f x g x a==+=åå5.已知()()e e ,, 1.01,1e 1e 0.9911a bc d a b c d c d a b >>==-=-=++,则( )A .0a b +>B .0c d +>C .0a d +>D .0b c +>6.已知函数()e xf x x =,若120x x >>,则下列结论正确的是( )A .2121()()f x f x x x ->-B .1122()()x f x x f x +>+C .1221()()x f x x f x >D .若12()()f x f x -=-,则122x x +>7.已知函数()()e xf x x a bx =--,则下列结论正确的是( )A .当1,2a b =-=时,()1f x ³恒成立B .当1,a b R =Î时,()f x 必有零点C .若()f x 有两个极值点12x x 、,则1224x x a +>-D .若()f x 在R 上单调递增,则1a b +£8.已知函数()ln f x x x a =--有两个零点1x 、2x ,则下列说法正确的是( ).A .1a >B .121x x >C .121x x <D .122x x +>9.已知函数()ln xf x x=,则( )A .()()25f f >B .若()f x m =有两个不相等的实根1x 、2x ,则212ex x <C.ln 2>D .若23x y =,x ,y 均为正数,则23x y >10.关于函数f (x )=2x+ln x ,则下列结论正确的是( )A .x =2是f (x )的极小值点B .函数y =f (x )-x 有且只有1个零点C .对任意两个正实数x 1,x 2,且x 2>x 1,若f (x 1)=f (x 2),则x 1+x 2>4D .存在正实数k ,使得f (x )>kx 恒成立11.已知函数()2ln 2a f x x x x =-有两个极值点1x ,212()x x x <,则( )A .a 的取值范围为(-∞,1)B .122x x +>C .12112x x +>D .2111x x a->-12.已知关于x 的方程ln 0x x a -=有两个不等的正根1x ,2x 且12x x <,则下列说法正确的有( )A .1ea -<<B .122ex x +>C .122x x a +<-D .1x a<-13.设函数1,0()cos ,0x xx f x e x x -ì>ï=íï£î,下列四个结论中正确的是( )A .函数()f x 在区间[),1p -上单调递增B .函数()y f x x =-有且只有两个零点C .函数()f x 的值域是[]1,1-D .对任意两个不相等正实数12,x x ,若12()()f x f x =,则122x x +>14.已知函数()e x f x x a =-,则下面结论成立的是( )A .当10ea <<时,函数()0f x =有两个实数根B .函数()0f x =只有一个实数根,则0a £C .若函数()0f x =有两个实数根1x ,2x ,则122x x +>D .若函数()0f x =有两个实数根1x ,2x ,则123x x +>15.已知函数()e x x m f x +=的极大值点为0,则实数m 的值为 ;设12t t ¹,且211212ln ln t t t t t t -=-,不等式12ln ln l +>t t 恒成立,则实数l 的取值范围为 .16.已知函数()2ln ,R f x x x ax x a =-+Î.(1)若函数()f x 是减函数,求a 的取值范围;(2)若()f x 有两个零点12,x x ,且212x x >,证明:1228e x x >.17.已知函数()2ln ,R a f x x a x=+Î.若函数()f x 有两个不相等的零点12,x x .(1)求a 的取值范围;(2)证明:124x x a +>.18.已知函数()ln f x x x a =--有两个不同的零点12,x x .(1)求实数a 的取值范围;(2)求证:122x x +>.19.已知函数ln ()a x a f x x +=.(1)讨论()f x 的极值;(2)若()()2112e e x xx x =(e 是自然对数的底数),且1>0x ,20x >,12x x ¹,证明:122x x +>.20.已知函数()()()2ln 3,0f x x a x x a a =+-->.(1)当1x ³时,()0f x ³,求a 的取值范围.(2)若函数()f x 有两个极值点12,x x ,证明:12122e x x -+>.。

传送带模型(牛顿第二定律)-2024年高考物理一轮复习考点通关卷(学生版)

传送带模型(牛顿第二定律)-2024年高考物理一轮复习考点通关卷(学生版)

考点巩固卷传送带模型建议用时:50分钟考点序号考点题型分布考点1水平传送带模型3单选+2多选+2解答考点2倾斜传送带模型3单选+3多选考点3传送带模型中的划痕问题5多选考点01:水平传送带模型(3单选+2多选+2解答)一、单选题1(2023·全国·模拟预测)如图所示,水平传送带以恒定速度v=16m/s顺时针匀速运行,左右两端A、B之间距离L=16m。

现将一质量m=2kg可看做质点的物块轻轻放到传送带A端,同时对物块施加一水平向右的恒力F=10N。

已知物块与传送带之间的动摩擦因数为μ=0.30,重力加速度g=10m/s2。

物块从A端运动到B端的过程中,下列说法正确的是()A.物块从A端运动到B端的过程先匀加速运动后匀速运动B.物块从A端运动到B端的时间t=1sC.摩擦力对物块做功W=96JD.物块运动到B端时,恒力F的瞬时功率P=200W2(2023春·河北·高三校联考阶段练习)如图所示为速冻食品加工厂生产和包装饺子的一道工序。

将饺子轻放在匀速运转的足够长的水平传送带上,不考虑饺子之间的相互作用和空气阻力。

关于饺子在水平传送带上的运动,下列说法正确的是()A.饺子一直做匀加速运动B.传送带的速度越快,饺子的加速度越大C.饺子由静止开始加速到与传送带速度相等的过程中,增加的动能等于因摩擦产生的热量D.传送带多消耗的电能等于饺子增加的动能3(2023·全国·高三专题练习)如图甲所示,将一物块P轻轻放在水平足够长的传送带上,取向右为速度的正方向,物块P最初一段时间的速度-时间图像如图乙所示,下列描述正确的是()A.小物块一直受滑动摩擦力B.传送带做顺时针的匀速运动C.传送带做顺时针的匀加速运动D.小物块最终有可能从图甲的左端滑下传送带二、多选题4(2023·甘肃兰州·统考一模)近年来网上购物的飞速增长催生了物流行业的快速发展。

单元提升卷01Welcome Unit(学生版) 2025年高考英语一轮复习考点通关卷(新高考通用)

单元提升卷01Welcome Unit(学生版) 2025年高考英语一轮复习考点通关卷(新高考通用)

单元提升卷01Welcome Unit单元基础知识巩固单词变形1.design vt.&n.设计→n.设计者2.anxious adj.焦虑的;不安的→adv.焦虑地→n.焦虑3.annoy vt.使恼怒→adj.恼怒的→adj.令人恼怒的→n.恼怒4.frighten vt.使害怕→adj.惊吓的→adj.令人害怕的5.impress vt.给……留下深刻的好印象→n.印象;感想→adj.令人印象深刻的6.confident adj.自信的→n.信心;信任7.organise vt.组织;筹备→n.组织;团体→n.组织者8.improve vi.&vt.改进;改善→n.提高;改善9.curious adj.好奇的→adv.好奇地→n.好奇重点词组1.at last 2.make an impression 3.what if 4.concentrate on 5.leave...alone 6.junior high school 7.look forward to 8.take notes重点单词1.n.交换;交流vt.交换;交流;交易;兑换2.n.设计;设计方案vt.设计;筹划3.n.校园;校区4.n.目标;球门;射门5.n.公司;商行;陪伴6.adj.正式的;正规的7.adj.惊吓的;害怕的8.adj.外向的;爱交际的9.adj.令人尴尬的10.vt.&vi.改进;改善一、语法填空1.You never allow(person)problems to affect your performance.2.When I first met him I had the that he was shy,but later I was with his speech. (impress)3.The first day of school usually causes especially for children,but he was not to leave his son alone there.(anxious)4.It is our teacher’s(concentrate)and friendliness that win our respect.5.The designer got(annoy)with his assistant who always made the same mistakes again and again. 6.The exchange student worked in the restaurant in exchange free meals and accommodation.7.It was through the cultural exchange activity that we exchanged views each other on cultural shock. 8.Seeing the scene,the little girl was to death and cried with a expression on her face.(frighten)9.She is a famous(design)in China.10.The government should set up a special(organize)to protect the earth.11.After school,I try to use any possible time(revise)the thing I have learnt.12.He was so anxious(return)home that he had booked a train ticket before the summer vacation began.13.We now look forward to(go)back to school as soon as possible.14.Remember to take(note)in class,which will help you learn well.15.I like to look on my high school days,which are among the happiest in my life.16.I can’t concentrate my homework with all that noise going on.17.Do you think he broke the vase design or chance?18.Either my uncle or my parents(be)going to Beijing tomorrow.19.I'm writing to offer my suggestions on the(improve)of our English newspaper.20.is very important and you should be and believe in yourself.(confident)21.We’ll leave our new campus by the next bus.22.He is considered a(nation)hero after he rescued more than20people in the flood.23.Your writing is good except for a few(spell)mistakes.24.Divide your day and night into two or three hour periods when you can concentrate on(study). 25.Each of us is equal in the world in spite of his or her sex,religion or(nation).26.We devote several days to the of the magnificent Maya sites of Copan.(explore)27.There are opportunities to develop important skills and learning(strategy)that can be applied to the school curriculum.28.There’s a lot(explore)at senior high.29.His wife has a very strong(person)and they often quarrel.30.The phase of writing that is actually most important is(revision). 31.(personal),I think television is a kind of passive pastime.32.Children gathered round,curious(know)the ending of the story.33.Her face suggested that she was by something.(fright) 34.You should be dressed on such a occasion.(formal)35.Sally was at the children for making such noise,pounding the table with her fist in.(annoy)二、单词拼写36.Unfortunately,the illness can lead to changes in(性格).37.Being(自信的)is the first step to achieving your goal.38.Alice is a very(外向的)person.She spends a lot of time with her friends.39.English comer is a place where people can chat and(交换)ideas.40.I like the(方式)of my English teacher,so I have made great progress.41.He headed the ball into his team’s open(球门)and all the students laughed.42.Her French has(提高)greatly,and she can understand what a Frenchman says.43.It’s surprising that(女性的)education in the country is developing slowly.44.Using proper learning(策略)can save you a lot of time to remember the key points. 45.Lightning(闪光)among the distant dark clouds,so it seemed to rain soon.46.A male nurse is taking care of a person who hold(级别较高的)position in a large company. 47.You needn’t feel anxious about the(实验)in the laboratory tomorrow.48.It(使恼怒)me that the designer should come late again and again.49.The(小伙子)sitting next to me left me a good impression.50.We were born(好奇的)and anxious to learn more about the world.51.He is a lonely old man who only has his dog to keep him(陪伴).(根据汉语提示单词拼写)52.Seeing no notice was taken of him,Tom felt quite(尴尬的)and stopped showing off.53.I tried to(组织)my words in my mind.54.Students can gain valuable experience by working on the(校园)radio or magazine.55.The latest model of the car has a much simpler(设计).高考能力提升阅读下面短文,在空白处填入1个适当的单词或用括号内单词的正确形式填空。

化学计量-2024年新高考化学一轮复习考点通关卷(解析版)

化学计量-2024年新高考化学一轮复习考点通关卷(解析版)

考点巩固卷01化学计量考点题型考点一物质的量阿伏加德罗常数选择题(20题)考点二物质的量浓度溶液的配制选择题(20题)、非选择题(2题)考点一物质的量阿伏加德罗常数分值:50分建议用时:20分钟选择题(每小题2.5分,共50分)1(2023·天津和平·统考二模)下列说法正确的是A.标准状况下,1mol H 2O 的体积为22.4L B.同温同压下,等体积的N 2和CO 所含分子数相同C.pH =1的盐酸中,c H + 为1mol ⋅L -1 D.丁烷所含碳原子数是相同质量乙烷的2倍【答案】B【详解】A .标况下,水不是气态,无法使用22.4L /mol 计算气体体积,故A 错误;B .同温同压下,N 2和CO 的体积相等,分子数相等,故B 正确;C .pH =1的盐酸中,c H + 为0.1mol ⋅L -1,故C 错误;D .设质量为mg ,丁烷所含碳原子物质的量为mg 58g /mol ×4,乙烷所含碳原子物质的量为mg30g /mol ×2,丁烷所含碳原子数不是相同质量乙烷的2倍,故D 错误;故选B 。

2(2023·江西·统考二模)N A 为阿伏加德罗常数的值。

硫及其化合物在生产、生活中有广泛应用。

下列有关叙述正确的是A.6gSO 2和SO 3的混合物中含中子数为3N AB.32gS 8(如圈所示)中S 原子形成共价键的数目为2N AC.1L 0.5mol ·L -1Na 2SO 3溶液含阴离子总数小于0.5N AD.1molH 2S 与适量O 2完全反应转移电子数一定为2N A 【答案】A【详解】A .设6gSO 2和SO 3的混合物中含有xmolSO 2,ymolSO 3,则64x +80y =6,即32x +40y =3,SO 2中含有32个中子,SO 3中含有40个中子,则混合物中含中子的物质的量为32xmol +40ymol =3mol ,数目为3N A ,故A 正确;B .根据分子结构可知一个S 8分子含有8个共价键,32g S 8的物质的量为32g 8×32g /mol=18mol ,共价键数目为N A ,故B 错误;C .Na 2SO 3溶液中SO 2-3发生水解:SO 2-3+H 2O ⇌HSO -3+OH -,阴离子数目增多,则1L 0.5mol ·L -1Na 2SO 3溶液含阴离子总数大于0.5N A ,故C 错误;D .H 2S 与适量O 2完全反应生成二氧化硫,硫元素的化合价由-2价变为+4价,故1mol 硫化氢失去6mol 电子,故D 错误;故选A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考通关卷2016年新课标全国高考英语模拟试题(三)第Ⅰ卷第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项。

AAre you looking for some new and exciting places to take your kids to? Try some of these places:·Visit art museums.They offer a variety of activities to excite your kids' interest.Many offer workshops for making hand­made pieces,traveling exhibits,book signings(签名)by children's favorite writers,and even musical performances and other arts.·Head to a natural history museum.This is where kids can discover the past from dinosaur models to rock collections and pictures of stars in the sky.Also,ask what kind of workshops and educational programs are prepared for kids and any special events that are coming up.·Go to a Youtheater.Look for one in your area offering plays for child and family visitors.Pre­show play shops are conducted by area artists and educators where kids can discover the secret about performing arts.Puppet(木偶)making and stage make-up are just a couple of the special offerings you might find.·Try hands­on_science.Visit one of the many hands­on science museums around the country.These science play-lands are great fun for kids and grown-ups alike.They'll keep your child mentally and physically active the whole day through while pushing buttons,experimenting,and building.When everyone is tired,enjoy a fun family science show,commonly found in these museums.1.If a child is interested in the universe,he probably will visit________.A.a YoutheaterB.an art museumC.a natural history museumD.a hands­on science museum2.What can kids do at a Youtheater?A.Look at rock collections. B.See dinosaur models.C.Watch puppet making. D.Give performances.3.What does “hands­on science”mean in the last paragraph?A.Science games designed by kids.B.Learning science by doing things.C.A show of kids'science work.D.Reading science books.4.Where does this text probably come from?A.A science textbook. B.A tourist map.C.A museum guide. D.A news report.BHoney from the African forest is not only a kind of natural sugar,it is also delicious.Most people,and many animals,like eating it.However,the only way for them to get that honey is to find a wild bees' nest and take the honey from it.Often,these nests are high up in trees,and it is difficult to find them.In parts of Africa,though,people and animals looking for honey have a strange and unexpected helper-a little bird called a honey guide.The honey guide does not actually like honey,but it does like the wax in the beehives (蜂房).The little bird cannot reach this wax,which is deep inside the bees' nest.So,when it finds a suitable nest,it looks for someone to help it.The honey guide gives a loud cry that attracts the attention of both passing animals and people.Once it has their attention,it flies through the forest,waiting from time to time for the curious animal or person as it leads them to the nest.When they finally arrive at the nest,the_follower reaches in to get at the delicious honey as the bird patiently waits and watches.Some of the honey,and the wax,always falls to the ground,and this is when the honey guide takes its share.Scientists do not know why the honey guide likes eating the wax,but it is very determined in its efforts to get it.The birds seem to be able to smell wax from a long distance away.They will quickly arrive whenever a beekeeper is taking honey from his beehives,and will even enter churches when beeswax candles are being lit.5.Why is it difficult to find a wild bees' nest?A.It's small in size. B.It's hidden in trees.C.It's covered with wax. D.It's hard to recognize.6.What do the words “the follower”in Paragraph 2 refer to?A.A bee. B.A bird.C.A honey seeker. D.A beekeeper.7.The honey guide is special in the way________.A.it gets its food B.it goes to churchC.it sings in the forest D.it reaches into bees'nests8.What can be the best title for the text?A.Wild Bees B.Wax and HoneyCAbout twenty of us had been fortunate enough to receive invitations to a film-studio(影棚) to take part in a crowd­scene.Although our “act” would last only for a short time,we could see quite a number of interesting things.We all stood at the far end of the studio as workmen prepared the scene,setting up trees at the edge of a winding path.Very soon,bright lights were turned on and the big movie­camera was wheeled into position.The director shouted something to the camera operator and then went to speak to the two famous actors nearby.Since it was hot in the studio,it came as a surprise to us to see one of the actors put on a heavy overcoat and start walking along the path.A big fan began blowing tiny white feathers down on him,and soon the trees were covered in “snow”.Two more fans were turned on,and a “strong wind”blew through the trees.The picture looked so real that it made us feel cold.The next scene was a complete contrast(对比).The way it was filmed was quite unusual.Pictures taken on an island in the Pacific were shown on a glass screen.An actor and actress stood in front of the scene so that they looked as if they were at the water's edge on an island.By a simple trick like this,palm trees,sandy beaches,and blue,clear skies had been brought into the studio!Since it was our turn next,we were left wondering what scene would be prepared for us.For a full three minutes in our lives we would be experiencing the excitement of being film “stars”!9.Who is the author?A.A cameraman.B.A film director.C.A crowd­scene actor.D.A workman for scene setting.10.What made the author feel cold?A.The heavy snowfall. B.The man­made scene.C.The low temperature. D.The film being shown.11.What would happen in the “three minutes”mentioned in the last paragraph?A.A new scene would be filmed.B.More stars would act in the film.C.The author would leave the studio.D.The next scene would be prepared.DGrown­ups are often surprised by how well they remember something they learned as children but have never practiced ever since.A man who has not had a chance to goswimming for years can still swim as well as ever when he gets back in the water.He can get on a bicycle after many years and still ride away.He can play catch and hit a ball as well as his son.A mother who has not thought about the words for years can teach her daughter the poem that begins “Twinkle,twinkle,little star”or remember the story of Cinderella or Goldilocks and the Three Bears.One explanation is the law of overlearning,which can be stated as follows:Once we have learned something,additional learning trials increase the length of time we will remember it.In childhood we usually continue to practice such skills as swimming,bicycle riding,and playing baseball long after we have learned them.We continue to listen to and remind ourselves of words such as “Twinkle,twinkle,little star”and childhood tales such as Cinderella and Goldilocks.We not only learn but overlearn.The multiplication tables(乘法口诀表) are an exception to the general rule that we forget rather quickly the things that we learn in school,because they are another of the things we overlearn in childhood.The law of overlearning explains why cramming(突击学习) for an examination,though it may result in a passing grade,is not a satisfactory way to learn a college course.By cramming,a student may learn the subject well enough to get by on the examination,but he is likely soon to forget almost everything he learned.A little overlearning,on the other hand,is really necessary for one's future development.12.What is the main idea of Paragraph 1?A.People remember well what they learned in childhood.B.Children have a better memory than grown­ups.C.Poem reading is a good way to learn words.D.Stories for children are easy to remember.13.The author explains the law of overlearning by________.A.presenting research findingsB.setting down general rulesC.making a comparisonD.using examples14.According to the author,being able to use multiplication tables is________.A.a result of overlearningB.a special case of crammingC.a skill to deal with math problemsD.a basic step towards advanced studies15.What is the author's opinion on cramming?A.It leads to failure in college exams.B.It's helpful only in a limited way.C.It's possible to result in poor memory.D.It increases students'learning interest.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。

相关文档
最新文档