泉州市2018届高三单科质量检查理科数学(试题+解析)(2018.01)
泉州市3月质检(理科数学)参考答案与评分细则(简案终稿)

泉州市2018届普通高中毕业班质量检查理科数学试题参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可在评卷组内讨论后根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步仅出现严谨性或规范性错误时,不要影响后续部分的判分;当考生的解答在某一步出现了将影响后续解答的严重性错误时,后继部分的解答不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.(1)B (2)B (3)C (4)A (5)B (6)C (7)B(8)C(9)C(10)D(11)B(12)D二、填空题:本大题共4小题,每小题5分.(13)5 ; (14)6; (15)4; (16) 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)解:(Ⅰ)由已知1,n a ,n S 成等差数列,得21n n a S =+…①, ........................................................ 1分当1n = 时,1121a S =+,所以11a =; ............................................................................. 2分 当2n ≥时,1121n n a S --=+…②, ....................................................................................... 3分 ①②两式相减得122n n n a a a --=,所以12nn a a -=, ............................................................ 4分 则数列{}n a 是以11a =为首项,2q =为公比的等比数列,............................................... 5分所以1111122n n n n a a q ---==⨯=. ......................................................................................... 6分(Ⅱ)由(Ⅰ)得()()()()11122 112121nn n n nn n a b a a ++++==---- ................................................. 7分 1112121n n +=---, ......................................................................................... 9分 所以,12n b b b +++ 2231111111212121212121n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭11121n +=--.............................................................................................. 11分因为1221213n +-≥-=,1110213n +<≤-, 所以12111321n +≤-<-,即证得12213n b b b ≤+++<. .......................................... 12分(18)(本小题满分12分)解:(Ⅰ)连结CE .在四边形ABCD 中,//AD BC ,90BAD ∠=︒,23AB,4BC ,6AD ,13AEAD , ∴12A E AE ==,4BE DE ==, ....................................................................................... 1分 ∴四边形BCDE 为菱形,且BCE ∆为等边三角形.又∵P 为BE 的中点,∴CP BE ⊥. ....................................................................................... 2分 ∵1122A P BE ==,CP =14A C ,满足22211A P CP A C +=,∴1CP A P ⊥, ............................................................................................................................ 3分 又∵1A PBE P =,∴CP ⊥平面1A BE . ............................................................................ 4分∵CP ⊂平面1A CP ,∴平面1A CP平面1A BE . .............................................................. 5分(Ⅱ)以P 为原点,向量,PB PC 的方向分别为x 轴、y 轴的正方向建立空间直角坐标系P xyz -(如图), ...................................................................................................................... 6分 则()0,0,0P (0,C,(4,D -,(1A -,所以(1PA =-,(4,PD =-, ...................................................................... 7分 设(),,x y z =n 是平面1A PD 的一个法向量,则10,0,PA PD ⎧⋅=⎪⎨⋅=⎪⎩n n即0,40,x x ⎧-=⎪⎨-+=⎪⎩ ....................................................................................... 8分 取1z =,得2,1)=n . ...................................................................................................... 9分 取平面1A BE 的一个法向量()0,1,0=m . ............................................................................ 10分∵cos ,222===n m n m n m , .................................................................................. 11分 又二面角1B A P D --的平面角为钝角, 所以二面角1BA P D --的余弦值为 ....................................................................... 12分D(19)(本小题满分12分)解:(Ⅰ)由图19-2可知,100株样本树苗中高度高于1.60的共有15株,以样本的频率估计总体的概率,可得这批树苗的高度高于1.60的概率为0.15. ............. 1分 记X 为树苗的高度,结合图19-1可得:2(1.20 1.30)(1.70 1.80)0.02100f X f X <≤=<≤==, ............................................... 2分 13(1.30 1.40)(1.60 1.70)0.13100f X f X <≤=<≤==, ............................................... 3分1(1.40 1.50)(1.50 1.60)(120.0220.13)0.352f X f X <≤=<≤=-⨯-⨯=, .......... 4分又由于组距为0.1,所以0.2, 1.3, 3.5a b c ===. .............................................................. 5分 (Ⅱ)以样本的频率估计总体的概率,可得:从这批树苗中随机选取1株,高度在[1.40,1.60]的概率(1.40 1.60)(1.40 1.50)(1.50 1.60)0.7P X f X f X <≤=<≤+<≤=. ............ 6分 因为从这批树苗中随机选取3株,相当于三次重复独立试验,所以随机变量ξ服从二项分布(3,0.7)B , ............................................................................ 7分故ξ的分布列为:33()C 0.30.7(0,1,2,3)n n nP n n ξ-==⋅⋅=, ......................................... 8分即:.................................................................................................................................................... 8分()00.02710.18920.44130.343 2.1E ξ=⨯+⨯+⨯+⨯=(或()30.7 2.1E ξ=⨯=). .............................................................................................. 9分 (III )由(1.5,0.01)N ,取 1.50μ=,0.1σ=,由(Ⅱ)可知,()P X μσμσ-<≤+=(1.40 1.60)0.7>0.6826P X <≤=, ...... 10分 又结合(Ⅰ),可得:(22)P X μσμσ-<≤+=(1.30 1.70)P X <≤2(1.60 1.70)(1.40 1.60)f X P X =⨯<≤+<≤0.96>0.9544=, ................................................................... 11分所以这批树苗的高度满足近似于正态分布(1.5,0.01)N 的概率分布,应认为这批树苗是合格的,将顺利获得该公司签收. .............................................................................. 12分(20)(本小题满分12分)解:(Ⅰ)设M 点坐标()00,x y ,N 点坐标()0,0x ,P 点坐标(),x y ,由3NP NM =可得00=,,x x y y ⎧⎪⎨=⎪⎩..................................................................................... 2分 因为M 在圆C :224xy +=上运动,所以点P 的轨迹E 的方程为22143x y +=.... ..................................................................... 4分 (Ⅱ)当直线l 的斜率不存在时,直线l 的方程为0x =,此时AB =,4ST =,所以AB ST ⋅= ......................................................................................................... 5分 当直线l 的斜率存在时,设直线l 的方程为1y kx =+,()11,A x y ,()22,B x y ,联立方程组221143y kx x y =+⎧⎪⎨+=⎪⎩,,消去y ,整理得()2243880k x kx ++-=, ........................ 6分因为点()0,1Q 在椭圆内部,所以直线l 与椭圆恒交于两点, 由韦达定理,得122843k x x k -+=+,122843x x k -=+, ..................................................... 7分所以AB ==,=, ........ 8分 在圆C :224x y +=,圆心()0,0到直线l 的距离为d =,所以ST == ................................................................................ 9分所以AB ST ⎡⋅=⎣. ....................... 11分又因为当直线l 的斜率不存在时,AB ST ⋅=所以AB ST ⋅的取值范围是⎡⎣. .................................................................... 12分(21)(本小题满分12分)解:(Ⅰ)()f x '()()()e 2e x x ax x a =-+-- ...................................................................................... 1分()()1e 21x x a x =--- ()()1e 2x x a =--.因为0a >,由()0f x '=得,1x =或ln 2x a =.①当e 2a =时,()()()1e e 0xf x x '=--≥,()f x 单调递增,故()f x 无极值. ....... 2分 ②当e0a <<时,ln 21a <.x ,()f x ',()f x 的关系如下表:故()f x 有极大值()()2ln 2ln 22f a a a =--,极小值()1e f a =-. ..................... 4分 ③当ea >时,ln 21a >.x ,()f x ',()f x 的关系如下表:故()f x 有极大值()1e f a =-,极小值()()2ln 2ln 22f a a a =--. ................. 5分 综上:当e 02a <<时,()f x 有极大值()2ln 22a a --,极小值e a -; 当e2a =时,()f x 无极值; 当e 2a >时,()f x 有极大值e a -,极小值()2ln 22a a --. .................... 6分(Ⅱ)令()()e g x f x a =-+,则()1()0x g x -≥.(i )当0a ≤时,e 20xa ->,所以当1x <时,()()(1)(e 2)0x g x f x x a ''==--<,()g x 单调递减, 所以()()10g x g >=,此时()1()0x g x -<,不满足题意. ................................ 8分 (ii )由于()g x 与()f x 有相同的单调性,因此,由(Ⅰ)知:①当e2a =时,()g x 在R 上单调递增,又()10g =, 所以当1x ≥时,()0g x ≥;当1x <时,()0g x <.故当e2a =时,恒有()1()0x g x -≥,满足题意. ........................................... 9分 ②当e02a <<时,()g x 在()ln 2,1a 单调递减,所以当()ln 2,1x a ∈时,()(1)0g x g >=,此时()1()0x g x -<,不满足题意. ................................................................ 10分 ③当e2a >时,()g x 在()1,ln 2a 单调递减, 所以当()1,ln 2x a ∈时,()(1)0g x g <=,此时()1()0x g x -<,不满足题意. ................................................................ 11分综上所述:e 2a =. .............................................................................................. 12分请考生在第(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. (22)(本小题满分10分)选修44-:坐标系与参数方程【试题简析】解法一:(Ⅰ)由4cos ρθ=,可得24cos ρρθ=,所以224x y x +=,即2240x y x +-=, .............................................................................................. 1分当π4α=时,直线l的参数方程1,21,x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),化为直角坐标方程为y x =, ........... 2分联立22,40,y x x y x =⎧⎨+-=⎩解得交点为(0,0)或(2,2), ............................................................................. 3分 化为极坐标为(0,0),π)4............................................................................................................... 5分(Ⅱ)由已知直线恒过定点(1,1)P ,又021=+t t ,由参数方程的几何意义知P 是线段AB 的中点, ............................................................................................................................................................... 6分 曲线C 是以(2,0)C 为圆心,半径r 2=的圆,且||PC =, .......................................................... 8分由垂径定理知:||AB === ............................................................... 10分 解法二:(Ⅰ)依题意可知,直线l 的极坐标方程为π(R)4θρ=∈, ................................................. 1分 当0ρ>时,联立π,44cos θρθ,⎧=⎪⎨⎪=⎩解得交点π)4, ........................................................................ 3分 当0ρ=时,经检验(0,0)满足两方程, ................................................................................................. 4分 当0ρ<时,无交点;综上,曲线C 与直线l 的点极坐标为(0,0),π)4. .................................................................... 5分(Ⅱ)把直线l 的参数方程代入曲线C ,得22(sin cos )20t t αα+--=, ..................................... 7分可知120t t +=,122t t ⋅=-, ................................................................................................................... 8分所以12||AB t t =-==.................................................................................. 10分 (23)(本小题满分10分)选修45-:不等式选讲【试题简析】解:(Ⅰ)当1a =时,()12f x x x =-++, ①当2x -≤时,()21f x x =--,令()5f x ≤ 即215x --≤,解得32x --≤≤, ................................................................................... 1分 ②当21x -<<时,()3f x =,显然()5f x ≤成立,所以21x -<<, .................................................................................................... 2分③当1x ≥时,()21f x x =+,令()5f x ≤ 即215x +≤,解得12x ≤≤, ............................................................................................ 3分综上所述,不等式的解集为{}|32x x -≤≤. ........................................................................................ 5分 (Ⅱ)因为()2()(2)2f x x a x x a x a =-++--+=+≥, ........................................................ 7分 因为0R x ∃∈,有()21f x a +≤成立,所以只需221a a ++≤, ....................................................................................................................... 8分 化简可得210a -≥,解得11a a -≤或≥, ............................................................................................. 9分 所以a 的取值范围为(,1][1,)-∞-+∞. ............................................................................................. 10分。
福建省泉州市高三数学下学期3月质量检查试题理(含解析)

泉州市 2018 届普通中学高中毕业班质量检查理科数学第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的.1. 已知集合,,则()A.B.【答案】BC.D.【解析】变形可得:,即则故选2. 已知向量,A.B.【答案】B【解析】,则,,则下列结论正确的是( )C.D.即故选3. 已知函数A.B.【答案】C【解析】是偶函数,且C.D.,,则()是偶函数- 18 -故选4. 若,则 , , 的大小关系为( )A.B.C.D.【答案】A【解析】由得由可得又, 故选5. 已知实数 , 满足,则的最大值为( )A.B.C.D.【答案】B【解析】如图的几何意义为可行域内点与 直线的斜率当时,故选6. 设函数不正确的是( )A. 的一个零点为(, )的最小正周期为 ,且B. 的一条对称轴为C. 在区间上单调递增 D.【答案】C【解析】 最小正周期为 ,是偶函数,则下列说法- 18 -即,又则,其单调增区间为即 故选 7. 执行如图所示的程序框图,则输出 ( )A.B.C.D.【答案】B【解析】 ,,,,, ,, ,, 故选 8. 惠安石雕是中国传统雕刻技艺之一,历经一千多年的繁衍发展,仍然保留着非常纯粹的中 国艺术传统,左下图粗实虚线画出的是某石雕构件的三视图,该石雕构件镂空部分最中间的 一块正是魏晋期间伟大数学家刘徽创造的一个独特的几何体——牟合方盖(如下右图),牟合- 18 -方盖的体积(其中 为最大截面圆的直径).若三视图中网格纸上小正方形的边长为,则该石雕构件的体积为( )A.B.C.D.【答案】C 【解析】由三视图可知,该几何体是由正方体中去除两个圆柱体, 其中,正方体的棱长为 ,圆柱体的直径为 ,高为 两个圆柱体中间重合部分为牟合方盖该石雕构件的体积为故选9. 如图所示,正六边形中, 为线段 的中点,在线段光线 经 反射,则反射光线与线段 相交的概率为( )上随机取点 ,入射A.B.C.D.【答案】C- 18 -【解析】如图,jianl 平面直角坐标系, 可得 过 关于 的对称点 则:时,交点坐标为 :时,交点坐标为过 关于 的对称点概率为故选10. 已知点 是双曲线 :( , )与圆到 轴的距离为 ,则 的离心率等于( )A.B.C.D.【答案】D 【解析】 到 轴的距离为 故 点纵坐标为 ,代入椭圆代入圆 ,即的一个交点,若- 18 -即,故选11. 现为一球状巧克力设计圆锥体的包装盒,若该巧克力球的半径为 ,则其包装盒的体积的最小值为( )A.B.C.D.【答案】B【解析】如图,设,则,当时,故选 点睛:本题考查了球内接于圆锥体,求圆锥的体积最值,在解答过程中,运用三角函数表示 相关量,按照体积的计算公式表示体积,然后利用函数性质求出最值,选取何种方式建立函 数表达式是本题关键12. 不等式有且只有一个整数解,则 的取值范围是( )A.B.C.D.【答案】D【解析】即- 18 -令,当 时,,令,当时,即时,,即,当时,即时,,解得综上,故选点睛:本题考查了运用导数解答不等式问题,在分析题目时,需要观察题目形式,将其变形为不等号右边为二次函数的问题,结合图象讨论函数的交点问题,还需要分类讨论参量的范围,需要缜密思考,有一定难度。
2018届福建省泉州市高三质检理科综合试题及答案

泉州市2018届普通中学高中毕业班质量检查理科综合能力测试本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至4页,均为必考题,第II卷5至12页,包括必考和选考两部分。
满分300分。
可能用到的相对原子质贝:H一1 C一12 O一16 Fe --56 Ag一10注意事项:1.答题前考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准证号、姓名是否一致。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动用橡擦干净后。
再选涂其它答案标号。
第II卷用0.5毫米黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束后,监考员将试题卷和答题卡一并收回。
第I卷(必考)本卷共18小题.每题6分,共108分。
一、选择题(本题共18小题。
在每小题给出的四个选项中,只有一个选项符合题目要求。
)1.肝脏对维持人体内环境稳态具有重要作用。
下列激素中,不以肝细胞为靶细胞的是A.甲状腺激素B. 胰高血糖素C.胰岛素D.促胰液素2.科研人员对某农田在不同时期分别用不同方法进行害虫防治,同时调查害虫种群数量变化,结果如右图。
下列叙述正确的是A.施用农药诱发害虫产生抗农药基因突变B.害虫与蜘蛛种群之间存在负反馈调节C.引人蜘蛛会定向改变害虫种群抗农药基因频率D.该农田生态系统自我调节能力保持稳定不变3.嫩肉粉的主要成分是一种从木瓜中提取出的蛋白酶利用嫩肉粉溶液腌渍肉块,可使肉类蛋白质水解成小分子多肽(短肽)和氨基酸,从而有利于消化吸收。
下列叙述正确的是A.嫩肉粉适于在常温条件下贮存,以保持木瓜蛋白酶的活性B.木瓜合成蛋白酶过程中,遗传信息由基因依次流向mRNA ,tRNA和酶C.经嫩肉粉作用后,肉块产生的短肽和氨基酸总质量比被分解的蛋白质高D.肉块被腌渍时.木瓜蛋白酶以主动运输方式讲入肌细晌发挥水解作用4.雪灵芝是青藏高原特有的野生药材。
福建省泉州市2018届高三1月单科质量检查数学(理)试题+Word版含解析

准考证号________________ 姓名________________(在此卷上答题无效)保密★启用前泉州市2018届高中毕业班单科质量检查理科数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
3.全部答案答在答题卡上,答在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}210A x x =-≥,{}210B x x =-≤,则AB = (A ){}1x x ≥- (B ){}1x x ≥ (C )112x x ⎧⎫-≤≤⎨⎬⎩⎭ (D )112x x ⎧⎫≤≤⎨⎬⎩⎭【命题意图】本小题主要考查解不等式、交集等基础知识,考查运算求解能力,考查化归与转化思想,考查数学运算. 【试题简析】因为1{|}2A x x =≥,{|11}B x x =-≤≤,所以1{|1}2A B x x =≤,故选D. 【错选原因】错选A :误求成A B ; 错选B :集合B 解错,解成{}11或B x x x =≤-≥;错选C :集合A 解错,解成1{|}2A x x =≤.【变式题源】(2015全国卷I·理1)已知集合{}1A x x =<,{}31x B x =<,则 (A ){|0}A B x x =< (B )A B =R (C ){|1}A B x x => (D )A B =∅(2)已知z 为复数z 的共轭复数,()1i 2i z -=,则z =(A )1i -- (B )1i -+ (C )1i - (D )1i +【命题意图】本小题主要考查复数的运算、共轭复数等基础知识,考查运算求解能力,考查化归与转化思想,考查数学运算. 【试题简析】因为22(1)11(1)(1)i i i z i i i i +===-+--+,所以1z i =--,故选(A ). 【错选原因】错选B :求出1z i =-+,忘了求z ;错选C :错解1i z =+;错选D :错解1i z =-.【变式题源】(2015全国卷Ⅰ·文3)已知复数z 满足(z -1)i =1+i ,则z=A .-2-iB .-2+iC .2-iD .2+i(3)设等差数列{}n a 的前n 项和为n S .若212a a -=,549S S -=,则50a =(A )99 (B )101 (C ) 2500 (D )4592⨯ 【命题意图】本小题主要考查等差数列等基础知识,考查运算求解能力,考查化归与转化思想,考查数学运算.【试题简析】依题意得,212d a a =-=,5549a S S =-=,所以5054599a a d =+=,故选C.【错选原因】错选A :n S 的公式记忆错误,导致计算错误;错选B :n S 的公式记忆错误,导致计算错误;错选D :误认为544S S a -=.【变式题源】(2017全国卷Ⅰ·理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8(4)已知点(2,1)在双曲线2222:1(0,0)x yE a ba b-=>>的渐近线上,则E的离心率等于(A)2(C(D)2【命题意图】本小题主要考查双曲线的渐近线、离心率等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想,考查数学运算.【试题简析】由题意得,点(2,1)在直线by xa=上,则12ba=,所以2ea==,故选B.【错选原因】错选A:误认为222c a b=-导致错误;错选C:误认为双曲线的焦点在y轴上.错选D:未判断双曲线的焦点位置.【变式题源】(2013全国卷Ⅰ·理4)已知双曲线C:2222=1x ya b-(a>0,b>0)则C的渐近线方程为(A)y=14x±(B)y=13x±(C)y=12x±(D)y x=±(5)已知实数,x y满足1,30,220,xx yx y≥⎧⎪+-≤⎨⎪--≤⎩则z x y=-的最大值为(A)-1(B)13(C)1(D)3【命题意图】本小题主要考查线性规划等基础知识;考查运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想,考查直观想象、数学运算等.【试题简析】由已知条件,可行域如右图阴影部分.其中阴影区域三角形的三个顶点分别为54(1,0),(1,2),(,)33,把三个点分别代入z x y=-检验得:当1,0x y==时,z取得最大值1,故选D.【错选原因】错选A:误把z-的最大值当成z x y=-的最大值;错选B:误把z的最小值当成z x y=-的最大值;错选C:误把z-的最小值当成z x y=-的最大值.【变式题源】(2017全国卷Ⅰ·理14)设x,y满足约束条件21,21,0,x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩则32z x y=-的最小值为.(6)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为(A)16π3(B)11π2(C)17π3(D)35π6【命题意图】本小题主要考查三视图、空间几何体的体积,等基础知识,考查空间想像能力、运算求解能力、创新意识,考查化归与转化思想、数形结合思想,考查数学抽象、直观想象等.【试题简析】该几何体可以看成:在一个半球上叠加一个14圆锥,然后挖掉一个相同的14圆锥,所以该几何体的体积和半球的体积相等,因此321633V rππ==,故选A.【错选原因】错选B:把该几何体可以看成:在一个半球上叠加一个14圆锥,且未挖掉一个相同的14圆锥.错选C:把该几何体可以看成:在一个半球上叠加一个12圆锥,且未挖掉一个相同的14圆锥.错选D:圆锥的公式记忆错误.【变式题源】(2016全国卷Ⅰ·理6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是(A)π17(B)π18(C)π20(D)π28(7)《九章算术》中的“两鼠穿墙”问题为“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”可用如图所示的程序框图解决此类问题.现执行该程序框图,输入的d 的值为33,则输出的i 的值为(A )4 (B )5 (C )6 (D )7 开始d输入0,0,1,1i S x y ====否S S x y=++是2x x =i输出S d<结束12y y =1i i =+【命题意图】本小题主要考查程序框图,数列求和等基础知识;考查学生的运算求解能力及数据处理能力;考查化归与转化思想、分类与整合思想;考查数学抽象和数学运算等.【试题简析】解法一:0,0,1,1i S x y ====开始执行,然后11,11,2,2i S x y ==+==⋅⋅⋅ 111115,(124816)(1)33,32,2481632i S x y ==+++++++++<==,再执行一行,然后输出6i = 解法二:本题要解决的问题是数列求和的问题,11211111,2,,2(2)22n n n a a a n --=+=+⋅⋅⋅=+≥ 1233n a a a ++⋅⋅⋅+≥,解得n 的最小值为6.【错选原因】错选A :可能把2x x =误当成2x x =来算;错选B :当执行到5i =时,11113224816S =++++,学生估值失误,误以为会达到33或按四舍五入得到.错选D :可能先执行了1i i =+后才输出.【变式题源】(2015年全国卷Ⅱ·理8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入a ,b 分别为14,18,则输出的a =(A )0(B )2 (C )4 (D )14(8)下列函数中,图象关于原点对称且单调递增的是(A )()sin f x x x =- (B )()()()ln 1ln 1f x x x =--+ (C )()e e 2x xf x -+= (D )()e 1e 1x x f x -=+ 【命题意图】本小题主要考查函数的图象与奇偶性、单调性、定义域等基础知识;考查学生的运算求解能力;考查数形结合思想、特殊与一般思想;考查数学抽象、直观想象和数学运算等.【试题简析】A 选项:()cos 10f x x '=-≤,不符合图象上升这个条件;B 选项:定义域不关于原点对称;C 选项函数图象先减后增,在0x =时函数取得最小值;故选D【错选原因】错选A :符合图象关于原点对称这个条件;错选B :有的学生可能会通过各种方法判断函数的单调性,却忽略了定义域不关于原点对称;错选C :有的学生可能根据函数过(0,0)而错选此项.【变式题源】(2011年全国卷Ⅱ·理2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -=(9)已知 1.50.5a -=,6log 15b =,5log 16c =,则(A )b c a << (B )c b a << (C )a b c << (D )a c b <<【命题意图】本小题主要考查指对数函数等基础知识;考查学生的推理论证能力、运算求解能力以及数据处理能力;考查化归与转化思想、函数与方程思想;考查数学运算和数据分析.【试题简析】 1.5 1.5655log 15log 15log 16220.5-<<<<=【错选原因】错选B :对数函数的换底公式不熟悉导致;错选D :对数函数的换底公式不熟悉导致;错选C :指数的运算不过关导致.【变式题源】(2013年全国卷Ⅱ·理8)设3log 6a =,5log 10b =,7log 14c =,则(A )c b a >>(B )b c a >> (C )a c b >> (D )a b c >>(10)已知1(,2)2P 是函数()sin()(0)f x A x ωϕω=+>图象的一个最高点,,B C 是与P 相邻的两个最低点.若7cos 25BPC ∠=,则()f x 的图象对称中心可以是 (A )()0,0 (B )()1,0 (C ) ()2,0 (D )()3,0【命题意图】本小题考查三角函数的图象和性质、解三角形、二倍角公式等基础知识;考查学生的抽象概括能力、运算求解能力以及数据处理能力;考查数形结合思想、化归与转化思想以及函数与方程思想;考查数学抽象、直观想象和数学分析等.【试题简析】如图,取BC 的中点D ,连结PD ,则4PD =,设BD x =,则PB PC ==,由余弦定理可得,2222(2)cos x BPC =+-∠,解得3x =,57(,2),(,2)22B C ---,,BP CP 的中点都是()f x 图象的对称中心.故选C .【错选原因】错选A :平时缺乏训练,只记得正弦函数的对称中心是(0,0)错选B :误把最高点的2当成了周期;错选D :这类同学可以求出函数的周期是6,但没注意到函数并未过原点.【变式题源】(2015年全国卷I·理8)函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为(A )13(,),44k k k ππ-+∈Z (B )13(2,2),44k k k ππ-+∈Z (C )13(,),44k k k -+∈Z (D )13(2,2),44k k k -+∈Z(11)已知直线l :0mx y m -+=,圆C :()224x a y -+=.若对任意[1,)a ∈+∞,存在l 被C 截得弦长为2,则实数m 的取值范围是(A )33[,0)(0,]33- (B )33(,[,)33-∞-+∞ (C )[3,0)(0,3] (D )(,3][3,)-∞-+∞【命题意图】本小题主要考查直线与圆、点到直线的距离、解三角形等基础知识;考查学生的抽象概括能力、运算求解能力以及数据处理能力;考查化归与转化思想、数形结合思想、必然与或然思想;考查数学抽象、数学建模、数学运算与数据分析等.【试题简析】解法一:由题意可得,圆心C 到l 的距离2222()32d =-=,即231am mm +=+所以223(1)3m a =+-,又因为1a ≥,所以203m <≤,30m ≤<或03m <≤解法二:由题意可得,圆心C 到l 的距离2222()32d =-= 又l :0mx y m -+=恒过定点()1,0A -,1a ≥,所以2AC ≥,另设直线l 的倾斜角为θ,所以33sin AC θ=, 所以l 的斜率tan [3,0)(0,3]m θ=∈. 【错选原因】错选A :在计算223[(1)3]m a =+-时,分子误当成1来计算;错选B :分离变量时,误把223[(1)3]m a =+-写成22[(1)3]3a m +-=; 错选D :把最后的23m ≤计算成23m ≥【变式题源】(2016年全国卷Ⅱ·理4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =(A )43-(B )34- (C (D )2(12)已知函数()222,0,e e ,0,x x x a x f x ax x ⎧++<⎪=⎨-+-≥⎪⎩恰有两个零点,则实数a 的取值范围是 (A )()0,1 (B )()e,+∞ (C )()()0,1e,+∞ (D )()()20,1e ,+∞【命题意图】本小题主要考查二次函数的图象与性质、分段函数的图象、复合函数的图象以及零点问题等知识点;考查学生的抽象概括能力、运算求解能力以及应用意识;考查数形结合思想、分类与整合、函数与方程思想;考查数学抽象、数学运算和数据分析等.【试题简析】解法一:当0x =时,2()1e 0f x =--≠,故0x =不是函数()f x 的零点. 当(0,)x ∈+∞时,()0f x =等价于2e e x a x+=, 令2e e ()(0)x g x x x +=>,则22e e e ()x x x g x x--'=, 当2x <时,()0g x '<,当2x =时,()0g x '=,当2x >时,()0g x '>;所以2()[e ,)g x ∈+∞,①当01a <<时,()f x 在(,0)-∞有两个零点,故()f x 在(0,)+∞没有零点,从而2e a <,所以01a <<;②当0a ≤或1a =时,()f x 在(,0)-∞有一个零点,故()f x 在(0,)+∞有一个零点,此时不合题意;③当1a >时,()f x 在(,0)-∞有没有零点,故()f x 在(0,)+∞有两个零点,从而2e a >.综上可得01a <<或2e a >.故选D.解法二:当[0,)x ∈+∞时,2()e e x f x ax =-+-,()e xf x a '=-+,①当01a <<时,()f x 在(,0)-∞有两个零点,又当[0,)x ∈+∞时,2max ()(ln 1)e 0f x a a =--<,故()f x 在[0,)+∞没有零点,所以01a <<;②当0a ≤或1a =时,()f x 在(,0)-∞有一个零点,又当[0,)x ∈+∞时,()e 0x f x a '=-+<,()f x 在[0,)+∞上单调递减,故2()(0)1e 0f x f ≤=--<,不合题意;③当1a >时,()f x 在(,0)-∞有没有零点,此时()f x 在[0,)+∞上必有两个零点. 当[0,)x ∈+∞时,当ln x a <时,()0f x '>,当ln x a =时,()0f x '=,当ln x a>时,()0f x '<,所以2max ()(ln )ln e f x f a a a a ==-+-,要使()f x 在[0,)+∞上必有两个零点,只需满足2max ()(ln )ln e 0f x f a a a a ==-+->. 令2()ln e g t t t t =--,则'()ln g t t =,当1t >时,'()0g x >,故()g t 单调递增.又2(e )0g =,故2ln e 0a a a -+->即2()(e )g a g >,解得2e a >. 综上可得01a <<或2e a >.故选D.【错选原因】错选A :只会做二次函数部分,无视另一种情况,即左右各有一个零点. 错选B :用特殊值0或1代入,发现不成立,故排除了其他三个选项得到; 错选C :可能根本没去做,综合了A 和B ,于是选C. 【变式题源】(2013年全国卷I·理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( )(A )(-∞,0] (B )(-∞,1] (C )[-2,1] (D )[-2,0]二、填空题:本大题共4小题,每小题5分。
2018届福建省泉州市高三质检理科综合试题及答

泉州市2018届一般中学高中毕业班质量检查理科综合能力测试本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至4页,均为必考题,第II 卷5至12页,包含必考和选考两部分。
满分300分。
可能用到的相对原子质贝:H一1 C 一12 O一16 Fe--56Ag10注意事项:答题前考生务必在试题卷、答题卡规定的地方填写自己的准考据号、姓名。
考生要仔细查对答题卡上粘贴的条形码的“准考据号、姓名”与考生自己准证号、姓名能否一致。
第I卷每题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需变动用橡擦洁净后。
再选涂其余答案标号。
第II卷用毫米黑色署名笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束后,监考员将试题卷和答题卡一并回收。
第I卷(必考)本卷共18小题.每题6分,共118分。
一、选择题(此题共18小题。
在每题给出的四个选项中,只有一个选项切合题目要求。
)肝脏对保持人体内环境稳态拥有重要作用。
以下激素中,不以肝细胞为靶细胞的是A.甲状腺激素B.胰高血糖素C.胰岛素D.促胰液素科研人员对某农田在不一样期间分别用不一样方法进行害虫防治,同时检查害虫种群数目变化,结果如右图。
以下表达正确的选项是施用农药引发害虫产生抗农药基因突变害虫与蜘蛛种群之间存在负反应调理引人蜘蛛会定向改变害虫种群抗农药基因频次该农田生态系统自我调理能力保持稳固不变3.嫩肉粉的主要成分是一种从木瓜中提拿出的蛋白酶利用嫩肉粉溶液腌渍肉块,可使肉类蛋白质水解成小分子多肽(短肽)和氨基酸,进而有益于消化汲取。
以下表达正确的选项是嫩肉粉适于在常温条件下储存,以保持木瓜蛋白酶的活性B.木瓜合成蛋白酶过程中,遗传信息由基因挨次流向mRNA,tRNA和酶C.经嫩肉粉作用后,肉块产生的短肽和氨基酸总质量比被分解的蛋白质高D.肉块被腌渍时.木瓜蛋白酶以主动运输方式讲入肌细晌发挥水解作用雪灵芝是青藏高原独有的野生药材。
为研究雪灵芝提取物对人胃癌细胞增殖的影响,科研人员利用含不一样浓度雪灵芝提取物的培育液培育人胃癌细胞,一段时间后检测胃癌细胞周期中各期细胞百分比,结果以下表。
泉州市5月质检(理科数学)参考答案

2 1 .
(12)解析:因为
e x ax a ex a ,所以当 x 1 时 , x 1 x 1 ex 的图象上下平移得到, x 1
f ( x) 的图象可由函数 y
图一
因此, f ( x) 的图象如图一所示,要使得 f ( x) 0 有更多的解, 即函数 f ( x) 的图象与 x 轴有更多的交点,则应将 f ( x) x 1 的图象尽可能向下平移,即 a 要取负数,如图二所示, 此时 f ( x) 0 有四个解,分别是 x1 3 , x2 1 ,
9
an 1 2an bn cn (16)解析:记 bn 1 an 2bn cn cn 1 an bn 2cn
1 , 2 , 3 ,
由 1 2 3 得 an 1 bn 1 cn 1 4 an bn cn , 所以数列 an bn cn 为首项 a1 b1 c1 12 ,公比为 4 的等比数列, 所以 an bn cn 3 4 .
所以 bn 4 , an 4 4 ,
n n
记数列 n 4
n
的前 n 项和为 T ,由错位相减法求得 3n 1 4
n
的前 n 项和为 2n n 1 , 所以数列 nan 的前 n 项和
3n 1 4n1 4 +2n
2 a. 2
7 2 ,求 △ABC 的面积. 10
【命题意图】本小题主要考查正弦定理,余弦定理,三角恒等变换,三角形面积等基础知识;考查运算求 解能力等;考查化归与转化思想、函数与方程思想等;考查数学抽象,数学运算等. 【试题简析】 解法一: (Ⅰ)由已知得 sin B cos A sin C
福建泉州市2018届高三数学3月质检试题理科带答案

福建泉州市2018届高三数学3月质检试题(理科带答案)泉州市2018届普通中学高中毕业班质量检查理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.2.已知向量,,则下列结论正确的是()A.B.C.D.3.已知函数是偶函数,且,,则()A.B.C.D.4.若,则,,的大小关系为()A.B.C.D.5.已知实数,满足,则的最大值为()A.B.C.D.6.设函数(,)的最小正周期为,且,则下列说法不正确的是()A.的一个零点为B.的一条对称轴为C.在区间上单调递增D.是偶函数7.执行如图所示的程序框图,则输出()A.B.C.D.8.惠安石雕是中国传统雕刻技艺之一,历经一千多年的繁衍发展,仍然保留着非常纯粹的中国艺术传统,左下图粗实虚线画出的是某石雕构件的三视图,该石雕构件镂空部分最中间的一块正是魏晋期间伟大数学家刘徽创造的一个独特的几何体——牟合方盖(如下右图),牟合方盖的体积(其中为最大截面圆的直径).若三视图中网格纸上小正方形的边长为,则该石雕构件的体积为()A.B.C.D.9.如图所示,正六边形中,为线段的中点,在线段上随机取点,入射光线经反射,则反射光线与线段相交的概率为()A.B.C.D.10.已知点是双曲线:(,)与圆的一个交点,若到轴的距离为,则的离心率等于()A.B.C.D.11.现为一球状巧克力设计圆锥体的包装盒,若该巧克力球的半径为,则其包装盒的体积的最小值为()A.B.C.D.12.不等式有且只有一个整数解,则的取值范围是()A.B.C.D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知复数,则.14.的展开式中,常数项是.15.已知抛物线:的焦点为,准线为,交轴于点,为上一点,垂直于,垂足为,交轴于点,若,则.16.在平面四边形中,,,,,的面积为,则.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.记数列的前项和为,已知,,成等差数列.(1)求的通项公式;(2)若,证明:.18.如图,在四边形中,,,,,,是上的点,,为的中点,将沿折起到的位置,使得,如图2.(1)求证:平面平面;(2)求二面角的余弦值.19.某公司订购了一批树苗,为了检测这批树苗是否合格,从中随机抽测株树苗的高度,经数据处理得到如图的频率分布直方图,起中最高的株树苗高度的茎叶图如图所示,以这株树苗的高度的频率估计整批树苗高度的概率. (1)求这批树苗的高度高于米的概率,并求图19-1中,,,的值;(2)若从这批树苗中随机选取株,记为高度在的树苗数列,求的分布列和数学期望.(3)若变量满足且,则称变量满足近似于正态分布的概率分布.如果这批树苗的高度满足近似于正态分布的概率分布,则认为这批树苗是合格的,将顺利获得签收;否则,公司将拒绝签收.试问,该批树苗能否被签收?20.过圆:上的点作轴的垂线,垂足为,点满足.当在上运动时,记点的轨迹为.(1)求的方程;(2)过点的直线与交于,两点,与圆交于,两点,求的取值范围.21.已知函数.(1)当时,讨论的极值情况;(2)若,求的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点,且两点对应的参数,互为相反数,求的值.23.选修4-5:不等式选讲已知函数.(1)当时,求不等式的解集;(2),,求的取值范围.泉州市2018届普通高中毕业班质量检查理科数学试题参考答案及评分细则一、选择题1-5:BBCAB6-10:CBCCD11、12:BD二、填空题13.14.(15);(16)..三、解答题17.解:(1)由已知1,,成等差数列,得…①当时,,所以;当时,…②,①②两式相减得,所以,则数列是以为首项,为公比的等比数列,所以.(2)由(1)得,所以,因为,,所以,即证得.18.解:(1)连结.在四边形中,,,,,,,∴,,四边形为菱形,且为等边三角形.又∵为的中点,∴.∵,,,满足,∴,又∵,∴平面.∵平面,∴平面平面.(2)以为原点,向量的方向分别为轴、轴的正方向建立空间直角坐标系(如图),则,,,所以,,设是平面的一个法向量,则即取,得.取平面的一个法向量.∵,又二面角的平面角为钝角,所以二面角的余弦值为.19.解:(1)由图19-2可知,100株样本树苗中高度高于1.60的共有15株,以样本的频率估计总体的概率,可得这批树苗的高度高于1.60的概率为0.15.记为树苗的高度,结合图19-1可得:,,,又由于组距为0.1,所以.(2)以样本的频率估计总体的概率,可得:从这批树苗中随机选取1株,高度在的概率.因为从这批树苗中随机选取3株,相当于三次重复独立试验,所以随机变量服从二项分布,故的分布列为:,8分即:01230.0270.1890.4410.343(或).(3)由,取,,由(Ⅱ)可知,,又结合(Ⅰ),可得:,所以这批树苗的高度满足近似于正态分布的概率分布,应认为这批树苗是合格的,将顺利获得该公司签收.20.解:(1)设点坐标,点坐标,点坐标,由可得因为在圆:上运动,所以点的轨迹的方程为.(2)当直线的斜率不存在时,直线的方程为,此时,,所以.当直线的斜率存在时,设直线的方程为,,,联立方程组消去,整理得,因为点在椭圆内部,所以直线与椭圆恒交于两点,由韦达定理,得,,所以,,在圆:,圆心到直线的距离为,所以,所以.又因为当直线的斜率不存在时,,所以的取值范围是.21.解:(1).因为,由得,或.①当时,,单调递增,故无极值.②当时,.,,的关系如下表:+0-0+单调递增极大值单调递减极小值单调递增故有极大值,极小值.③当时,.,,的关系如下表:+0-0+单调递增极大值单调递减极小值单调递增故有极大值,极小值.综上:当时,有极大值,极小值;当时,无极值;当时,有极大值,极小值.(2)令,则.(i)当时,,所以当时,,单调递减,所以,此时,不满足题意.(ii)由于与有相同的单调性,因此,由(Ⅰ)知:①当时,在上单调递增,又,所以当时,;当时,.故当时,恒有,满足题意.②当时,在单调递减,所以当时,,此时,不满足题意.③当时,在单调递减,所以当时,,此时,不满足题意.综上所述:.22.【试题简析】解法一:(Ⅰ)由,可得,所以,即,当时,直线的参数方程(为参数),化为直角坐标方程为,联立解得交点为或,化为极坐标为,(2)由已知直线恒过定点,又,由参数方程的几何意义知是线段的中点,曲线是以为圆心,半径的圆,且,由垂径定理知:.解法二:(1)依题意可知,直线的极坐标方程为,当时,联立解得交点,当时,经检验满足两方程,当时,无交点;综上,曲线与直线的点极坐标为,.(2)把直线的参数方程代入曲线,得,可知,,所以.23.【试题简析】解:(1)当时,,①当时,,令即,解得,②当时,,显然成立,所以,③当时,,令即,解得,综上所述,不等式的解集为.(2)因为,因为,有成立,所以只需,化简可得,解得,所以的取值范围为.泉州市2018届普通高中毕业班质量检查理科数学试题参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可在评卷组内讨论后根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步仅出现严谨性或规范性错误时,不要影响后续部分的判分;当考生的解答在某一步出现了将影响后续解答的严重性错误时,后继部分的解答不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.(1)B(2)B(3)C(4)A(5)B(6)C(7)B(8)C(9)C(10)D(11)B(12)D二、填空题:本大题共4小题,每小题5分.(13);(14);(15);(16).三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)解:(Ⅰ)由已知1,,成等差数列,得…①,1分当时,,所以;2分当时,…②,3分①②两式相减得,所以,4分则数列是以为首项,为公比的等比数列,5分所以.6分(Ⅱ)由(Ⅰ)得7分,9分所以,11分因为,,所以,即证得.12分(18)(本小题满分12分)解:(Ⅰ)连结.在四边形中,,,,,,,∴,,1分∴四边形为菱形,且为等边三角形.又∵为的中点,∴.2分∵,,,满足,∴,3分又∵,∴平面.4分∵平面,∴平面平面.5分(Ⅱ)以为原点,向量的方向分别为轴、轴的正方向建立空间直角坐标系(如图),6分则,,,所以,,7分设是平面的一个法向量,则即8分取,得.9分取平面的一个法向量.10分∵,11分又二面角的平面角为钝角,所以二面角的余弦值为.12分(19)(本小题满分12分)解:(Ⅰ)由图19-2可知,100株样本树苗中高度高于1.60的共有15株,以样本的频率估计总体的概率,可得这批树苗的高度高于1.60的概率为0.15.1分记为树苗的高度,结合图19-1可得:,2分,3分,4分又由于组距为0.1,所以.5分(Ⅱ)以样本的频率估计总体的概率,可得:从这批树苗中随机选取1株,高度在的概率.6分因为从这批树苗中随机选取3株,相当于三次重复独立试验,所以随机变量服从二项分布,7分故的分布列为:,8分即:01230.0270.1890.4410.3438分(或).9分(III)由,取,,由(Ⅱ)可知,,10分又结合(Ⅰ),可得:,11分所以这批树苗的高度满足近似于正态分布的概率分布,应认为这批树苗是合格的,将顺利获得该公司签收.12分(20)(本小题满分12分)解:(Ⅰ)设点坐标,点坐标,点坐标,由可得2分因为在圆:上运动,所以点的轨迹的方程为..4分(Ⅱ)当直线的斜率不存在时,直线的方程为,此时,,所以.5分当直线的斜率存在时,设直线的方程为,,,联立方程组消去,整理得,6分因为点在椭圆内部,所以直线与椭圆恒交于两点,由韦达定理,得,,7分所以,,8分在圆:,圆心到直线的距离为,所以,9分所以.11分又因为当直线的斜率不存在时,,所以的取值范围是.12分(21)(本小题满分12分)解:(Ⅰ)1分.因为,由得,或.①当时,,单调递增,故无极值.2分②当时,.,,的关系如下表:+0-0+单调递增极大值单调递减极小值单调递增故有极大值,极小值.4分③当时,.,,的关系如下表:+0-0+单调递增极大值单调递减极小值单调递增故有极大值,极小值.5分综上:当时,有极大值,极小值;当时,无极值;当时,有极大值,极小值.6分(Ⅱ)令,则.(i)当时,,所以当时,,单调递减,所以,此时,不满足题意.8分(ii)由于与有相同的单调性,因此,由(Ⅰ)知:①当时,在上单调递增,又,所以当时,;当时,.故当时,恒有,满足题意.9分②当时,在单调递减,所以当时,,此时,不满足题意.10分③当时,在单调递减,所以当时,,此时,不满足题意.11分综上所述:.12分请考生在第(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.(22)(本小题满分10分)选修:坐标系与参数方程【试题简析】解法一:(Ⅰ)由,可得,所以,即,1分当时,直线的参数方程(为参数),化为直角坐标方程为,2分联立解得交点为或,3分化为极坐标为,5分(Ⅱ)由已知直线恒过定点,又,由参数方程的几何意义知是线段的中点,6分曲线是以为圆心,半径的圆,且,8分由垂径定理知:.10分解法二:(Ⅰ)依题意可知,直线的极坐标方程为,1分当时,联立解得交点,3分当时,经检验满足两方程,4分当时,无交点;综上,曲线与直线的点极坐标为,.5分(Ⅱ)把直线的参数方程代入曲线,得,7分可知,,8分所以.10分(23)(本小题满分10分)选修:不等式选讲【试题简析】解:(Ⅰ)当时,,①当时,,令即,解得,1分②当时,,显然成立,所以,2分③当时,,令即,解得,3分综上所述,不等式的解集为.5分(Ⅱ)因为,7分因为,有成立,所以只需,8分化简可得,解得,9分所以的取值范围为.10分。
2018届福建省泉州市高三质检理科数学试题及答案

泉州市2018届高三质检数学试卷(理科)一、本大题共10小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z=(其中i为虚数单位)在复平面内对应的点在() A.第一象限 B.第二象限 C.第三象限D.第四象限2.已知集合A={x|x+1<0},B={x|3﹣x>0},那么集合A∩B() A.{x|x<﹣1} B.{x|x<3} C.{x|﹣1<x<3} D.∅3.某程序的框图如图所示,运行该程序时,若输入的x=0.1,则运行后输出的y值是()A.﹣1 B. 0.5 C. 2D.104.在二项式(2x+3)n的展开式中,若常数项为81,则含x3的项的系数为()A.216 B. 96 C.81 D.165.已知等比数列{a n}的首项a1=1,公比q≠1,且a2,a1,a3成等差数列,则其前5项的和S5=()A.31 B. 15 C. 11 D.56.已知某产品连续4个月的广告费用x i(千元)与销售额y i(万元),经过对这些数据的处理,得到如下数据信息:①x i=18,y i=14;②广告费用x和销售额y之间具有较强的线性相关关系;③回归直线方程=x+中的=0.8(用最小二乘法求得).那么,当广告费用为6千元时,可预测销售额约为()A. 3.5万元B. 4.7万元C. 4.9万元D. 6.5万元7.已知l,m为不同的直线,α,β为不同的平面,如果l⊂α,且m⊂β,那么下列命题中不正确的是()A.“l⊥β”是“α⊥β”的充分不必要条件B.“l⊥m”是“l⊥β”的必要不充分条件C.“m∥α”是“l∥m”的充要条件D.“l⊥m”是“α⊥β”的既不充分也不必要条件8.在如图所示的棱长为1的正方体ABCD﹣A1B1C1D1中,若点P是正方形BCC1B1的中心,则三棱锥P﹣AB1D1的体积等于()A.B.C.D.9.某数学爱好者设计了一个食品商标,如果在该商标所在平面内建立如图所示的平面直角坐标系xOy,则商标的边缘轮廓线AOC恰是函数y=tan的图象,边缘轮廓线AEC恰是一段所对的圆心角为的圆弧.若在图中正方形ABCD内随机选取一点P,则点P落在商标区域内的概率等于()A.B.C.D.10.(2018•泉州一模)如图,对于曲线Ψ所在平面内的点O,若存在以O为顶点的角α,使得α≥∠AOB对于曲线Ψ上的任意两个不同的点A、B恒成立,则称角α为曲线Ψ上的任意两个不同的点A、B 恒成立,则称角α为曲线Ψ的相对于点O的“界角”,并称其中最小的“界角”为曲线Ψ的相对于点O的“确界角”.已知曲线C:y=(其中e=2.71828…是自然对数的底数),O为坐标原点,则曲线C的相对于点O的“确界角”为()A.B.C.D.二、填空题:本大题共5小题,每小题4分,共20分,请将答案填在答题卷的相应位置.11.(4分)(2018•泉州一模)(x2+sinx)dx= _________ .12.(4分)(2018•泉州一模)若对满足不等式组的任意实数x,y,都有2x+y≥k成立,则实数k的最大值为_________ .13.(4分)(2018•泉州一模)已知直线l过双曲线C:3x2﹣y2=9的右顶点,且与双曲线C的一条渐近线平行.若抛物线x2=2py(p>0)的焦点恰好在直线l上,则p= _________ .14.(4分)(2018•泉州一模)已知:△AOB中,∠AOB=90°,AO=h,OB=r,如图所示,先将△AOB绕AO所在直线旋转一周得到一个圆锥,再在该圆锥内旋转一个长宽都为,高DD 1=1的长方体CDEF﹣C1D1E1F1.若该长方体的顶点C,D,E,F都在圆锥的底面上,且顶点C1,D1,E1,F1都在圆锥的侧面上,则h+r的值至少应为_________ .15.(4分)(2018•泉州一模)定义一种向量运算“⊗”:⊗=(,是任意的两上向量).对于同一平面内的向量,,,,给出下列结论:①⊗=⊗;②λ(⊗)=(λ)⊗(λ∈R);③(+)⊗=⊗+⊗④若是单位向量,则|⊗|≤||+1以上结论一定正确的是_________ .(填上所有正确结论的序号)三、解答题:本大题共5小题,共80分,解答应写出文字说明,证明过程或演算步骤.16.(13分)(2018•泉州一模)某校高三年段共有1000名学生,将其按专业发展取向分成普理、普文、艺体三类,如图是这三类的人数比例示意图.为开展某项调查,采用分层抽样的方法从这1000名学生中抽取一个容量为10的样本.(Ⅰ)试求出样本中各个不同专业取向的人数;(Ⅱ)在样本中随机抽取3人,并用ξ表示这3人中专业取向为艺体的人数.试求随机变量ξ的数学期望和方差.17.(13分)(2018•泉州一模)已知函数f(x)=2sin•cos﹣2cos2+(ω>0),其图象与直线y=2的相邻两个公共点之间的距离为2π.(Ⅰ)若x∈[0,π],试求出函数f(x)的单调递减区间;(Ⅱ)△ABC的三个内角A,B,C及其所对的边a,b,c满足条件:f(A)=0,a=2,且b,a,c成等比数列.试求在方向上的抽影n的值.18.(13分)(2018•泉州一模)已知M(0,),N(0,﹣),G (x,y),直线MG与NG的斜率之积等于﹣.(Ⅰ)求点G的轨迹Γ的方程;(Ⅱ)过点P(0,3)作一条与轨迹Γ相交的直线l.设交点为A,B.若点A,B均位于y轴的右侧,且=,请求出x轴上满足|QP|=|QB|的点Q的坐标.19.(13分)(2018•泉州一模)设函数f(x)=﹣x n+ax+b(a,b∈R,n∈N*),函数g(x)=sinx.(Ⅰ)当a=b=n=3时,求函数f(x)的单调区间;(Ⅱ)当a=b=1,n=2时,求函数h(x)=g(x)﹣f(x)的最小值;(Ⅲ)当n=4时,已知|f(x)|≤对任意x∈[﹣1,1]恒成立,且关于x的方程f(x)=g(x)有且只有两个实数根x1,x2.试证明:x1+x2<0.20.(14分)(2018•泉州一模)几何特征与圆柱类似,底面为椭圆面的几何体叫做“椭圆柱”.图1所示的“椭圆柱”中,A′B′,AB 和O′,O分别是上、下底面两椭圆的长轴和中心,F1、F2是下底面椭圆的焦点.图2是图1“椭圆柱”的三视图及其尺寸,其中俯视图是长轴在一条水平线上的椭圆.(Ⅰ)若M,N分别是上、下底面椭圆的短轴端点,且位于平面AA′B′B的两侧.①求证:OM∥平面A′B′N;②求平面ABN与平面A′B′N所成锐二面角的余弦值;(Ⅱ)若点N是下底面椭圆上的动点,N′是点N在上底面的投影,且N′F1,N′F2与下底面所成的角分别为α、β,请先直观判断tan (α+β)的取值范围,再尝试证明你所给出的直观判断.本题有21、22、23三个选答题,每小题7分,请考生任选2个小题作答,满分7分.如果多做,则按所做的前两题记分.【选修4-2:矩阵与变换】21.(7分)(2018•泉州一模)在平面直角坐标系xOy中,线性变换σ将点(1,0)变换为(1,0),将点(0,1)变换为(1,2).(Ⅰ)试写出线性变换σ对应的二阶矩阵A;(Ⅱ)求矩阵A的特征值及属于相应特征值的一个特征向量.【选修4-4:坐标系与参数方程】22.(7分)(2018•泉州一模)平面直角坐标系xOy中,直线l的参数方程为(t为参数),圆C的方程为x2+y2=4.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求直线l和圆C的极坐标方程;(Ⅱ)求直线l和圆C的交点的极坐标(要求极角θ∈[0,2π))【选修4-5:不等式选讲】23.(2018•泉州一模)设函数f(x)=+的最大值为M.(Ⅰ)求实数M的值;(Ⅱ)求关于x的不等式|x﹣1|+|x+2|≤M的解集.2014届泉州市普通中学高中毕业班质量检查理科数学试题参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.四、只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分50分.1.D 2.A 3.A 4.B 5.C 6.B 7.C 8.D 9.C 10.A二、填空题:本大题考查基础知识和基本运算.每小题4分,满分20分.11.2312. 2 13. 6 14. 4 15.①④三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.本小题主要考查概率、统计的基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分13分.解:(Ⅰ)由题意,可得该校普理生、普文生、艺体生的人数比例为2:2:1, …………2分所以10人的样本中普理生、普文生、艺体生的人数分别为4人,4人,2人.…………4分(Ⅱ)由题意,可知0,1,2ξ=, …………5分3082310567(0)12015C C P C ξ====,2182310567(1)12015C C P C ξ====,128231081(2)12015C C P C ξ====, 所以随机变量ξ的分布列为…………9分18.本题主要考查直线、圆锥曲线的方程和性质,直线与圆锥曲线的位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想等.满分13分. 解:(Ⅰ)(0),(0),MG NG y y k x k x x x -=≠=≠ …………2分由已知有3(0)4y y x x x +⋅=-≠,化简得轨迹Γ的方程为221(0)43x y x +=≠. …5分(Ⅱ)设直线l 的方程为3(0)y kx k =+<,1122(,),(,)A x y B x y (120,0x x >>). …6分因为BA AP =,(0,3)P , 所以212x x =. ……………………………① …7分联立方程组223,3412y kx x y =+⎧⎨+=⎩,消去y 得22(43)24240k x kx +++=, ……(*)…8分 所以1222443k x x k -++=………②, 1222434x x k ⋅=+………………③. …9分 由①得212122()9x x x x =+,又由②③得,222()8124343k k k -++=,所以293,42k k ==±.因为120,0x x >>,所以12224403k k x x +=+>-,0k <,所以32k =-. …………11分 当32k =-时,方程(*)可化为2320x x -+=,解得11x =,22x =,所以(2,0)B (3(1,)2A ). …12分法一:因为QP QB =,A 是PB 的中点,所以QA l ⊥,23AQ k =.设(,0)Q m ,则32213m =-,解得54m =-,所以Q 的坐标为5(,0)4-. …………13分 法二:设(,0)Q m ,因为QP QB =,所以229(2)m m +=-,解得54m =-, 所以Q 的坐标为5(,0)4-. …………13分19.本题主要考查函数、导数、函数的零点等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想、特殊与一般思想、有限与无限思想等.满分13分.解:(Ⅰ)当3a b n ===时,3()33f x x x =-++,2()33f x x '=-+. …1分解()0f x '>得11x -<<;解()0f x '<得11x x ><-或. …………2分 故()f x 的单调递增区间是(1,1)-,单调递减区间是(,1)-∞-和(1,)+∞. …………4分另解:当3a b n ===时,3()33f x x x =-++,2()33f x x '=-+. …1分令()0f x '=解得1x =-或1x =. ………2分()f x '的符号变化规律如下表:…………3分故()f x 的单调递增区间是(1,1)-,单调递减区间是(,1)-∞-和(1,)+∞. …………4分(Ⅱ)当1a b ==且2n =时,2()sin 1h x x x x =+--,则()cos 21h x x x '=+-, ……5分令()()x h x ϕ'=,则()sin 2x x ϕ'=-+,……6分因为()sin 2x x ϕ'=-+的函数值恒为正数,所以()x ϕ在(,)-∞+∞上单调递增, 又注意到(0)0ϕ=,所以,当0x > 时,()()(0)0x h x h ϕ''=>=,()h x 在(0,)+∞ 单调递增;当0x < 时,()()(0)0x h x h ϕ''=<=,()h x 在(,0)-∞ 单调递减 . ……8分所以函数()()()h x g x f x =-的最小值min ()(0)1h x h ==-. …………9分另解:当1a b ==且2n =时,2()sin 1h x x x x =+--,则()cos 21h x x x '=+-, ……5分令()cos 210h x x x '=+-=,得cos 21x x =-+. 考察函数cos y x =和21y x =-+的图象,可知:当0x < 时,函数cos y x =的图象恒在21y x =-+图象的下方,()0h x '<; 当0x > 时,函数cos y x =的图象恒在21y x =-+图象的上方,()0h x '>.所以()h x 在(,0)-∞ 单调递减,在(0,)+∞ 单调递增, ……8分 所以函数()()()h x g x f x =-的最小值min ()(0)1h x h ==-. …………9分(Ⅲ)因为对任意[1,1]x ∈-,都有1()2f x ≤,所以111(0),(1),(1)222f f f ≤≤-≤, 即11,22111+,22111+,22b a b a b ⎧-≤≤⎪⎪⎪-≤-+≤⎨⎪⎪-≤--≤⎪⎩亦即 11,(1)2213+,(2)2213+,(3)22b a b a b ⎧-≤≤⎪⎪⎪≤≤⎨⎪⎪≤-≤⎪⎩由(2)+(3)得13(4)22b ≤≤,再由(1)(4),得12b =,将12b =代入(2)(3)得0a =. 当0a =,12b =时,41()2f x x =-+. …………10分 因为[1,1]x ∈-,所以201x ≤≤,401x ≤≤,410x -≤-≤,4111222x -≤-+≤, 所以41()2f x x =-+符合题意. …………11分 设41()()()sin 2F x f x g x x x =-=-+-.因为1111(2)16sin(2)0,(1)1sin(1)sin1sin 022262F F π-=-+--<-=-+--=->-=,111(0)sin 00,(1)1sin1sin10222F F =->=-+-=--<, ……12分又因为已知方程()()f x g x =有且只有两个实数根12,x x (不妨设12x x <), 所以有1221,01x x -<<-<<,故120x x +<. …………13分20.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系、空间向量、三角函数等基础知识,考查空间想象能力、推理论证能力及运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想、特殊与一般思想及应用意识. 满分14分. 解:(Ⅰ)(i )连结','O M O N ,∵''O O O ⊥底面,''O M O ⊂底面,∴''O O O M ⊥. …1分∵'''O M A B ⊥,'''O O AA B B ⊂平面,''''A B AA B B ⊂平面,''A B ''O O O =,∴'''O M AA B B ⊥平面. …2分类似可证得''ON AA B B ⊥平面,∴'//O M ON . 又∵'O M ON =, ∴四边形'ONO M 为平行四边形, ∴'OM O N . …3分又∵'','''OM A B N O N A B N ⊄⊂平面平面, ∴OM 平面''A B N . …………4分(ii )由题意,可得'AA =,短轴长为2. …5分如图,以O 为原点,AB 所在直线为x 轴,'OO 所在直线为z 轴建立空间直角坐标系O xyz -.则有2(1,0,0),(0,1,0),'(F N A B ,∴'(2,1,6),'(2,NA NB =--=-, …6分 ∵z 轴⊥平面ABN ,∴可取平面ABN 的一个法向量1(0,0,1)n =.设平面''A B N 的一个法向量为2(,,)n x y z =,则'20,'20n NA y n NB x y ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,化简得0,x y =⎧⎪⎨-+=⎪⎩,取1z =,得2n =. …8分设平面ABN 与平面''A B N 所成锐二面角为θ.则12127cos 7||||n n nn θ⋅==⋅.…………9分(Ⅱ)当点N 为下底面上椭圆的短轴端点时,12NF NF ==1'tan tan NN NF αβ===3παβ==, 23παβ+=,tan()αβ+=当点N 为下底面上椭圆的长轴端点(如右顶点)时,11NF =,21NF =,1'tan NNNF α=2'tan NN NF β=tan tantan()1tan tan 5αβαβαβ++==--. 直观判断tan()αβ+的取值范围为[5-. (说明:直观判断可以不要求说明理由.) …10分 ∵'N 是点N 在上底面的投影,∴'N N ⊥上底面'O ,∵上下两底面互相平等, ∴'N N ⊥下底面O ,即'N N ⊥平面ABN ,∴12','N F N N F N ∠∠分别为12','N F N F 与下底面所成的角,即12','N F N N F N αβ∠=∠=. …11分 又∵12,NF NF ⊂平面ABN , ∴12','NN NF NN NF ⊥⊥. 设12,NF m NF n ==,则m n +=,且12''tan ,tan NN NN NF m NF nαβ====,∴)tan()66m n mn mn mn αβ+++===--. …12分∵m n +=,∴2)(2mn m m m =-=-+.11m -≤≤,∴ 12mn ≤≤. …13分∴564mn -≤-≤-,6mn ≤≤--.从而证得:tan()αβ+的取值范围为[]5-. …………14分21.(1)(本小题满分7分)选修4—2:矩阵与变换本小题主要考查矩阵与变换等基础知识,考查运算求解能力,考查函数与方程思想.满分7分.解:(Ⅰ)设a b c d ⎛⎫=⎪⎝⎭A ,则1100a c ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A ,0112b d ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A ,所以1102⎛⎫=⎪⎝⎭A ; …………3分 (Ⅱ)矩阵A 的特征多项式为11()(1)(2)02f λλλλλ--==---,............4 令()0f λ=,得矩阵A 的特征值为121,2λλ==. (5)对于特征值11λ=,解相应的线性方程组00,00x y x y ⋅-=⎧⎨⋅-=⎩,即0y =,令1x =,得该方程的一组非零解1,x y =⎧⎨=⎩,所以110⎛⎫= ⎪⎝⎭ξ是矩阵A 的属于特征值11λ=的一个特征向量. (6)对于特征值22λ=,解相应的线性方程组0,000x y x y -=⎧⎨⋅+⋅=⎩,即x y =,令1x =,得该方程的一组非零解1,1x y =⎧⎨=⎩, 所以211⎛⎫= ⎪⎝⎭ξ是矩阵A 的属于特征值22λ=的一个特征向量. …………7分 (2)(本小题满分7分)选修4—4:坐标系与参数方程本小题主要考查参数方程、极坐标方程等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想等.满分7分.解:(Ⅰ)直线l的普通方程为20x +-=, …………………………(*)将cos ,sin x y ρθρθ==代入(*),得cos sin 20ρθθ+-=,……1分 化简得线l 的方程为cos()13πρθ-=, ……2分圆C 的极坐标方程为2ρ=. …………3分(Ⅱ)联立方程组2,cos()13ρπρθ=⎧⎪⎨-=⎪⎩,消去ρ得1cos()32πθ-=, ………4分 因为[0,2)θπ∈, 所以5333πππθ-≤-<,所以33ππθ-=-或33ππθ-=,………6分所以直线l 和圆C 的交点的极坐标为2(2,0),(2,)3π. …………7分 (3)(本小题满分7分)选修4—5:不等式选讲本小题主要考查绝对值的含义、柯西不等式等基础知识,考查运算求解能力以及推理论证能力,考查函数与方程思想、数形结合思想等.满分7分. 解:(Ⅰ)()3f x ==+≤=,……2分当且仅当4x =时等号成立. ……3分故函数()f x 的最大值3M =.(Ⅱ)由绝对值三角不等式,可得12(1)(2)3x x x x -++≥--+=. ……4分 所以不等式123x x -++≤的解x ,就是方程123x x -++=的解. ……5分 由绝对值的几何意义,可得当且仅当21x -≤≤时,123x x -++=. ……6分所以不等式12x x M -++≤的解集为{|21}x x -≤≤. ……7分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A) -1
(B)
1 3
(C) 1
(D) 3
【命题意图】本小题主要考查线性规划等基础知识,考查运算求解能力,考
y
查化归与转化思想、数形结合思想、函数与方程思想,检测直观想象、数学运算 素养等. 【试题简析】由已知条件,可行域如右图阴影部分.其中阴影区域三角形的 三个顶点分别为 (1,0),(1, 2),( , ) ,把三个点分别代入 z x y 检验得:当
x 【变式题源】 (2015 全国卷 I· 理 1)已知集合 A x x 1 , B x 3 1 ,则
1 2
B {x |
1 x 1} ,故选 D. 2
B ;错选 B:集合 B 解错,解成 B x x 1或x 1 ;错选 C:
1 2
(A) A
B {x | x 0} (B) A B R
an 的公差为
(A)1 (4)已知点 (2,1) 在双曲线 E : (B)2 (C)4 (D)8
x2 y 2 1(a 0, b 0) 的渐近线上,则 E 的离心率等于 a 2 b2
5 2
(A)
3 2
(B)
(C) 5
(D)
5 或 5 2
【命题意图】本小题主要考查双曲线的渐近线、离心率等基础知识,考查运算求解能力,考查化归与 转化思想、函数与方程思想. 【试题简析】由题意得,点 (2,1) 在直线 y
一、选择题:本大题考查基础知识和基本运算.每小题 5 分,满分 60 分. (1)D (7)C (2)A (8)D (3)A (9)A (4)B (10)C (5)C (11)C (6)A (12)D
(1)已知集合 A x 2 x 1 0 , B x x 2 b2 5 b b 1 x 上,则 ,所以 e ,故选 B. a a 2 a 2
【错选原因】错选 A:误认为 c a b 导致错误;错选 C:误认为双曲线的焦点在 y 轴上.错选 D: 未判断双曲线的焦点位置.
x2 y 2 5 【变式题源】 (2013 全国卷Ⅰ·理 4)已知双曲线 C: 2 2 =1 (a>0,b>0)的离心率为 ,则 C 的 a b 2
(C) A
B {x | x 1}
(D) A
B
(2)已知 z 为复数 z 的共轭复数, 1 i z 2i ,则 z (A) 1 i (B) 1 i (C) 1 i (D) 1 i
【命题意图】本小题主要考查复数的运算、共轭复数等基础知识,考查运算求解能力,考查化归与转 化思想. 【试题简析】因为 z
2i 2i(1 i ) 1 i ,所以 z 1 i ,故选(A). 1 i (1 i )(1 i )
【错选原因】错选 B:求出 z 1 i ,忘了求 z ;错选 C:错解 z 1 i ;错选 D:错解 z 1 i .
市单科质检数学(理科)试题 第 1 页(共 21 页)
1
2
3
4
5
6
泉州市 2018 届普通高中毕业班单科质量检查
理科数学试题参考答案及评分细则
评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可在评卷组内讨论后 根据试题的主要考查内容比照评分标准制定相应的评分细则. 2.对计算题,当考生的解答在某一步仅出现严谨性或规范性错误时,不要影响后续部分的判分; 当考生的解答在某一步出现了将影响后续解答的严重性错误时,后继部分的解答不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.
【命题意图】本小题主要考查等差数列等基础知识,考查运算求解能力,考查化归与转化思想. 【试题简析】依题意得, d a2 a1 2 , a5 S5 S4 9 ,所以 a50 a5 45d 99 ,故选 A. 【错选原因】错选 A: S n 的公式记忆错误,导致计算错误;错选 B: S n 的公式记忆错误,导致计算 错误;错选 D:误认为 S5 S4 a4 . 【变式题源】 (2017 全国卷Ⅰ·理 4)记 S n 为等差数列 an 的前 n 项和.若 a4 a5 24 , S 6 48 ,则
O
5 4 3 3
x
x 1, y 0 时, z 取得最大值 1,故选 C.
【错选原因】错选 A:误把 z 的最大值当成 z x y 的最大值;错选 B: 误 把 z 的最 小值当成 z x y 的 最大 值;错选 C :误把 z 的 最 小值当 成
B
1 2
(D) x
(A) x x 1
(B) x x 1
(C) x 1 x
1 x 1 2
【命题意图】本小题主要考查解不等式、交集等基础知识,考查运算求解能力,考查化归与转化思想. 【试题简析】因为 A {x | x } , B {x | 1 x 1} ,所以 A 【错选原因】错选 A:误求成 A 集合 A 解错,解成 A {x | x } .
【变式题源】 (2015 全国卷Ⅰ·文 3)已知复数 z 满足(z-1)i=1+i,则 z= (A)-2-i (B)-2+i (C)2-i (D)2+i
(3)设等差数列 an 的前 n 项和为 S n .若 a2 a1 2 , S5 S4 9 ,则 a50 (A) 99 (B) 101 (C) 2500 (D) 9 245
渐近线方程为 (A)y=
1 x 4
(B)y=
1 x 3
(C)y=
1 x 2
(D) y x
x 1, (5)已知实数 x, y 满足 x y 3 0, 则 z x y 的最大值为 2 x y 2 0,
市单科质检数学(理科)试题 第 2 页(共 21 页)