三角函数测试题
三角函数综合测试题(含答案)

三角函数综合测试题第Ⅰ卷(选择题 共40分)一.选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1、若点P 在32π的终边上,且OP=2,则点P 的坐标( ) A .)3,1(B .)1,3(-C .)3,1(--D .)3,1(- 2、已知=-=-ααααcos sin ,45cos sin 则( ) A .47 B .169- C .329- D .329 3、下列函数中,最小正周期为2π的是( ) A .)32sin(π-=x y B .)32tan(π-=x y C .)62cos(π+=x y D .)64tan(π+=x y 4、等于则)2cos(),,0(,31cos θππθθ+∈=( ) A .924- B .924 C .97- D .97 5、将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,则ϕ等于( )A .12π-B .3π-C .3πD .12π 6、οοοο50tan 70tan 350tan 70tan -+的值等于( )A .3B .33C .33-D .3-7.在△ABC 中,sinA >sinB 是A >B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.ABC ∆中,3π=A ,BC =3,则ABC ∆的周长为( ) A .33sin 34+⎪⎭⎫ ⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫ ⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB第Ⅱ卷(非选择题 共110分)二.填空题(本大题共5小题,每小题6分,共30分,把答案填在题中横线上)9.已知3sin()45x π-=,则sin 2x 的值为 ; 10.在ABC ∆中,若120A ∠=o,5AB =,7BC =,则ABC ∆的面积S =_________ 11.已知,1)cos(,31sin -=+=βαα则=+)2sin(βα _______. 12.函数x x y 2cos )23cos(--=π的最小正周期为 __________. 13.关于三角函数的图像,有下列命题:①x y sin =与x y sin =的图像关于y 轴对称; ②)cos(x y -=与x y cos =的图像相同; ③x y sin = 与)sin(x y -=的图像关于y 轴对称;④ x y cos =与)cos(x y -=的图像关于y 轴对称;其中正确命题的序号是 ___________.三.解答题(本大题共6小题,共80分。
三角函数综合测试题(含答案)

三角函数综合测试题(含答案)三角函数综合测试题一、选择题(共18小题,每小题3分,共54分)1.(08全国一6)函数y=(sinx-cosx)-1的最小正周期为π的奇函数。
2.(08全国一9)为得到函数y=cos(x+π/3)的图象,只需将函数y=sinx的图像向左平移π/3个长度单位。
3.(08全国二1)若sinα0,则α是第二象限角。
4.(08全国二10)函数f(x)=sinx-cosx的最大值为2.5.(08安徽卷8)函数y=sin(2x+π/3)图像的对称轴方程可能是x=-π/6.6.(08福建卷7)函数y=cosx(x∈R)的图象向左平移π/2个单位后,得到函数y=g(x)的图象,则g(x)的解析式为-sinx。
7.(08广东卷5)已知函数f(x)=(1+cos2x)sinx,则f(x)是以π为最小正周期的奇函数。
8.(08海南卷11)函数f(x)=cos2x+2sinx的最小值为-2,最大值为3/3π。
9.(08湖北卷7)将函数y=sin(x-θ)的图象F向右平移π/3个单位长度得到图象F′,若F′的一条对称轴是直线x=5π/12,则θ=π/4.10.(08江西卷6)函数f(x)=(sinx+2sin2x)/x的最小正周期为2π的偶函数。
11.若动直线x=a与函数f(x)=sinx和g(x)=cosx的图像分别交于M,N两点,则MN的斜率为tan(a-π/4)。
19.若角 $\alpha$ 的终边经过点 $P(1,-2)$,则$\tan2\alpha$ 的值为 ________。
20.函数 $f(x)=\cos(\omega x-\frac{\pi}{6})$ 的最小正周期为 $\frac{\pi}{5}$,其中 $\omega>0$,则 $\omega=$ ________。
21.设 $x\in\left(0,\frac{\pi}{2}\right)$,则函数$y=\frac{2\sin2x+1}{\cos x}$ 的最小值为 ________。
第一章三角函数测试题(含参考答案)

第一章三角函数测试题第一章三角函数测试题一、选择题(本题共12小题,每小题5分,共60分) 1.sin 330°等于(等于( ))A .32- B .12- C .12D .322.已知点(tan ,cos )P a a 在第三象限,则角a 的终边在(的终边在( ))A.A.第一象限第一象限第一象限B. B.第二象限第二象限第二象限C. C. C.第三象限第三象限第三象限D. D.第四象限第四象限第四象限3.若1cos()2p a +=-,322p a p <<,则sin(2)p a -等于(等于( ))A.32- B.32C. 12D. 32±4.已知函数)2tan(j +=x y 的图象过点)0,12(p ,则j 可以是(可以是( ))A .6p-B .6pC .12p-D .12p5.把函数sin ()y x x =ÎR 的图象上所有的点向左平行移动3p 个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数(,得到的图象所表示的函数( ))A .sin 23y x x p æö=-Îç÷èøR ,B B..sin 26x y x p æö=+Îç÷èøR , C .sin 23y x x p æö=+Îç÷èøR ,D .sin 23y x x 2p æö=+Îç÷èøR , 6.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是(,则这个圆心角所对的弧长是( ))A .2B .1sin 2 C .1sin 2 D .2sin7.设0a <,角a 的终边经过点(3,4)P a a -,那么sin 2cos a a +的值等于(的值等于( ))A.25B. 25-C.15D. 15-8.下列不等式中,正确的是(.下列不等式中,正确的是( ))A .tan513tan413p p < B B..sin)7cos(5pp->C .sin(π-1)<sin1oD D..cos )52cos(57pp -<9. 9. 函数函数)62sin(p+-=x y 的单调递减区间是(的单调递减区间是( ))A .)](23,26[Z k k k Î++-p pp pB .)](265,26[Z k k k Î++p p p pC .)](3,6[Z k k k Î++-p p p p D D..)](65,6[Z k k k Î++p p p pp p)22_ .p3÷öπ)18. (18. (本小题本小题12分)已知1tan 3a =-求下列各式的值求下列各式的值. .(1)3cos 5sin sin cos a a a a +-(2)22sin 2sin cos 3cos a a a a +-19. (19. (本小题本小题12分)化简化简(1))-()+(-)++()+()-(-)++(-a a a a a a °°°°180cos cos 180tan 360tan sin 180sin(2)111(sin )(cos )(tan )sin cos tan a a a aaa--+2020..(本小题12分) 已知1sin cos 5a a +=(0a p <<)求:(1)sin cos a a(2)sin cos a a -p 2p p ùú2,33-úp p参考答案参考答案一、选择题(本题共12小题,每小题5分,共60分) BBBAC BADCD BA二、填空题(本题共4小题,每小题5分,共20分)1313..52- 14 14..}2422,33a p p a p p ì+<<+Îíî 15 15..3216 16.①③..①③.三、解答题(本大题共6小题,共70分,解答题应写出文字说明、证明过程或演算步骤分,解答题应写出文字说明、证明过程或演算步骤..)1717.. (1) (1)图略图略图略 (( 2 2))max2=,},8pp ì=+Îíî18. 18. ((1)1- ((2)165-19. 19. ((1) -1 1 ((2)1 2020.. (1) 1225- (2)7521. 21. ((1)()2sin(2)6p =+ ((2)1,3éùëû22. 22. 解:解:22()sin (cos 1)coscos1=+-=-++-,((1) 令令cos =,2,33p p éùÎ-êúëû,1[,1]2\Î- 则则2()1=-++-,对称轴为2=,当当124£,即12£时,在1=时,()有最小值为0,此时0=当当124³,即12³时,在12=-时,()有最小值为3342-,此时23p =.(2)当1=时,2()coscos =-+令cos=,2()=-+,对称轴为12=,当当12£时,5[2,2]3p p p p Î++(Î),此时cos=单调递增,所以单调递增,所以()单调递增;单调递增;当当12³时,[2,2]3p p p Î+(Î),此时cos=单调递减,所以单调递减,所以()单调递增单调递增. .。
必修4《三角函数》测试题

必修四《三角函数》测试题一、选择题(本大题共10小题,每小题5分,共50分) 1.下列命题正确的是( D ).A.终边相同的角都相等B.钝角比第三象限角小C.第一象限角都是锐角D.锐角都是第一象限角 2.若角︒600的终边上有一点()a ,4-,则a 的值是( A ).A.34-B.34±C.3D.34B ). A.3cos5πB.3cos5π-C.3cos5π± D.2cos 5π 4.下列函数中,最小正周期为π,且图象关于直线3x π=对称的是( C ).A.)62sin(+=x yB.sin()26x y π=+C.sin(2)6y x π=-D.sin(2)3y x π=-5.设tan()2απ+=,则sin()cos()sin()cos()αααα-π+π-=π+-π+( A ).A.3B.13C.1D.1-6.函数y =的定义域是( D ). A.2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B.2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C.22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D.222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦7. 定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当[0,]2x π∈时,x x f sin )(=,则5()3f π的值为( B ).A.21-B.23 C.23- D.21 8.函数2sin(2)6y x π=-([0,]x ∈π)的单调递增区间是( C ). A.[0,]3π B.7[,]1212ππ C.5[,]36ππ D.5[,]6ππ9. 若角α的终边落在直线0=+y x 上,则ααααcos cos 1sin 1sin 22-+-的值等于( D ) A .2 B .2- C .2-或2 D .010.设a 为常数,且1>a ,02x ≤≤π,则函数1sin 2cos )(2-+=x a x x f 的最大值为( B ). A.12+a B.12-a C.12--a D.2a二、填空题(本大题共7小题,每小题5分,共35分. 把答案填在题中的横线上.) 11.与02013-终边相同的最小正角是___147 __;最大负角是___213-_______ ____ 12.在扇形中,已知半径为8,弧长为12,则圆心角是23弧度,扇形面积是 48 .13.方程x x lg sin =的解的个数为__3________.14. 化简:0360sin 270cos 180sin 90cos 0tan r q p x m ---+=____ 0; ________15. 若(cos )cos 2,(sin)______6f x x f π==则12-16.若角α与角β的终边关于y 轴对称,则α与β的关系是________()(21),k k z αβπ+=+∈17.设()s i n ()c o s (f x a x b x αβ=π++π+,其中βα,,,b a 为非零常数. 若(2013)1f =-,则(2014)f = 1 . 三、解答题(本大题共5小题,共65分,解答应写出必要的文字说明、证明过程及演算步骤.)18.(本小题满分12分)已知α是第三角限角,化简ααααs i n 1s i n 1s i n 1s i n 1+---+.解:∵α是第三角限角, ∴0s i n 1>+α,0s i n 1>-α,0c o s <α,∴)s i n 1)(sin 1()sin 1()sin 1)(sin 1()sin 1(sin 1sin 1sin 1sin 122αααααααααα-+-++-+=+---+αααααααα22222222c o s )s i n 1(c o s )s i n 1(s i n 1)s i n 1(s i n 1)s i n 1(--+=----+=ααααααααcos sin 1cos sin 1|cos sin 1||cos sin 1|-++-=--+= αααtan 2cos sin 2-=-=.19.(本小题满分12分)(1)当3tan =α,求αααcos sin 3cos 2-的值;(2)设3222cos sin (2)sin()32()22cos ()cos()f θθθθθθπ+π-++-=+π++-,求()3f π的值. 19.解:(1)因为1tan tan 31cos sin cos sin 3cos cos sin 3cos 22222+-=+-=-αααααααααα, 且3tan =α, 所以,原式=+⨯-=13331254-. (2)θθθθθθθπθπθπθθcos cos 223cos sin cos 2)cos()(cos 223)2sin()2(sin cos 2)(223223++-++=-+++-++-+=fθθθθθθθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 2cos cos 222cos cos cos 222223++--++-=++-+-=1cos 2cos cos 2)2cos cos 2)(1(cos 22-=++++-=θθθθθθ, ∴1()cos1332f ππ=-=-. 20.(本小题满分12分)已知函数())4f x x π=-,x ∈R .(1)求函数()f x 的最小正周期和单调递增区间;(2)求函数()f x 在区间[]82ππ-,上的最小值和最大值,并求出取得最值时x 的值.20.解:(1)因为())4f x x π=-,所以函数()f x 的最小正周期为22T π==π,由2224k x k π-π+π≤-≤π,得388k x k ππ-+π≤≤+π,故函数)(x f 的递调递增区间为3[,]88k k ππ-+π+π(Z k ∈);(2)因为())4f x x π=-在区间[]88ππ-,上为增函数,在区间[]82ππ,上为减函数,又()08f π-=,()8f π=π())1244f ππ=π-==-,故函数()f x 在区间[]82ππ-,8x π=;最小值为1-,此时2x π=.21.(本小题满分14分)已知()2sin(2)26f x a x a b π=-+++,3[,]44x ππ∈,是否存在常数Q b a ∈,,使得)(x f 的值域为}133|{-≤≤-y y ?若存在,求出b a ,的值;若不存在,说明理由.21.解:存在1-=a ,1=b 满足要求. ∵344x ππ≤≤, ∴252363x πππ≤+≤,∴1sin(2)6x π-≤+≤, 若存在这样的有理b a ,,则(1)当0>a 时,⎪⎩⎪⎨⎧-=++-=++-,1322,323b a a b a a 无解;(2)当0<a 时,⎩⎨⎧-=++--=++,1323,322b a a b a a 解得1-=a ,1=b ,即存在1-=a ,1=b 满足要求.22.(本小题满分14分)已知函数()()()sin 0,0f x A x B A ωϕω=++>>的一系列对应值如下表:(1)根据表格提供的数据求函数()f x 的一个解析式; (2)根据(1)的结果,若函数()()0y f kx k =>周期为23π,当[0,]3x π∈时,方程()f kx m =恰有两个不同的解,求实数m 的取值范围.22. 解:(1)设()f x 的最小正周期为T ,得11()266T ππ=--=π, 由2T ωπ=,得1ω=,又31B A B A +=⎧⎨-=-⎩,解得21A B =⎧⎨=⎩ 令562ωϕππ⋅+=,即562ϕππ+=,解得3ϕπ=-, ∴()2sin 13f x x π⎛⎫=-+ ⎪⎝⎭. (2)∵函数()2sin 13y f kx kx π⎛⎫==-+ ⎪⎝⎭的周期为23π,又0k >, ∴3k =, 令33t x π=-,∵0,3x π⎡⎤∈⎢⎥⎣⎦, ∴2[,]33t ππ∈-,如图,s t =sin 在2[,]33ππ-上有两个不同的解,则)1,23[∈s ,∴方程()f kx m =在[0,]3x π∈时恰好有两个不同的解,则)1,3m ∈,即实数m 的取值范围是)1,3。
三角函数测试题及答案

三角函数测试题及答案# 三角函数测试题及答案## 一、选择题1. 题目:在直角三角形中,若角A的正弦值等于1/2,那么角A的余弦值是多少?- A. √3/2- B. 1/√2- C. -1/2- D. 1/2答案: A2. 题目:已知sin(θ) = 0.6,求cos(θ)的值(假设θ在第一象限)。
- A. 0.8- B. 0.5- C. 0.4- D. 0.2答案: A3. 题目:以下哪个表达式是正确的?- A. tan(θ) = sin(θ) / cos(θ)- B. sin(θ) = cos(θ)- C. cos(θ) = 1 / tan(θ)- D. sin^2(θ) + cos^2(θ) = 1答案: D## 二、填空题4. 已知一个角的正弦值为0.8,其对应的余弦值是____。
答案:±0.65. 一个角的正切值为2,那么其正弦值与余弦值的比值为____。
答案: 26. 根据三角函数的周期性,sin(360° + θ) = ____。
答案:sin(θ)## 三、简答题7. 解释正弦函数的周期性,并给出一个例子。
答案:正弦函数是周期函数,其周期为360°或2π弧度。
这意味着每隔360°,正弦函数的值会重复。
例如,sin(0°) = 0,sin(360°) = 0,sin(720°) = 0,以此类推。
8. 已知sin(α) = 3/5,cos(α) = 4/5,求tan(α)的值。
答案:tan(α) = sin(α) / cos(α) = (3/5) / (4/5) = 3/4## 四、计算题9. 在直角三角形ABC中,∠C为直角,已知AB = 10,AC = 6,求BC的长度。
答案:根据勾股定理,BC = √(AB^2 - AC^2) = √(10^2 - 6^2) =√(100 - 36) = √64 = 8。
10. 已知sin(θ) = √3 / 2,求θ的度数(假设θ在第一象限)。
三角函数测试题及答案

三角函数测试题及答案一、选择题1. 已知角A的正弦值为\( \sin A = \frac{1}{2} \),则角A的余弦值\( \cos A \)是:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( -\frac{1}{2} \)D. \( -\frac{\sqrt{3}}{2} \)2. 函数\( y = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \pi/2 \)D. \( 4\pi \)3. 已知\( \cos x = \frac{1}{3} \),且\( x \)在第一象限,求\( \sin x \)的值:A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{5}}{3} \)C. \( \frac{4\sqrt{2}}{9} \)D. \( \frac{4\sqrt{5}}{9} \)二、填空题4. 根据正弦定理,如果三角形ABC的边a和角A相对,且\( a = 5 \),\( \sin A = \frac{3}{5} \),则边b的长度为______(假设\( \sin B = \frac{4}{5} \))。
5. 已知\( \tan x = -1 \),求\( \sin 2x \)的值。
三、解答题6. 求以下列三角方程的解:\( \sin^2 x + \cos^2 x = 1 \)7. 证明:\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \)。
四、应用题8. 在直角三角形ABC中,角C为直角,已知AB = 10,AC = 6,求BC 的长度。
答案:一、选择题1. C2. B3. B二、填空题4. 45. 1 或 -1三、解答题6. 该方程对所有\( x \)都成立,因为它是三角恒等式。
八年级数学上册--三角函数测试题(含答案)

八年级数学上册--三角函数测试题(含答案)一、单选题1. 在直角三角形中,已知一个锐角的正弦值为$\frac{1}{2}$,则这个锐角的值为多少?A. 30°B. 45°C. 60°D. 90°正确答案:C. 60°2. 已知一个角的余割值为2,求这个角的正切值。
A. $\sqrt{3}$B. $\sqrt{2}$C. 1D. $\frac{1}{\sqrt{3}}$正确答案:D. $\frac{1}{\sqrt{3}}$二、填空题1. 一个角的正弦值为0.6,求这个角的余割值。
答案:$\frac{5}{3}$2. 已知一个角的正切值为$-\frac{3}{4}$,求这个角的余弦值。
答案:$\frac{4}{5}$三、解答题1. 已知一条直角边长为3,斜边长为5,求另一条直角边的长度。
解答:根据勾股定理,设另一条直角边为x,可以得到以下方程:$$x^2 + 3^2 = 5^2$$化简以后得到:$$x^2 = 25 - 9 = 16$$取正根得到:$$x = 4$$所以另一条直角边的长度为4。
2. 已知一个锐角的余弦值为$\frac{1}{\sqrt{2}}$,求这个锐角的正弦值。
解答:根据三角函数的定义,余弦值为$\frac{1}{\sqrt{2}}$对应的锐角为45°,而45°的正弦值为$\frac{1}{\sqrt{2}}$。
所以这个锐角的正弦值为$\frac{1}{\sqrt{2}}$。
以上为八年级数学上册三角函数测试题及答案。
---注意事项:- 在解答题中,请注意给出详细的解题步骤。
- 在填空题中,请直接写出答案。
- 如果有需要验证的内容,请参考教材或其他可靠来源。
三角函数试卷及答案(全套)

目标测试题一 角的概念的推广一、选择题:1.下列角中终边与330°相同的角是( )Α.30° B.-30° C.630° D.-630°2.终边落在X 轴上的角的集合是( )Α.{ α|α=k ·360°,K ∈Z } B.{ α|α=(2k+1)·180°,K ∈Z }C.{ α|α=k ·180°,K ∈Z }D.{ α|α=k ·180°+90°,K ∈Z }3.若α是第四象限角,则180°-α一定是( )Α.第一象限角 B. 第二象限角 C.第三象限角 D. 第四象限角4.下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是锐角C.不相等的角终边一定不相同D.{ α|α=k ·360°+·90°,k ∈Z }={ β|β=k ·180°+90°,k ∈z }5.若α是第二象限的角,则2α不可能在( )Α.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限二、填空题:6.若角α的终边为第二象限的角平分线,则α的集合为______________________.7.写出-720°到720°之间与-1080°终边相同的角的集合___________________.8.与1991°终边相同的最小正角是_________,绝对值最小的角是_______________.9.若角α的终边经过点Α(-1,则角α=_____,其中最大的负角为____________.10.若角α、β的终边互为反向延长线,则α与β之间的关系是__________________.三、解答题:11.已知α是第二象限角,则2a 是第几象限的角?12.设集合Α={x|k ·360°+60°< x <k ·360°+300°,k ∈Z},B={y|k ·360°-210°< y <k ·360°,k ∈Z},求Α∩B,Α∪B.。