高三数学一轮复习正弦定理和余弦定理

合集下载

高中数学一轮复习 4.7 正弦定理和余弦定理

高中数学一轮复习 4.7 正弦定理和余弦定理

第七节 正弦定理和余弦定理1.正弦定理 2.余弦定理 3.三角形的面积公式第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.考法(二) 余弦定理解三角形[典例] (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( ) A .7.5 B .7 C .6 D .5(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b 2c -a =sin Asin B +sin C,则角B =________. [题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24 B .-24 C.34 D .-342.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( ) A.π12 B.π6 C.π4 D.π33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C . (1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =a c ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( ) A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[变透练清]1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.3.(变条件)若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.[课时跟踪检测]1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定3.在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3,cos B =23,则b=( )A .14B .6 C.14 D. 65.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π66.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A. 5 B .3 C.10 D .47.在△ABC 中,AB =6,A =75°,B =45°,则AC =________.8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c=________.9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________.10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.11.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.12.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小; (2)若sin B +sin C =1,试判断△ABC 的形状.第二课时 正弦定理和余弦定理(二)考点一 有关三角形面积的计算[典例] (1)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( ) A .37 B.372 C .9 D.92(2)△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =______. [变透练清]1.(变条件)本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 2.(变结论)本例(2)的条件不变,则C 为钝角时,ca 的取值范围是________.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.考点二 平面图形中的计算问题[典例] 如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1.(1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.2.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ;(2)求BE 的长.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π4C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3 (2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32 B.22 C.12 D .-12[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A =b sin A ,则sin A +sin C 的最大值为( ) A. 2 B.98 C .1 D.782.在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________. 3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.考法(二) 正、余弦定理与三角函数的性质[典例] 已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值. [课时跟踪检测]1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则△ABC 的面积为( ) A.12 B.14C .1D .22.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( ) A.π6 B.π3 C.2π3 D.5π63.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3, S △ABC =22,则b 的值为( ) A .6 B .3 C .2 D .2或34.在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( ) A .1 B. 2 C. 3 D .25.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33 B.32C. 3 D .2 3 6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+ 3B .2+ 2C .3D .3+ 27.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________.8.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.9.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC 上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.10.如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E为垂足,若DE =22,则cos A =________.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c (1+cos B )=b (2-cos C ). (1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)求c os ⎝⎛⎭⎫A -π6的值.。

2025高考数学一轮复习-正弦定理与余弦定理【课件】

2025高考数学一轮复习-正弦定理与余弦定理【课件】

cos B=____2_a_c____; a2+b2-c2
cos C=_____2_a_b_____
④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A
解斜
①已知三边,求各角;
三角 ①已知两角和任一边,求另一角和其他两条边;
②已知两边和它们的夹
形的 ②已知两边和其中一边的对角,求另一边和其他两角 角,求第三边和其他两
第四章 三角函数与解三角形
第22讲 解三角形
激活思维
1.在△ABC中,已知a=7,b=5,c=3,则角A的大小为
(
A)
A.120°
B.90°
【解析C】.由60余°弦定理知 cos A=b2+2cb2c-a2D=.-4125,°所以 A=120°.
2.在△ABC 中,设 b=5,c=5 3,A=30°,则 a=
问题
个角
2.三角形常用面积公式
(1) S=12a·ha(ha 表示边 a 上的高); (2) S=12ab sin C=12ac sin B=12bc sin A.
3.在△ABC中,已知a,b和A时,解的情况
A为锐角
A为钝角或直角
图形
关系式 解的个数
a=b sin A __一__解____
b sin A<a<b ___两__解___
6+ 2
则由正弦定理sinb B=sinc C,得 c=bssininBC=2ssiinn6705°°=2×
4 3

2+
6 3.
2
6
3 A=4,B=π,b= 3,则 a=5______,c=____5________.
53
【解析】由 cos A=45,可知 A 为锐角,所以 sin A= 1-cos2A=35.由正弦定理,得 a=

正弦定理与余弦定理课件-2024届高考数学一轮复习

正弦定理与余弦定理课件-2024届高考数学一轮复习






由正弦定理,得

,则 AC =




h ,所以 AB ·h = AB ·AC ·sin A .






×
=2 .设 AB 边上的高为
所以 h = AC ·sin A =2

×

=6.
返回目录
考向2 三角形的解的个数问题
例2 已知△ ABC 的内角 A , B , C 的对边长分别为 a , b , c .若 a =

sin A =




.

返回目录
(2) 若 AB =5,求 AB 边上的高.
解:(2) 由(1)知, cos A =
= sin A cos C + cos A sin C =



,所以


sin B = sin ( A + C )




×(

)=
.在△ ABC 中,
D. (1,2)
C

总结提炼
可以用数形结合的方法确定三角形的解的个数.
返回目录
考点二
判断三角形的形状
例3 (多选)在△ ABC 中,内角 A , B , C 的对边长分别为 a , b , c .
sin
sin
sin



( m ∈N*),则当 m 取不同的值时,关于△ ABC 的
6
8

形状,下列说法正确的是(
(1) 在△ ABD 中,由余弦定理,得 cos ∠ ABD =
AB ∥ CD ,所以∠ BDC =∠ ABD . 所以 cos

余弦定理、正弦定理课件-2025届高三数学一轮复习

余弦定理、正弦定理课件-2025届高三数学一轮复习
2
2
5
10
(2)[2021全国卷乙]记△ ABC 的内角 A , B , C 的对边分别为 a , b , c ,面积为
3 , B =60°, a 2+ c 2=3 ac ,则 b =
1
2
[解析] 由题意得 S △ ABC = ac sin B =
2 2
3
ac =
4
.
3 ,则 ac =4,所以 a 2+ c 2=3 ac =
A为锐角
A为钝角或直角
图形
关系式
a<b sinA
解的个数
无解
a=b sinA
⑪ 一解
b sin A<a<b


两解

a≥b
⑬ 一解

a>b
a≤b
一解
无解
3. 三角形中常用的面积公式
△ ABC 中,角 A , B , C 对应的边分别为 a , b , c .则:
1
(1) S = ah ( h 表示边 a 上的高);
(2,8) .

2 + 1 > 0,
1
[解析] ∵2 a +1, a ,2 a -1是三角形的三边,∴ > 0,
解得 a > .显然2 a
2
2 − 1 > 0,
+1是三角形的最大边,则要使2 a +1, a ,2 a -1构成三角形,需满足 a +2 a -1
>2 a +1,解得 a >2.设最大边对应的角为θ(钝角),则 cos θ=
(
D )
A. 1
B. 2
C. 5
D. 3
[解析] 由余弦定理得 AC 2= AB 2+ BC 2-2 AB ·BC ·cos B ,得 BC 2+2 BC -15=

高三一轮总复习高效讲义第4章第6节正弦定理、余弦定理及应用举例课件

高三一轮总复习高效讲义第4章第6节正弦定理、余弦定理及应用举例课件

[对点练]
1.在△ ABC中,c-2ca
=sin
2B 2
(a,b,c分别为角A,B,C的对边),则
△ ABC的形状为( )
A.直角三角形
B.等边三角形
C.等腰三角形或直角三角形 D.等腰直角三角形
解析:由cos
B=1-2sin
2B 2
得sin
2B 2
=1-co2s
B ,所以c-2ca =1-co2s
AE sin sin
45° 30°

2AB cos 15°
,因此CD=AD
sin
60°= cos
2×10 (45°-30°)
×sin 60°=10(3- 3 ).
答案:10(3- 3 )
备考第 2 步——突破核心考点,提升关键能力
考点1 利用正弦定理、余弦定理解三角形[自主演练]
1.△ ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin
答案:BC
4.在△ ABC中,内角A,B,C的对边分别为a,b,c,若a=4,b=5,b>c, △ ABC的面积为5 3 ,则c=________.
解析:由三角形面积公式,得12 ×4×5sin C=5 3 ,
即sin
C=
3 2
.又b>a,b>c,所以C为锐角,于是C=60°.
由余弦定理,得c2=42+52-2×4×5cos 60°,解得c= 21 .
3.(多选)在△ ABC中,角A,B,C所对的各边分别为a,b,c,若a=1,b= 2 ,
A=30°,则B等于( )
A.30°
B.45°
C.135°
D.150°
解析:根据正弦定理sina A =sinb B 得,

第五章 第七节正弦定理和余弦定理课件-2025届高三数学一轮复习

第五章 第七节正弦定理和余弦定理课件-2025届高三数学一轮复习
= .故选D.

D)
D. 41

− = − ,由余弦定理得,


− × × × − = ,所以

(2)在△ ABC中,角A,B,C的对边分别为a,b,c.已知a = 6,b = 2c,cos A =
1
− .
4
①求c的值;
1
2
解 因为a2 = b2 + c 2 − 2bccos A,所以6 = b2 + c 2 + bc,而b = 2c,代入得
A+B
cos
2
=
A+B
2
C
2
= cos ;
C
sin .
2
π
3
2.等差关系:若三角形三内角A,B,C成等差数列,则B = ,A + C =
c成等差数列,则 2b = a + c ⇔ 2sin B = sin A + sin C .
3.在△ ABC中,两边之和大于第三边,两边之差小于第三边,
A > B ⇔ a > b ⇔ sin A > sin B ⇔ cos A < cos B .


⋅ − = ,所以 = 或 = ,所以 = 或 = 或
= − (舍去),所以△ 为等腰三角形或直角三角形.
(2)(多选题)已知a,b,c分别是△ ABC三个内角A,B,C的对边,下列四个说法中,正确
的有( ACD )
=
故选B.
. ∵
∈ , ,∴ > ,∴ = ,即 =

,∴△

为直角三角形.
(2)在△ ABC中,已知a + b =

正弦定理与余弦定理(高三一轮复习)

正弦定理与余弦定理(高三一轮复习)

150°不符合题意,舍去.可得B=30°.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
5.(易错题)在△ABC中,若ab=ccooss AB,则△ABC的形状为( D )
A.等边三角形
B.直角三角形
C.等腰三角形
D.等腰或直角三角形
解析 因为ab=ccooss BA,所以由正弦定理可得ssiinn AB=ccooss AB,即sin Acos A=sin Bcos
— 10 —
3.(2023·江门检测)在△ABC中,已知a= 13,b=4,c=3,则cos A=( A )
12 A.2 B. 2
3 C. 2
D.-
2 2
解析 在△ABC中,已知a= 13,b=4,c=3,由余弦定理得cos A= 422+×342×-313=16+294-13=12.
数学 N 必备知识 自主学习 关键能力 互动探究
数学 N 必备知识 自主学习 关键能力 互动探究
— 16 —
针对训练 1.(2023·陕西渭南月考)在△ABC中,若AB=7,AC=5,∠ACB=120°,则BC =( B ) A.2 2 B.3 C.6 D. 6 解析 在△ABC中,由余弦定理得AB2=AC2+BC2-2AC×BC×cos∠ACB,故 49=25+BC2-2×5×BC× -12 ,即BC2+5BC-24=0,解得BC=3或BC=-8(舍 去).
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
2.在△ABC中,若AB=3,BC=3 2,∠B=45°,则△ABC的面积为( D )
A.2 2 B.4
7 C.2
9 D.2
解析 由题意,S△ABC=12AB·BC·sin∠B=12×3×3 2× 22=92.

余弦定理正弦定理课件高三数学一轮复习

余弦定理正弦定理课件高三数学一轮复习
内容
在△ABC中,角A,B,C所对的边分别是a,b,c a2=_b_2_+_c_2_-2_b_c_c_o_s_A__; b2=_c_2_+_a_2_-2_c_a_c_o_s_B__; c2=_a_2_+_b_2_-_2_a_b_co_s__C_
cos A=; 变形 cos B=;
cos C=
3.在△ABC中,已知a,b和A时,解的情况如下: A为锐角
(4)当b2+c2-a2>0时,△ABC为锐角三角形;当b2+c2-a2=0时,△ABC为直角三角形;当 b2+c2-a2<0时,△ABC为钝角三角形.( × ) 提示: (4)当b2+c2-a2>0时,△ABC不一定为锐角三角形.
12
核心考点·分类突破
考点二利用正、余弦定理判断三角形形状 [ 例 1](1)(2023·绥 化 模 拟 ) 设 △ABC 的 内 角 A,B,C 所 对 的 边 分 别 为 a,b,c, 若 acos A=bcos B=ccos C,则△ABC的形状是( ) A.直角三角形 B.等边三角形 C.钝角三角形 D.三边比为1∶2∶3的三角形
图形
关系式 a=bsin A bsin A<a<b
解的个数 _一__解__
_两__解__
a≥b _一__解__
A为钝角或直角
a>b _一__解__
a≤b _无__解__
基础诊断·自测
类型 辨析 改编 易错 高考 题号 1 3 2 4
1.(思考辨析)(正确的打“√”,错误的打“×”) (1)在△ABC的六个元素中,已知任意三个元素可求其他元素.( × ) 提示:(1)已知三角时,不可求三边. (2)在△ABC中,若sin A>sin B,则A>B.( √ ) (3)在△ABC中,若A∶B∶C=1∶2∶3,则a∶b∶c=1∶2∶3.( × ) 提示: (3)三角形中三边之比等于相应的三个内角的正弦值之比.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•∴sinA>0,sinB>0,
•∴sinAcosA=sinBcosB.
整理课件
20
即 sin2A=sin2B. 又 2A、2B∈(0,2π), ∴2A=2B 或 2A+2B=π. 即 A=B 或 A+B=π2. 因此△ABC 是等腰三角形或直角三角形.
解析:根据正弦定理sianA=sibnB得:sin2A=sin630°⇒sinA
= 22,又a<b,∴A<B,A=45°.
•答案:C
整理课件
8
2.△ABC的内角A、B、C的对边分别为a、b、c.若a、
b、c成等比数列,且c=2a,则cosB等于( )
1
3
A.4
B.4
2 C. 4
2 D. 3
整理课件
•a2[sin(A+B)-sin(A-B)]
•=b2[sin(A+B)+sin(A-B)]
•∴2a2cosAsinB=2b2cosBsinA.
•由正弦定理可得:
•sin2AcosAsinB=sin2BcosBsinA.
•即sinAsinB·(sinAcosA-sinBcosB)=0.
•∵A、B∈(0,π),
sAinBC=sBinCA.
于是 AB=ssiinnCABC=2BC=2 5.
(2)在△ABC 中,根据余弦定理,得
cosA=AB2+2AABC·A2-C BC2=2
5
5 .
于是 sinA= 1-cos2A=整理5课5件.
14
从而 sin2A=2sinAcosA=45, cos2A=cos2A-sin2A=35.
由正弦定理得 sinB=bsianA,
因为 b2=ac 且∠A=60°,
所以bsicnB=b2sianc60°=s整in理6课0件°=
3 2.
17
法二:在△ABC 中,由面积公式得
12bcsinA=12acsinB, 因为 b2=ac,∠A=60°,
所以bsicnB=sinA=
3 2.
整理课件
18
整理课件
6
•2.在△ABC中,已知a、b和A时,解的情况
A为锐角
A为钝角或直角
图形
关系式 a=bsinA bsinA<a<b a≥b
解的 个数
一解
两解

一解
整理课件
a>b a≤b
一解
无解
7
1.已知△ABC中,a= 2 ,b= 3 ,B=60°,那么角A
等于( )
A.135°
B.90°
C.45°
D.30°
9
解析:∵a,b,c 成等比数列,∴b2=ac, ∴cosB=a2+2ca2c-b2=a2+2ca2c-ac =a2+44aa22-2a2=34.
• 答案:B
整理课件
10
3.已知△ABC 中,b=2,c= 3,三角形面积 S=32,
则角 A 等于( )
A.30°
B.60°
C.30°或 150°
D.60°或 120°
• 在△ABC中,已知(a2+b2)sin(A-B)=(a2 -b2)sin(A+B),试判断该三角形的形状.
•【思路导引】 利用正弦定理或余弦定理进 行边角互化,转化为关于边或角的关系,然后 再解决问题.在转化中,常向角的方向转化, 因为有众多的三角公式可以使用.
整理课件
19
•【解析】 法一:条件可化为:
解析:由 S=12bcsinA 可得 sinA= 23, ∴A=60°或 120°.
•答案:D
整理课件
11
•4.已知△ABC的三个内角A、B、C成等差数 列,且AB=1,BC=4,则边BC上的中线AD的 长为________.
解析:如图所示,B=60°,AB=1,BD=2. 由余弦定理知 AD= AB2+BD2-2AB·BD·cos60° = 12+22-2×1×2cos60°= 3.
定理
正弦定理
余弦定理
sianA=sibnB=sincC=2R
a2= b2+c2-2bccosA
.
内容
b2= a2+c2-2accosB
.
c2= a2+b2-2abcosC
.
整理课件
4
定理
正弦定理
余弦定理
①a= 2RsinA,b=2RsinB ,
变形形式
c=2RsinC .a
b
②sinA=c 2R ,sinB=2R ,
答案: 3
整理课件
12
(2009·天津高考)在△ABC 中,BC= 5,AC=3,sinC =2sinA.
(1)求 AB 的值; (2)求 sin(2A-π4)的值.
整理课件
13
•【思路导引】 (1)由正弦定理可求AB;(2)由 余弦定理求cosA,进而求结论.
【解析】 (1)在△ABC 中,根据正弦定理,
•第六节 正弦定理和余弦定理
整理课件
1
•点 击 考 纲
•掌握正弦定理、余弦定理,并能解决一些简 单的三角形度量问题.
整理课件
2
•关 注 热 点
•1.利用正、余弦定理求三角形中的边、角及其 面积是高考考查的热点.
•2.常与三角恒等变换相结合,综合考查边角互 化,三角形形状的判断等.
整理课件
3
•1.正弦定理和余弦定理
sinC=2R (其中R是△ABC
外接圆半径) ③a∶b∶c=
cosA= cosB=
b2+c2-a2 2bc
a2+c2-b2 2ac
; ;
sinA∶sinB∶sinC ④asinB =bsinA,bsinC=csinB,
a2+b2-c2 cosC= 2ab

asinC=csinA
解决解斜
三角形的 问题
所以
sin(2A-π4)=sin2Acosπ4-cos2Asinπ4=
2 10 .
•【方法探究】 (1)正弦、余弦定理是处理三 角形有关问题的有力工具,有时还要结合三角 形的其他性质来处理,如大角对大边,三角形 内角和定理等.
•(2)正弦定理中的比值2R在解题中常用.
整理课件
15
1.在△ABC 中,a、b、c 分别是∠A、∠B、∠C 的对 边长,已知 a、b、c 成等比数列,且 a2-c2=ac-bc.
①已知两角和任一边,求另 ①已知三边,求各角;
一角和其他两条边.
②已知两边和它们的夹
②已知两边和其中一边的对 角,求第三边和其他两
角,求另一边和其整他理课两件角. 个角.
5
•在△ABC中,sinA>sinB与A>B间有何关系?
提示:在△ABC 中,sinA>sinB 是 A>B 的充要条件.因 为 sinA>sinB⇔2aR>2bR⇔a>b⇔A>B.
(1)求∠A 的大小; (2)求bsicnB的值.
整理课件
16
解析:(1)因为 a、b、c 成等比数列,所以 b2=ac,
又因为 a2-c2=ac-bc,
所以 b2+c2-a2=bc.
在△ABC 中,由余弦定理得 cosA=b2+2cb2c-a2=12,
所以∠A=60°. (2)法一:在△ABC 中,
相关文档
最新文档