正弦定理和余弦定理详细讲解

合集下载

正弦定理和余弦定理详细讲解

正弦定理和余弦定理详细讲解

高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.基础知识梳理1. 正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin _B ∶sin _C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,解决不同的三角形问题.2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4. 在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >b解的个数一解两解一解一解[难点正本 疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B ;tanA+tanB+tanC=tanA ·tanB ·tanC ;在锐角三角形中,cos A<sinB,cosA<sinC ·2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.例1.已知在ABC ∆中,10c =,45A =,30C =,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b .解析:sin sin a cA C=, ∴sin 10sin 45102sin sin 30c A a C ⨯===,∴ 180()105B A C =-+=, 又sin sin b cB C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯+====⨯=+. 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。

正弦定理和余弦定理

正弦定理和余弦定理

正弦定理和余弦定理正弦定理是什么正弦定理是三角学中的一个基本定理,它定义了在任意三角形中,角A、B、C所对的边长a、b、c与它们的正弦值之比相等,都等于外接圆的直径,即a/sinA = b/sinB = c/sinC = 2r=D(r为外接圆半径,D为直径)。

这个定理也可以表达为在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。

正弦定理的应用非常广泛,在解决三角形问题时非常有用。

例如,可以用正弦定理来求解三角形的边长或角的大小,或者判断一个三角形是否可能存在等。

余弦定理是什么余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广。

余弦定理中角条件是唯一的,所以角的对边在等式左边,两邻边及角的余弦在等式右边。

等式右边除夹角余弦值外的部分,可以看作是差的完全平方公式,可以辅助我们记忆。

正弦定理的证明方法方法1、直接过三角形一顶点如C作对边AB的垂线(设垂线长为h),则sinA=h/b,sinB=h/a,所以,sinA/a=sinB/b,同理可得sinC/c=sinB/b,因此a/sinA=b/sinB=c/sinC。

方法2、利用三角形面积公式:S=1/2absinC=1/2bcsinA=1/2casinB,整理即得:a/sinA=b/sinB=c/sinC。

方法3:作三角形的外接圆,过B作边BC的垂线交圆于D,连接CD,因圆周角为直角,则CD长为直径(不妨直径长度设为d)。

因圆周角相等,即角D=角A,所以sinA=sinD=BC/CD=a/d,同理可证sinB=b/d,sinC=c/d.所以,a/sinA=b/sinB=c/sinC。

方法4.还有一种向量的方法,在旧版课本上。

正弦定理证明具体步骤步骤1.在锐角△ABC中,设BC=a,AC=b,AB=c。

作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到 a/sinA=b/sinB同理,在△ABC中, b/sinB=c/sinC步骤2.证明a/sinA=b/sinB=c/sinC=2R:如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。

正弦定理和余弦定理考点解读

正弦定理和余弦定理考点解读

基础梳理1.正弦定理:a sin A =b sin B =c sin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab. 3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r . 4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角 A 为钝角或直角图形续表关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的 个数 无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .两类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、两解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角求第三边和其他两角;(2)已知三边,求各角.两种途径 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教B 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ).A .5 2B .10 2C.1063D .5 6 解析 由A +B +C =180°,知C =45°,由正弦定理得:a sin A =c sin C, 即1032=c 22.∴c =1063. 答案 C2.在△ABC 中,若sin A a =cos B b,则B 的值为( ). A .30° B .45° C .60° D .90°解析 由正弦定理知:sin A sin A =cos B sin B,∴sin B =cos B ,∴B =45°. 答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ).A .30°B .45°C .60°D .75°解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ). A .3 3 B .2 3 C .4 3 D. 3解析 ∵cos C =13,0<C <π, ∴sin C =223, ∴S △ABC =12ab sin C =12×32×23×223=4 3. 答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab ,∴cos C =a 2+b 2-c 22ab =-32, 故C =150°为三角形的最大内角.答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°, ∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =6-22. (1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角,且sin A cos A=2,sin 2A +cos 2A =1, 联立解得sin A =255, 再由正弦定理得a sin A =b sin B, 代入数据解得a =210.答案 255210 考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b 2a +c. (1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.[审题视点] 由cos B cos C =-b 2a +c,利用余弦定理转化为边的关系求解. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac, cos C =a 2+b 2-c 22ab. 将上式代入cos B cos C =-b 2a +c得: a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c, 整理得:a 2+c 2-b 2=-ac .∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12. ∵B 为三角形的内角,∴B =23π. (2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A 2+cos A =0. (1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.解 (1)由2cos 2 A 2+cos A =0,得1+cos A +cos A =0,即cos A =-12, ∵0<A <π,∴A =2π3. (2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3, 则a 2=(b +c )2-bc ,又a =23,b +c =4,有12=42-bc ,则bc =4,故S △ABC =12bc sin A = 3. 考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A .当cos A =0,即A =π2时,B =π6, a =433,b =233; 当cos A ≠0时,得sin B =2sin A ,由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a , 解得⎩⎨⎧ a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题.【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2. (1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.解 (1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103, 所以a =53. (2)因为△ABC 的面积S =12ac ·sin B ,sin B =35, 所以310ac =3,ac =10. 由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20. 所以(a +c )2-2ac =20,(a +c )2=40.所以a +c =210.阅卷报告4——忽视三角形中的边角条件致错【问题诊断】 考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.【防范措施】 解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件.【示例】►(2011·安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错因 忽视三角形中“大边对大角”的定理,产生了增根.实录 由1+2cos(B +C )=0,知cos A =12,∴A =π3, 根据正弦定理a sin A =b sin B得: sin B =b sin A a =22,∴B =π4或3π4. 以下解答过程略.正解 ∵在△ABC 中,cos(B +C )=-cos A ,∴1+2cos(B +C )=1-2cos A =0,∴A =π3. 在△ABC 中,根据正弦定理a sin A =b sin B, ∴sin B =b sin A a =22.∵a >b ,∴B =π4,∴C =π-(A +B )=512π. ∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 【试一试】 (2011·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2 A =2a .(1)求b a; (2)若c 2=b 2+3a 2,求B .[尝试解答] (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .故sin B =2sin A ,所以b a= 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a 2c. 由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.。

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一. 正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R( 其中R 是三角形外接圆的半径)sin A sinB sinC2. 变形:1)a b c a b csin sin sinC sin sin sinC 2)化边为角:a:b:c sin A:sin B:sinC;a sin A;b sin B a sin Ab sinBc sinC c sin C3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC4)化角为边:sin A a;sin B b ; sin A asin B b sinC c sinC c5)化角为边:sin A a sinB b,sinC c2R2R2R3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A; 求出 b 与cc sinC ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边c sinC4. △ABC中,已知锐角A,边b,则① a bsin A 时,B 无解;② a bsin A 或 a b 时, B 有一个解;③ bsinA a b 时, B 有两个解。

如:①已知 A 60 ,a 2,b 2 3,求 B (有一个解 )②已知 A 60 ,b 2,a 2 3,求 B (有两个解 ) 注意:由正弦定理求角时,注意解的个数。

高中数学知识点总结正弦定理与余弦定理

高中数学知识点总结正弦定理与余弦定理

高中数学知识点总结正弦定理与余弦定理正弦定理与余弦定理是高中数学中的重要知识点,用于求解不规则三角形的边长和角度。

本文将对这两个定理进行详细总结与讲解。

一、正弦定理1.1 定义正弦定理是指在任意三角形中,三条边与其对应的角的正弦值之间的关系。

设三角形的三边分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC1.2 推导我们通过利用三角形的面积公式S=1/2 * a * b * sinC,并将其转换为对角线的形式,可以得到正弦定理的推导过程。

1.3 应用正弦定理可以用于求解不规则三角形的边长和角度。

当我们已知三条边或者两条边和夹角时,可以利用正弦定理求解未知的边长或者角度。

二、余弦定理2.1 定义余弦定理是指在任意三角形中,三条边和它们对应的角之间的关系。

设三角形的三边分别为a、b、c,对应的角度为A、B、C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cosC2.2 推导我们可以通过利用向量的几何关系,将余弦定理的表达式推导出来。

这个过程较为繁琐,这里就不做详细讲解。

2.3 应用余弦定理可以用于求解不规则三角形的边长和角度。

当我们已知三条边或者两条边和夹角时,可以利用余弦定理求解未知的边长或者角度。

三、正弦定理与余弦定理的比较3.1 适用范围正弦定理适用于任意三角形,而余弦定理只适用于任意三角形,不能用于直角三角形。

3.2 计算难度正弦定理的计算相对简单,只需要记住一个公式,而余弦定理的计算稍复杂,需要使用开方和乘法等运算。

3.3 精度误差由于余弦定理中涉及到平方运算,可能会带来一定的误差,而正弦定理中没有涉及到平方运算,计算结果更加准确。

3.4 应用场景正弦定理在计算不规则三角形的边长和角度时较为常用,尤其适用于已知两边和夹角的情况。

而余弦定理在计算不规则三角形的边长和角度时同样常用,特别适用于已知三边的情况。

三角形中的正弦定理与余弦定理

三角形中的正弦定理与余弦定理

三角形中的正弦定理与余弦定理正文:三角形中的正弦定理与余弦定理三角形是几何学中最基本的图形之一,它包含了很多重要的定理和公式。

在三角形的研究中,正弦定理和余弦定理是两个非常重要且常用的公式。

它们可以帮助我们计算三角形的各种属性,如边长、角度等。

本文将详细介绍这两个定理的含义、推导过程,并给出实际应用的一些例子。

一、正弦定理正弦定理是指在一个三角形中,三条边与三个对应的正弦值之间存在一定的关系。

设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,sinA、sinB、sinC分别为三个角的正弦值。

这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的比例关系。

如果我们已知了三角形的一个角度和两个对应的边长,就可以利用正弦定理来计算第三个边的长度。

例如,已知三角形ABC中,角A的度数为30°,边AB的长度为3,边AC的长度为4,我们可以利用正弦定理求解边BC的长度。

根据正弦定理,我们有:BC/sinA = AC/sinC代入已知条件,得到:BC/sin30° = 4/sinC进一步计算可得:BC = 4*sin30°/sinC ≈ 4*0.5/sinC = 2/sinC通过这个简单的计算过程,我们可以求解出BC的长度。

正弦定理在实际应用中非常有用,可以帮助我们解决各种与三角形边长相关的问题。

二、余弦定理余弦定理是指在一个三角形中,三条边与一个对应的角度之间存在一定的关系。

设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则余弦定理可以表示为:c^2 = a^2 + b^2 - 2ab*cosC这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的关系。

利用余弦定理,我们可以计算三角形的一个边长,当已知该边的两个对应角度和另一边的长度时。

例如,已知三角形ABC中,边AB的长度为3,边AC的长度为4,角C的度数为60°,我们可以利用余弦定理来计算边BC的长度。

余弦定理正弦定理公式

余弦定理正弦定理公式

余弦定理正弦定理公式在几何学中,余弦定理和正弦定理是两个重要的公式。

它们在解决三角形和向量的问题时非常有用。

下面,我们来详细了解一下这两个公式。

一、余弦定理余弦定理是用来计算三角形边长和角度之间关系的公式。

具体来讲,它用于计算一个三角形的某个角度的余弦值。

用符号表示,余弦定理的表达式如下:c² = a² + b² - 2ab cos(C)其中,a、b和c是一个三角形的三条边的长度,C是它们之间的夹角,cos是余弦函数。

通过余弦定理,我们可以计算出一个三角形的缺失部分。

例如,当我们已知三角形的两条边和它们之间的夹角时,可以使用余弦定理来计算第三条边的长度。

同样地,如果我们已知三角形的三条边长度,可以使用余弦定理来计算出一个角度的大小。

二、正弦定理正弦定理也是用来计算三角形边长和角度之间关系的公式。

但它和余弦定理不同,它用于计算三角形内一个角的正弦值或计算三角形边长之间的比例关系。

具体来讲,正弦定理的表达式如下:a / sin(A) =b / sin(B) =c / sin(C)其中,a、b和c是一个三角形的三条边的长度,A、B和C是分别位于它们对应边的顶点处的角度。

正弦定理可以帮助我们计算三角形内角度或边长之间的比例关系。

例如,当我们已知一个角的大小和它对应的边长时,我们可以使用正弦定理来计算出另外两条边的长度。

同样地,如果我们已知三角形内三个角的大小,也可以使用正弦定理来计算出三条边的长度比例关系。

通过掌握余弦定理和正弦定理,我们可以在解决三角形和向量问题时更加得心应手。

同时,这两个公式也对我们理解和应用数学和物理学知识有着极大的指导意义。

三角函数的正弦定理与余弦定理

三角函数的正弦定理与余弦定理

三角函数的正弦定理与余弦定理三角函数是数学中重要的概念和工具,可以用来描述和计算各种角度和三角形的相关性质。

在三角函数中,正弦定理和余弦定理是两个基本定理,它们在解决三角形问题中起着重要作用。

接下来,我们将详细介绍正弦定理和余弦定理的定义及应用。

一、正弦定理正弦定理基于三角形的边与角之间的关系,给出了它们之间的数学表达式。

对于任意一个三角形ABC,其三个内角分别为∠A,∠B,∠C,对应的边长分别为a,b,c。

则有以下正弦定理的表述:a/sin∠A = b/sin∠B = c/sin∠C = 2R (R为三角形外接圆的半径)该定理表明,在三角形中,任意一条边的长度和其对应的角的正弦值之间存在一个比例关系,且该比例关系对于所有三边和三角角度都成立。

这个比例关系可以用来求解未知边长或角度大小,或者验证已知三角形的性质。

二、余弦定理余弦定理是另一个三角形中边与角之间的关系定理,它描述了三角形的边与角之间的关系,并且与正弦定理有一定的联系。

对于任意一个三角形ABC,其三个内角分别为∠A,∠B,∠C,对应的边长分别为a,b,c。

则有以下余弦定理的表述:c² = a² + b² - 2abcos∠C该定理表明,在三角形中,任意一边的平方等于其他两边平方之和减去两倍的两边的乘积与对应角的余弦值的乘积。

该定理在解决三角形问题中应用广泛,可以求解未知边长或角度大小,或者验证已知三角形的性质。

三、正弦定理与余弦定理的应用举例1. 求解三角形的边长和角度通过正弦定理和余弦定理,我们可以求解三角形中的各边长和角度大小。

以已知两边和一个夹角的情况为例,通过正弦定理可以求解出第三条边的长度,而通过余弦定理可以求解出未知角的大小。

这样,我们可以完整地确定三角形的大小和形状。

2. 验证三角形的性质在几何学中,我们有时需要验证一个三角形是否满足某些性质,比如是否为直角三角形或等边三角形。

通过正弦定理和余弦定理,我们可以计算出三角形的各边长和角度大小,然后根据已知的性质进行验证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考风向1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.学习要领1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.基础知识梳理1. 正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin _B ∶sin _C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,解决不同的三角形问题.2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4. 在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >b解的个数一解两解一解一解[难点正本 疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B ;tanA+tanB+tanC=tanA ·tanB ·tanC ;在锐角三角形中,cos A<sinB,cosA<sinC ·2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.例1.已知在ABC ∆中,10c =,45A =,30C =,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b .解析:sin sin a cA C=, ∴sin 10sin 45102sin sin 30c A a C ⨯===, ∴ 180()105B A C =-+=, 又sin sin b cB C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯+====⨯=+. 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。

【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理,00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A【变式2】在∆ABC 中,已知075B =,060C =,5c =,求a 、A . 【答案】0180()180(7560)45A B C =-+=-+=,根据正弦定理5sin 45sin 60o oa =,∴563a =. 【变式3】在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,求::abc 【答案】根据正弦定理sin sin sin a b c A B C==,得::sin :sin :sin 1:2:3a b c A B C ==.例2.在3,60,1ABC b B c ∆===中,,求:a 和A ,C .思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .解析:由正弦定理得:sin sin b cB C=, ∴sin 1sin 601sin 23c B C b ⨯===, (方法一)∵0180C <<, ∴30C =或150C =, 当150C =时,210180B C +=>,(舍去); 当30C =时,90A =,∴222a b c =+=. (方法二)∵b c >,60B =, ∴C B <,∴60C <即C 为锐角, ∴30C =,90A = ∴222a b c =+=. 总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。

2. 在利用正弦定理求角C 时,因为0sin sin(180)C C =-,所以要依据题意准确确定角C 的范围,再求出角C .3.一般依据大边对大角或三角形内角和进行角的取舍. 类型二:余弦定理的应用:例3.已知ABC ∆中,3AB =、37BC =、4AC =,求ABC ∆中的最大角。

思路点拨: 首先依据大边对大角确定要求的角,然后用余弦定理求解. 解析:∵三边中37BC =最大,∴BC 其所对角A 最大,根据余弦定理:22222234(37)1cos 22342AB AC BC A AB AC +-+-===-⨯⨯, ∵ 0180A <<, ∴120A = 故ABC ∆中的最大角是120A =. 总结升华:1.ABC ∆中,若知道三边的长度或三边的关系式,求角的大小,一般用余弦定理;2.用余弦定理时,要注意公式中的边角位置关系. 举一反三:【变式1】已知ABC ∆中3a =, 5b =, 7c =, 求角C .【答案】根据余弦定理:2222225371cos 22352a b c C ab +-+-===-⨯⨯, ∵0180C <<, ∴120oC =【变式2】在ABC ∆中,角,,A B C 所对的三边长分别为,,a b c ,若::a b c =6:2:31+(),求ABC ∆的各角的大小.【答案】设6a k =,2b k =,()31c k =+,()0k >根据余弦定理得:()()263142cos 22316B ++-==+, ∵0180B <<,∴45B =; 同理可得60A =; ∴18075C A B =--=【变式3】在ABC ∆中,若222a b c bc =++,求角A .【答案】∵222b c a bc +-=-, ∴2221cos 22b c a A bc +-==- ∵0180A <<, ∴120A = 类型三:正、余弦定理的综合应用例4.在ABC ∆中,已知23=a ,62=+c ,045B =,求b 及A .思路点拨: 画出示意图,由其中的边角位置关系可以先用余弦定理求边b ,然后继续用余弦定理或正弦定理求角A .解析:⑴由余弦定理得:2222cos b a c ac B =+-=220(23)(62)223(62)cos45++-⋅⋅+ =212(62)43(31)++-+ =8 ∴2 2.=b⑵求A 可以利用余弦定理,也可以利用正弦定理: (法一:余弦定理)∵222222(22)(62)(23)1cos 22222(62)b c a A bc +-++-===⨯⨯+, ∴060.=A (法二:正弦定理)∵0233sin sin sin45222a A Bb ==⋅=又∵62 2.4 1.4 3.8+>+=,2321.8 3.6<⨯= ∴a <c ,即00<A <090, ∴060.=A总结升华:画出示意图,数形结合,正确选用正弦、余弦定理,可以使解答更快、更好. 举一反三:【变式1】在ABC ∆中,已知3b =, 4c =, 0135A =.求B 和C . 【答案】由余弦定理得:21225135cos 43243222+=⨯⨯-+=oa , ∴48.621225≈+=a由正弦定理得:sin 3sin135sin 0.327ob A B a a==≈, 因为0135A =为钝角,则B 为锐角, ∴0/197B =. ∴0/180()2553C A B =-+=.【变式2】在ABC ∆中,已知角,,A B C 所对的三边长分别为,,a b c ,若2a =,22b =,62c =-,求角A 和sin C【答案】根据余弦定理可得:()222884343cos 2222262b c a A bc +-+--===⨯⨯- ∵0180A <<, ∴ 30A = ;∴由正弦定理得:()()62sin 3062sin sin 24c AC a--===.其他应用题详解一、选择题(本大题共6小题,每小题5分,共30分)1.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a kma km a kmD .2a km解析 利用余弦定理解△ABC .易知∠ACB =120°,在△ACB 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×⎝ ⎛⎭⎪⎫-12=3a 2,∴AB =3a . 答案 B2.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( )A .2 2 kmB .3 2 kmC .3 3 kmD .2 3 km解析 如图,由条件知AB =24×1560=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.由正弦定理知BS sin30°=AB sin45°,所以BS =ABsin45°sin30°=3 2.答案 B3.轮船A 和轮船B 在中午12时离开海港C ,两艘轮船航行方向的夹角为120°,轮船A 的航行速度是25海里/小时,轮船B 的航行速度是15海里/小时,下午2时两船之间的距离是( )A .35海里B .352海里C .353海里D .70海里解析 设轮船A 、B 航行到下午2时时所在的位置分别是E ,F ,则依题意有CE =25×2=50,CF =15×2=30,且∠ECF =120°,EF =CE 2+CF 2-2CE ·CF cos120° =502+302-2×50×30cos120°=70. 答案 D4.(2014·济南调研)为测量某塔AB 的高度,在一幢与塔AB 相距20 m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是( )A .20⎝ ⎛⎭⎪⎫1+33 mB .20⎝ ⎛⎭⎪⎫1+32 mC .20(1+3) mD .30 m解析 如图所示,由已知可知,四边形CBMD 为正方形,CB =20 m ,所以BM =20 m .又在Rt △AMD 中,DM =20 m ,∠ADM =30°, ∴AM =DM tan30°=2033(m). ∴AB =AM +MB =2033+20 =20⎝ ⎛⎭⎪⎫1+33(m).答案 A5.(2013·天津卷)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( )解析 由余弦定理AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =(2)2+32-2×2×3×22=5,所以AC =5,再由正弦定理:sin ∠BAC =sin ∠ABCAC ·BC =3×225=31010.答案 C6.(2014·滁州调研)线段AB 外有一点C ,∠ABC =60°,AB =200 km ,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则运动开始多少h 后,两车的距离最小( )B .1D .2解析 如图所示,设t h 后,汽车由A 行驶到D ,摩托车由B 行驶到E ,则AD =80t ,BE =50t .因为AB =200,所以BD =200-80t ,问题就是求DE 最小时t 的值.由余弦定理,得DE 2=BD 2+BE 2-2BD ·BE cos60°=(200-80t )2+2 500t 2-(200-80t )·50t =12 900t 2-42 000t +40 000.当t=7043时,DE最小.答案C二、填空题(本大题共3小题,每小题5分,共15分)7.已知A,B两地的距离为10 km,B,C两地的距离为20 km,现测得∠ABC =120°,则A、C两地的距离为________km.解析如右图所示,由余弦定理可得:AC2=100+400-2×10×20×cos120°=700,∴AC=107(km).答案1078.如下图,一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距82n mile.此船的航速是________n mile/h.解析设航速为v n mile/h在△ABS中,AB=12v,BS=82,∠BSA=45°,由正弦定理得:82sin30°=12vsin45°,∴v=32(n mile/h).答案329.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.解析在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,BCsin45°=CDsin30°,BC=CD sin45°sin30°=102(米).在Rt△ABC中,tan60°=ABBC,AB=BC tan60°=106(米).答案106三、解答题(本大题共3小题,每小题10分,共30分)10.(2014·台州模拟)某校运动会开幕式上举行升旗仪式,旗杆正好处于坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以多大的速度匀速升旗解在△BCD中,∠BDC=45°,∠CBD=30°,CD=106,由正弦定理,得BC=CD sin45°sin30°=20 3.在Rt△ABC中,AB=BC sin60°=203×32=30(米),所以升旗速度v=ABt=3050=(米/秒). 11.如图,A 、B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间解 由题意,知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理,得DB sin ∠DAB=AB sin ∠ADB,于是DB =AB ·sin∠DAB sin ∠ADB =53+3·sin45°sin105°=53+3·sin45°sin45°cos60°+cos45°sin60°=533+13+12=103(海里).又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC=203(海里),在△DBC中,由余弦定理,得CD2=BD2+BC2-2BD·BC·cos∠DBC=300+1 200-2×103×203×12=900.得CD=30(海里),故需要的时间t=3030=1(小时),即救援船到达D点需要1小时.12.(2013·江苏卷)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B 沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=1213,cos C=35.(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内解(1)在△ABC中,因为cos A=1213,cos C=35,所以sin A=513,sin C=45.从而sin B=sin[π-(A+C)]=sin(A+C)=sin A cos C+cos A sin C=513×35+1213×45=6365.由正弦定理ABsin C=ACsin B,得AB=ACsin B×sin C=1 260 63 65×45=1 040(m).所以索道AB的长为1 040 m.(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,所以由余弦定理得d2=(100+50t)2+(130t)2-2×130t×(100+50t)×1213=200(37t2+70t+50),因0≤t≤1 040130,即0≤t≤8,故当t=3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BCsin A=ACsin B,得BC=ACsin B×sin A=1 2606365×513=500(m).乙从B出发时,甲已走了50×(2+8+1)=550(m),还需走710 m才能到达C.设乙步行的速度为v m/min,由题意得-3≤500v-71050≤3,解得1 25043≤v≤62514,所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速1 250 43,62514](单位:m/min)范围内.度应控制在[。

相关文档
最新文档