概率与统计4-3协方差及相关系数

合集下载

协方差与相关系数的区别

协方差与相关系数的区别

协方差与相关系数的区别协方差和相关系数是统计学中常用的两个概念,用于衡量两个变量之间的关系。

虽然它们都可以用来描述变量之间的相关性,但在某些情况下,它们有着不同的应用和解释。

1. 协方差协方差是用来衡量两个变量之间的总体关系的统计量。

它表示了两个变量在同一时间内的变化趋势是否一致。

协方差的计算公式如下:其中,和分别表示两个变量的取值,和分别表示两个变量的均值,表示样本容量。

协方差的取值范围是无限制的,可以是正值、负值或零。

当协方差为正值时,表示两个变量呈正相关关系;当协方差为负值时,表示两个变量呈负相关关系;当协方差为零时,表示两个变量之间没有线性关系。

然而,协方差的数值大小无法直观地表示两个变量之间的相关性强度,因为它受到变量单位的影响。

为了解决这个问题,引入了相关系数。

2. 相关系数相关系数是用来衡量两个变量之间线性关系强度的统计量。

它是协方差除以两个变量的标准差的乘积,可以消除变量单位的影响。

相关系数的计算公式如下:其中,表示变量和的相关系数,表示变量和的协方差,和分别表示变量和的标准差。

相关系数的取值范围是-1到1之间。

当相关系数接近1时,表示两个变量呈正相关关系;当相关系数接近-1时,表示两个变量呈负相关关系;当相关系数接近0时,表示两个变量之间没有线性关系。

3. 区别与应用协方差和相关系数都可以用来衡量两个变量之间的关系,但在实际应用中有着不同的用途和解释。

首先,协方差可以用来判断两个变量的变化趋势是否一致,但它的数值大小受到变量单位的影响,无法直观地表示相关性强度。

因此,在比较不同数据集之间的相关性时,协方差并不是一个理想的选择。

相比之下,相关系数消除了变量单位的影响,可以直观地表示两个变量之间的相关性强度。

它的取值范围在-1到1之间,可以通过数值大小来判断相关性的强弱。

因此,在实际应用中,相关系数更常用于衡量和比较不同数据集之间的相关性。

此外,相关系数还可以用来进行回归分析和预测模型的建立。

统计学中的协方差与相关系数

统计学中的协方差与相关系数

统计学中的协方差与相关系数统计学中的协方差和相关系数是两个重要的概念,它们用于描述两个变量之间的关系以及变量的变动程度。

本文将分别介绍协方差和相关系数的定义、计算方法,以及它们在实际应用中的意义。

一、协方差在统计学中,协方差是用来衡量两个变量之间的相关性的指标。

它反映了两个变量的变动是否同时发生以及变动程度的大小。

协方差的定义如下:假设有n个数据对(x₁, y₁), (x₂, y₂), ... , (xₙ, yₙ),则协方差的计算公式为:cov(X, Y) = Σ(xᵢ - ̄x)(yᵢ - ̄y) / n其中,X表示变量X的数据集,Y表示变量Y的数据集,xᵢ和yᵢ分别表示X和Y的第i个观测值,̄x和̄y分别表示X和Y的均值,n 表示数据对的总数。

协方差的计算结果可以为正、负或零。

正的协方差表示两个变量的变动趋势一致;负的协方差表示两个变量的变动趋势相反;零的协方差表示两个变量之间没有线性关系。

二、相关系数相关系数是用来衡量两个变量相关性强弱的指标。

它不仅考虑了两个变量的变动趋势,还考虑了它们之间的线性关系的紧密程度。

最常用的相关系数是皮尔逊积矩相关系数(Pearson correlation coefficient),也称作Pearson相关系数。

它的计算公式为:r = cov(X, Y) / (σₓ * σᵧ)其中,cov(X, Y)表示X和Y的协方差,σₓ和σᵧ分别表示X和Y的标准差。

相关系数的取值范围为-1到1。

当相关系数趋近于1时,表示两个变量之间存在着强正相关关系;当相关系数趋近于-1时,表示两个变量之间存在着强负相关关系;当相关系数接近于0时,表示两个变量之间的线性关系较弱。

三、协方差与相关系数的意义与应用协方差和相关系数在统计学和数据分析中有着广泛的应用。

它们可以帮助我们了解两个变量之间的关系及其变动的程度,从而进行更深入地数据分析和预测。

1. 多元数据分析:协方差和相关系数可以用于多个变量之间的分析。

概率论与数理统计课件 协方差与相关系数

概率论与数理统计课件 协方差与相关系数

试求二维正态随机变量的边缘概率密度 .
p( x, y)
1
e 1 2(1 ρ2
)
(
x
μ1 σ12
)2
2
ρ(
x
μ1 )( σ1σ2
y
μ2
)
(
y
μ2 σ22
)2
2πσ1σ2 1 ρ2
pX (x) pY ( y)
1
e ,
(
x μ1 2 σ12
)2
2πσ1 1
e
(
y μ2 2σ22
)2
1
2πσ1σ2
1 ρ2
( x μ1 )( y μ2 )
e e d y d x.
(
x μ1 2σ12
)2
1 2(1
ρ2
)
y
μ2 σ2
ρ
x
μ1 σ1
2
令t
1 1
ρ2
y
μ2 σ2
ρ
x
μ1 σ1
,
u x μ1 , σ1
2019/4/24
4-3—协方差和相关系数
3 .不相关与相互独立的关系
相互独立 不相关
2019/4/24
4-3—协方差和相关系数
10
例1 设 ( X ,Y ) 在圆域 x2 y2 1 上服从均匀分布, (1)问X与Y是否独立? (2)求相关系数
例2 X ~N(0,1),Y X 2, 证明X与Y不相关且不独立
解:E( XY ) E( XX 2 ) x3 ( x)dx 0 Cov( X ,Y ) E( XY ) E( X )E(Y ) 0 故X与Y不相关
2019/4/24
4-3—协方差和相关系数

《概率论与数理统计》(46学时)课程教学大纲1

《概率论与数理统计》(46学时)课程教学大纲1

《概率论与数理统计》(46学时)课程教学大纲一、课程的基本情况课程中文名称:概率论与数理统计课程英文名称:Probability Theory and Mathematical Statistics课程编码:0702003课程类别:学科基础课课程性质:必修总学时:46 讲课学时:46 实验学时:0学分:2.5授课对象:本科相关专业前导课程:《高等数学》《线性代数》二、教学目的概率论与数理统计是研究随机现象统计规律性的数学学科,是理工科各专业的一门重要的学科基础课。

通过本课程的学习,使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。

同时,也为一些后续课程的学习提供必要的基础。

三、教学基本要求第一章概率论的基本概念1.1 随机试验1.2 样本空间、随机事件1.3 频率与概率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性基本要求:1. 理解随机试验、样本空间、随机事件的概念并掌握事件的关系与运算2. 掌握概率的定义与基本性质3. 理解古典概型的概念,掌握古典概率的计算方法4. 理解条件概率的定义,熟练掌握乘法定理、全概率公式与贝叶斯公式并会灵活应用5. 理解事件独立性的概念,熟练掌握相互独立事件的性质及有关概率的计算重点与难点:1. 重点:随机事件;概率的基本性质及其应用;乘法定理、全概率公式与贝叶斯公式事件的独立性2. 难点:概率的公理化定义、条件概率概念的建立、全概率公式与贝叶斯公式的应用第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布律2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布 基本要求:1. 理解随机变量的概念;掌握离散型随机变量和连续型随机变量的描述方法2. 掌握分布律、分布函数、概率密度函数的概念及性质;掌握由概率分布计算相关事件的概率的方法3. 熟练掌握二项分布、泊松(Poisson )分布、正态分布、指数分布和均匀分布,特别是正态分布的性质并能灵活运用;熟练掌握伯努利概型概率的计算方法4. 熟练掌握一些简单的随机变量函数的概率分布的求法 重点与难点:1. 重点:随机变量、分布律、密度函数和分布函数的概念;二项分布、均匀分布的概念和性质2. 难点:二项分布的推导及应用;随机变量函数的概率分布第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布 基本要求:1. 正确理解二维随机变量的定义,掌握二维随机变量的联合分布律、联合分布函数、联合概率密度函数及条件分布的概念2. 熟练掌握由联合分布求事件的概率,求边缘分布及条件分布的基本方法3. 理解随机变量独立性的概念,掌握随机变量独立性的判别方法4. 了解求二维随机变量函数分布的基本思路,会求,max{,},min{,}X Y X Y X Y 的分布 重点与难点:1. 重点:由联合分布求概率,求边缘分布及条件分布的方法2. 难点:求离散型随机变量联合分布律的方法,条件密度的导出,随机变量函数的分布第四章 随机变量的数字特征 4.1 数学期望 4.2 方差4.3 协方差及相关系数 4.4 矩、协方差矩阵 基本要求:1. 掌握随机变量及随机变量函数的数学期望的计算公式,熟悉数学期望的性质并能灵活运用2. 掌握方差的概念和性质;熟悉二项分布、泊松分布、正态分布、指数分布和均匀分布的数学期望和方差;了解切比雪夫(Chebyshev )不等式3. 掌握协方差和相关系数的定义和性质,并会灵活应用4. 掌握矩、协方差矩阵的定义 重点与难点:1. 重点:数学期望、方差、相关系数与协方差的计算公式及性质2. 难点:随机变量函数的数学期望的计算,利用数学期望的性质计算数学期望,相关系数的含义第五章大数定律及中心极限定理5.1 大数定律5.2 中心极限定理基本要求:1. 掌握依概率收敛的概念及贝努利大数定律和契比雪夫大数定律2. 掌握独立同分布的中心极限定理和德莫佛-拉普拉斯(De Moivre-Laplace)极限定理3. 掌握应用中心极限定理计算有关事件的概率近似值的方法重点与难点:1. 重点:用中心极限定理计算概率的近似值的方法2. 难点:依概率收敛的概念第六章样本及抽样分布6.1 随机样本6.2 抽样分布基本要求:1. 理解总体、个体、样本容量、简单随机样本以及样本观察值的概念2. 理解统计量的概念;熟悉数理统计中最常用的统计量(如样本均值、样本方差)的计算方法及其分布χ-分布,t-分布,F-分布的定义并会查表计算3. 掌握24. 熟悉正态总体的某些常用统计量的分布并能运用这些统计量进行计算重点与难点:χ-分布, t-分布, F-分布的定义与分位点的查表;正态总体常用统计量的分布1. 重点:2χ-分布, t-分布, F-分布的定义与分位点的查表2. 难点:2第七章参数估计7.1 点估计7.3 估计量的评选标准7.4 区间估计7.5 正态总体均值与方差的区间估计7.7 单侧置信区间基本要求:1. 理解参数的点估计(矩估计、最大似然估计)的计算方法2. 掌握参数点估计的评选标准:无偏性,有效性和相合性3. 理解参数的区间估计的概念,熟悉对单个正态总体和两个正态总体的均值与方差进行区间估计的方法及步骤重点与难点:1. 重点:点估计的矩法、最大似然估计法;正态总体参数的区间估计2. 难点:最大似然估计法,两个正态总体的参数的区间估计四、课程内容与学时分配五、教材参考书教材:盛骤谢式千潘承毅《概率论与数理统计》(第三版)高等教育出版社2001. 参考书:[1] 茆诗松《概率论与数理统计教程》(第一版)高教出版社2004.[2] 王展青李寿贵《概率论与数理统计》(第一版)科学出版社2000.六、教学方式和考核方式1.教学方式:以课堂讲授为主,辅以答疑、课后作业。

概率论与数理统计协方差和相关系数

概率论与数理统计协方差和相关系数

X -1 0 1
pk 3/8 2/8 3/8
Y -1 0 1
pk 3/8 2/8 3/8
E( X ) (1) 3 0 2 1 3 0 同理 E(Y ) 0
8
8
8
1
②说明E(:XY虽)然 Cov(Xx,iYy)=j p0i,j 但1
i,i1
P{ X
1P{ X0 8 0}
10,Y101} P{8Y 0} 8
=相关系数刻划了X和Y间“线性相关”的程度.
=
2021/4/4
8
8
皮肌炎图片——皮肌炎的症状表现

• 皮肌炎是一种引起皮肤、肌肉、

心、肺、肾等多脏器严重损害的, 全身性疾病,而且不少患者同时
伴有恶性肿瘤。它的1症状表现如 特 下:
• 1、早期皮肌炎患者,还往往伴 征 有全身不适症状,如-全身肌肉酸
=ቤተ መጻሕፍቲ ባይዱ
2021/4/4
3
3
§3 协方差和相关系数 Covariance and
correlation coefficient
2021/4/4
4
一、协方差
1、定对于义向: 量设X(和X,YY,)是期一望随和机方向差量只,反称映E{了[X变-E(量X)各][Y自-E(的Y)情]} 况,没有
相互之间的关系。 若X、Y相互独立, E{[X-E(X)][Y-E(Y)]}=0, 因此为EX{[与X-YE的(X)协][Y方-E差(Y,)记]} 作在C一ov定(程X,度Y上)反,映即了X与Y之间的关系,称为X 与Y的协方差。 Cov(X,Y)= E{[X-E(X)][Y-E(Y)]}
② 若 E X E( X ) k 存在,则称之为X的 k阶中心矩

概率论与数理统计 第4章 随机变量的数字特征

概率论与数理统计 第4章  随机变量的数字特征

解:
1 (5 0.5x)( 3 x2 x)dx
0
2
4.65(元)
2021/7/22
21
4.1.2 随机变量函数的数学期望
将定理4.1推广到二维随机变量的情形.
定理4.2 设Z是随机变量X,Y的函数Z = g(X,Y), g是连续函数.
(1) 若(X,Y)是二维离散型随机变量,其分布律
为P{X xi ,Y yj } pij, i, j 1,2,, 则有
解:由于 P{ X k} k e ,k = 0,1,2,…,
k!
因而
E( X ) kP{ X k} k k e
k0
k0 k!
k e
k1 (k 1)!
e
k 1
k1 (k 1)!
e k ee k0 k!
2021/7/22
12
4.1.1 数学期望的概念
2. 连续型随机变量的数学期望
2021/7/22
18
4.1.2 随机变量函数的数学期望
定理4.1 设Y为随机变量X的函数:Y = g(X) (g是连续
函数).
(1) 设X是离散型随机变量,其分布律为
P{X xk } pk , k 1,2,
若级数 g( xk ) pk绝对收敛,则 E(Y ) E[g( X )] g( xk ) pk
f ( x) 25( x 4.2), 4 x 4.2,
0,
其 它.
求pH值X的数学期望E(X).
解:
E( X ) xf ( x)dx
4
4.2
x 25( x 3.8)dx x (25)(x 4.2)dx
3.8
4
4
2021/7/22
15

协方差和相关系数的计算

协方差和相关系数的计算
331协方差和相关系数问题对于二维随机变量x已知联合分布边缘分布这说明对于二维随机变量除了每个随机变量各自的概率特性以外相互之间可能还有某种联系
§3.3.1 协方差和相关系数
问题 对于二维随机变量(X ,Y ): 边缘分布
已知联合分布
这说明对于二维随机变量,除了每个随机变量各 自的概率特性以外,相互之间可能还有某种联系.问 题是用一个什么样的数去反映这种联系. 数 E (( X E ( X ))(Y E (Y ))) 反映了随机变量X ,
例3
设 X,Y 相互独立,且都服从 N (0, 2),
U = aX + bY,V= aX - bY,a,b为常数,且都不为零,
求UV .
解 cov(U ,V ) E (UV ) E (U ) E (V )
a 2 E ( X 2 ) b 2 E (Y 2 ) aE ( X ) bE (Y )aE ( X ) bE (Y )
又显然 E[(Y E (Y )) t0 ( X E ( X ))] 0
D[(Y E (Y )) t0 ( X E ( X ))] 0 P[(Y E (Y )) t0 ( X E ( X )) 0] 1
P[(Y E (Y )) t0 ( X E ( X )) 0] 1
由 E ( X ) E (Y ) 0,
E( X 2 ) 2 E (Y 2 ) 2
D( X ) D(Y ) 2
cov(U ,V ) (a 2 b 2 ) 2
而 D(U ) a 2 D( X ) b 2 D(Y ) (a 2 b 2 ) 2
Y 之间的某种关系.
协方差和相关系数的定义 定义 称 E ( X E ( X ))(Y E (Y )) 为X,Y的

4-3协方差

4-3协方差
2 = (1 − ρ XY ) DY = min E[Y − ( a + bX )]2
= DY + DX ⋅
COV 2 ( X , Y )
− 2COV ( X , Y ) ⋅
COV ( X , Y ) DX

2 m E Y −(a+bX)] = (1− ρX )D in [ Y Y a,b
2
a ,b
= EY + b EX + a − 2aEY − 2bEXY + 2abEX 达到最小。 求a,b 使 e 达到最小。 ,
2 2 2 2
∂e Y X ∂a = 2a + 2bEX − 2 EY = 0 ⇒a = E −bE 令: ∂ e = 2bEX 2 − 2 EXY + 2aEX = 0 ∂b
协方差与相关系数
(
)
可以证明: 可以证明:X,Y相互独立的充要条件是 相互独立的充要条件是 已证: 已证:
fX ( x) = 1 2π σ 1 e
( x − µ1 ) 2 − 2 2σ 1
ρXY = ρ = 0
e
( y− µ 2 ) 2 − 2 2σ 2
, fY ( y ) =
1 2π σ 2
2 2 则:EX = µ1 , DX = σ 1 , EY = µ 2 , DY = σ 2 ,
a,b ,b
COV ( X ,Y ) ; ⇒ b0 = DX
= E (Y − EY + EX
COV ( X , Y ) COV ( X , Y ) 2 −X⋅ ) DX DX
COV ( X , Y ) 2 ) = E ((Y − EY ) − ( X − EX ) ⋅ DX
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档