函数与不等式问题的解题技巧
解方程与不等式的方法

解方程与不等式的方法解方程和不等式是数学中常见的问题,解决这些问题需要掌握相应的方法和技巧。
本文将介绍几种常用的解方程和不等式的方法,帮助读者更好地理解和应用这些数学知识。
一、一元一次方程的解法一元一次方程是指只有一个未知数,并且未知数的最高次数为一的方程。
解决一元一次方程可以通过消元法、代入法和公式法等方法。
1. 消元法:消元法是一种常用的解一元一次方程的方法。
首先将方程两边的项整理成相同形式,然后逐步将其中一个未知数的系数消去,最终得到一个关于未知数的方程,从而求解出未知数的值。
2. 代入法:代入法是另一种解一元一次方程的方法。
首先将方程中的一个未知数表示成另一个未知数的函数形式,然后将该未知数的函数形式代入到方程中,化简得到一个关于另一个未知数的方程,从而求解出未知数的值。
3. 公式法:对于形如ax + b = 0(其中a≠0)的一元一次方程,可以直接利用求根公式x = -b/a来求解未知数的值。
二、一元二次方程的解法一元二次方程是指只有一个未知数,并且未知数的最高次数为二的方程。
解决一元二次方程可以通过因式分解法、配方法和求根公式法等方法。
1. 因式分解法:当一元二次方程可以因式分解成两个一元一次方程的乘积形式时,可以使用因式分解法来求解未知数的值。
2. 配方法:对于无法因式分解的一元二次方程,可以使用配方法来求解未知数的值。
通过将方程两边配方,将一变量的平方项与常数项相加,转换成完全平方的形式,从而得到一个一元二次方程,然后应用一元一次方程的解法进行求解。
3. 求根公式法:对于一元二次方程ax^2 + bx + c = 0,其求根公式为x = (-b ± √(b^2 - 4ac))/(2a)。
通过将方程中的系数代入公式,求解得到未知数的值。
三、一元一次不等式的解法一元一次不等式是指只有一个未知数,并且未知数的最高次数为一的不等式。
解决一元一次不等式可以通过图像法、试解法和代数法等方法。
数学解题技巧:函数不等式问题

第三讲 函数与不等式问题【考点透视】1.了解映射的概念,理解函数的概念.2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 7.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力.8.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式.9.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题.10.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力. 11.能较灵活的使用不等式的基本知识、基本方法,解决有关不等式的问题.12.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、分析几何等各部分知识中的使用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在使用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.【例题分析】 1.函数的定义域及其求法函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会使用用函数的定义域解决有关问题. 例1.已知函数()f x 的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅ 命题意图: 本题主要考查含有分式、无理式和对数的函数的定义域的求法.解:函数()f x =的定义域M={}1,x x < g(x)=ln(1)x +的定义域N={}1,x x >-∴M ∩N={|11}x x -<<. 故选C例2.函数y ( )(A )(3,+∞) (B )[3, +∞) (C )(4, +∞) (D )[4, +∞) 命题意图: 本题主要考查含有无理式和对数的函数的定义域的求法.解:由20 4.log 20x x x >⎧⇒>⎨->⎩,故选D.2.求函数的反函数求函数的反函数,有助与培养人的逆向思维能力和深化对函数的定义域、值域,以及函数概念的理解.例3.函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是( ) (A),020xx y x ⎧≥⎪=< (B)2,00x x y x ≥⎧=< (C),020xx y x ⎧≥⎪=⎨⎪<⎩(D)2,00x x y x ≥⎧⎪=⎨<⎪⎩ 命题意图: 本题主要考查有关分段函数的反函数的求法.()121:2,.(),(0);22,0,()0.,020.yxy x x f x x y x y f x x xx y x --=∴=∴=≥=-<∴=<⎧≥⎪∴=⎨⎪<⎩解又故选C.例4.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 命题意图: 本题主要考查反函数的求法及待定系数法等知识.解:()()11112,,.2222y x a x y a y x a x a =-∴=+∴=+=+与3y bx =+比较得a =6,1.2b =故填162;3.复合函数问题复合函数问题,是新课程、新高考的重点.此类题目往往分为两类:一是结合函数分析式的求法来求复合函数的值.二是使用已知函数定义域求复合函数的定义域.例5.对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①②B.①③C.②D.③命题意图: 本题主要考查利用复合函数和函数单调性等知识解决问题的能力.解:22()(2),(2)f x x f x x =-∴+=是偶函数,又函数2()(2)f x x =-开口向上且在()-∞2,上是减函数,在(2)+∞,上是增函数.故能使命题甲、乙均为真的函数仅有2()(2)f x x =-.故选C例6.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________.命题意图: 本题主要考查代数式恒等变形和求复合函数的值的能力. 解:由()()12f x f x +=,得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+.4.函数的单调性、奇偶性和周期性函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例7.已知函数()1,1xf x a z =-+,若()f x 为奇函数,则a =________.命题意图: 本题主要考查函数的分析式的求解以及函数的奇偶性使用. 常规解法:由f(x)为奇函数,所以f(x)+f(-x)=0,即,0121121=+-++--x xa a .2112212112112121=++⋅=⎪⎭⎫ ⎝⎛+++=∴-x x x x a 应填21.巧妙解法:因为f(x)为奇函数,所以f(0)=0,即.21,01210=∴=+-a a 应填21.点评:巧妙解法巧在利用了f(x)为奇函数,所以f(0)=0,这一重要结论.例8. ()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件命题意图: 本题主要考查两个函数的加法代数运算后的单调性以及充分条件和必要条件的相关知识.解 先证充分性:因为()f x ,()g x 均为偶函数, 所以()(),f x f x -=()()g x g x -=,有()()()()()()h x f x g x f x g x h x -=-+-=+=,所以 ()h x 为偶函数.反过来,若()h x 为偶函数,()f x ()g x 不一定是偶函数.如2()h x x =,(),f x x =2()g x x x =-,故选B.方法二:可以选取两个特殊函数进行验证. 故选B点评:对充要条件的论证,一定既要证充分性,又要证必要性,二着缺一不可.同时,对于抽象函数,有时候可以选取特殊函数进行验证. 5.函数的图象与性质函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想.例9.函数y=1+a x (0<a <1)的反函数的图象大致是 ( )(A ) (B ) (C ) (D )命题意图: 本题主要考查对数函数的图象,互为反函数图象间关系及对数的运算性质等知识.解:∵y=1+a x (0<a <1),∴()()1log (1),01a f x x a -=-<<.此函数图象是由函数()()log ,01a f x x a =<<向右平移一个单位得到的.故选A. 6. 函数综合问题函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样. 这里主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养读者的思维和创新能力. 例10.已知.|1|)(22kx x x x f ++-= (Ⅰ)若k = 2,求方程0)(=x f 的解;(Ⅱ)若关于x 的方程0)(=x f 在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明.41121<+x x命题意图:本题主要考查函数的基本性质、方程与函数的关系等基础知识,以及综合运用所学知识、分类讨论等思想方法分析和解决问题的能力。
一次函数和不等式的解题技巧

一次函数和不等式的解题技巧一次函数和不等式是数学中非常基础的概念,也是我们日常生活中经常会遇到的问题。
在学习和解决这些问题时,我们需要掌握一些解题技巧,以便更好地理解和应用这些概念。
本文将介绍一些解决一次函数和不等式问题的技巧和方法。
一、一次函数一次函数是指形如y = kx + b的函数,其中k和b是常数。
在解决一次函数问题时,我们需要掌握以下几点:1. 确定函数的斜率和截距一次函数的斜率k表示函数在直线上的倾斜程度,截距b表示函数与y轴的交点。
根据这些信息,我们可以画出函数的图像并更好地理解函数的性质。
2. 确定函数的定义域和值域一次函数的定义域是指函数可取的x值的范围,值域是指函数可取的y值的范围。
在解决问题时,我们需要根据实际情况确定函数的定义域和值域,并注意函数的限制条件。
3. 利用函数的性质解决问题一次函数具有很多性质,如单调性、奇偶性、周期性等。
在解决问题时,我们可以利用这些性质来简化问题,例如确定函数的最值、解决方程等。
二、不等式不等式是指形如ax + b < c或ax + b > c的式子,其中a、b、c是常数。
在解决不等式问题时,我们需要掌握以下几点:1. 确定不等式的解集不等式的解集是指满足不等式的x值的范围。
在解决问题时,我们需要根据不等式的符号和常数确定解集,并注意解集的限制条件。
2. 利用不等式的性质解决问题不等式具有很多性质,如可加性、可减性、可乘性等。
在解决问题时,我们可以利用这些性质来简化问题,例如确定不等式的最值、解决方程等。
3. 联立不等式解决问题有时候,我们需要联立多个不等式来解决问题。
在联立不等式时,我们需要注意不等式的符号和常数,并根据实际情况确定解集。
三、综合应用在解决实际问题时,我们需要综合运用一次函数和不等式的知识和技巧。
例如,当我们需要求解一条直线与坐标轴围成的三角形的面积时,我们可以利用一次函数的性质确定直线的斜率和截距,并利用不等式的性质确定三角形的顶点坐标和面积。
三角函数方程与不等式

三角函数方程与不等式在数学中,三角函数方程与不等式是涉及三角函数的方程和不等式。
三角函数的常见类型包括正弦函数、余弦函数、正切函数等。
解决三角函数方程与不等式的方法多种多样,掌握这些方法对于应对数学问题和解题技巧至关重要。
一、三角函数方程1. 正弦函数方程正弦函数方程的一般形式为sin(x) = a,其中a为给定的常数。
为了解这类方程,可以使用以下步骤:步骤1:确定方程的形式是否为sin(x) = a。
步骤2:根据给定的常数a,找到x的解。
考虑a的范围以及sin函数的定义域和值域。
步骤3:解出满足条件的x值。
例如,对于方程sin(x) = 0.5,我们可以找到解为x = π/6 + 2πn,其中n为整数。
2. 余弦函数方程余弦函数方程的一般形式为cos(x) = a,其中a为给定的常数。
解决余弦函数方程的方法与解决正弦函数方程类似,也可以按照以下步骤进行:步骤1:确定方程的形式是否为cos(x) = a。
步骤2:根据给定的常数a,找到x的解。
考虑a的范围以及cos函数的定义域和值域。
步骤3:解出满足条件的x值。
例如,对于方程cos(x) = -0.8,我们可以找到解为x = 2π/3 + 2πn,其中n为整数。
3. 正切函数方程正切函数方程的一般形式为tan(x) = a,其中a为给定的常数。
解决正切函数方程的步骤如下:步骤1:确定方程的形式是否为tan(x) = a。
步骤2:根据给定的常数a,找到x的解。
考虑a的范围以及tan函数的定义域和值域。
步骤3:解出满足条件的x值。
例如,对于方程tan(x) = -1,我们可以找到解为x = -3π/4 + πn,其中n为整数。
二、三角函数不等式解决三角函数不等式的方法与解决三角函数方程类似,需要考虑函数的定义域和值域,并根据给定的不等式条件解出满足条件的解。
举例来说,对于不等式sin(x) > 0.5,我们可以找到解为x ∈ (π/6 + 2πn, 5π/6 + 2πn),其中n为整数。
不等式的证明技巧

不等式的证明技巧不等式是数学中常见的一种重要的数学关系。
证明一个不等式一般有以下几种常用的技巧:1.分析前提条件:首先,我们需要对不等式中的前提条件进行仔细的分析,了解这些条件约束下的数学性质。
在证明过程中,有时可以通过对前提条件的适当利用来简化证明过程,或者削弱不等式的限制,使得问题更容易处理。
2.求导和函数分析:对于一些关于函数的不等式,我们可以通过函数的导数来进行分析。
在求导的过程中,我们可以得到函数的最大值、最小值以及增减性质等重要的信息。
根据这些信息,我们可以判断函数的取值范围和不等式的成立条件。
3.数学归纳法:对于一些具有递推性质的不等式,可以使用数学归纳法进行证明。
首先,我们可以验证当n=1时不等式的成立,然后假设对于一些n成立,即不等式成立,再通过证明当n+1时也成立来得出结论。
4.分割法:对于一些含有多个变量的不等式,我们可以通过分割法将问题转化为多个单变量的不等式进行分析。
通过分析这些单变量的不等式,可以帮助我们更好地理解原始不等式的性质和结论。
5.套用已知不等式:在证明过程中,我们可以尝试将一些已知的不等式进行变形运用。
通过套用已知的不等式,可以简化证明过程,加快解题速度。
尤其是一些经典的不等式如均值不等式、柯西-施瓦茨不等式等,它们已经被广泛研究和应用,具有较强的普适性。
6.代入与化简:有时我们可以通过代入一些特殊的数值或者特定的变量取值,使得不等式变得更简单。
这样可以进一步分析不等式的性质,加深对问题本质的理解,从而得出证明结论。
7.反证法:给定一个不等式,我们假设其不成立,然后通过一系列逻辑推导和推理来推导出矛盾的结论。
这时我们可以得出原不等式的成立。
总之,证明不等式需要深入理解数学性质和灵活的数学思维。
结合前述的证明技巧,可以帮助我们更好地解决不等式问题。
最重要的是,需要积极锻炼数学证明的能力,通过练习和实践才能够提高。
函数与不等式问题的解题技巧

函数与不等式问题的解题技巧【命题趋向】全国高考数学科《考试大纲》为走向高考的莘莘学子指明白复习备考的方向.考纲是考试法典,是命题的依据,是备考的总纲.科学备考的首要任务,就是要仔细学习、讨论考纲.对比考纲和高考函数试题有这样几个特点:1.通过选择题和填空题,全面考查函数的基本概念,性质和图象.2.在解答题的考查中,与函数有关的试题经常是以综合题的形式消失.3.从数学具有高度抽象性的特点动身,没有忽视对抽象函数的考查.4.一些省市对函数应用题的考查是与导数的应用结合起来考查的.5.涌现了一些函数新题型.6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导.函数类试题在试题中所占分值一般为22---35分.1.在选择题中会连续考查比较大小,可能与函数、方程、三角等学问结合出题.2.在选择题与填空题中留意不等式的解法建立不等式求参数的取值范围,以及求最大值和最小值应用题.3.解题中留意不等式与函数、方程、数列、应用题、解几的综合、突出渗透数学思想和方法.分值在27---32分之间,一般为2个选择题,1个填空题,1个解答题.【考点透视】1.了解映射的概念,理解函数的概念.2.了解函数的单调性和奇偶性的概念,把握推断一些简洁函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简洁函数的反函数.4.理解分数指数的概念,把握有理指数幂的运算性质,把握指数函数的概念、图象和性质.5.理解对数的概念,把握对数的运算性质,把握对数函数的概念、图象和性质.6.能够运用函数的性质、指数函数和对数函数的性质解决某些简洁的实际问题.7.在娴熟把握一元一次不等式(组)、一元二次不等式的解法基础上,把握其它的一些简洁不等式的解法.通过不等式解法的复习,提高同学分析问题、解决问题的力量以及计算力量.8.把握解不等式的基本思路,即将分式不等式、肯定值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式.9.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使同学较敏捷的运用常规方法(即通性通法)证明不等式的有关问题.10.通过证明不等式的过程,培育自觉运用数形结合、函数等基本数学思想方法证明不等式的力量.11.能较敏捷的应用不等式的基本学问、基本方法,解决有关不等式的问题.12.通过不等式的基本学问、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分学问中的应用,深化数学学问间的融汇贯穿,从而提高分析问题解决问题的力量.在应用不等式的基本学问、方法、思想解决问题的过程中,提高同学数学素养及创新意识.。
高中函数解题技巧

高中函数解题技巧高中函数解题技巧引言在高中数学中,函数是一个重要的内容,解题时需要运用合适的技巧来解决各种函数问题。
本文将详细说明高中函数解题的各种技巧,帮助学生更好地应对考试。
技巧一:函数定义的掌握1.理解函数的定义:函数是一个映射关系,将自变量映射到因变量。
2.弄清楚定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。
3.利用定义域和值域求解问题:在解题过程中,需要根据函数的定义域和值域来确定自变量和因变量的取值范围,进而解决相关问题。
技巧二:函数的性质应用1.利用奇偶性判断函数的对称性:奇函数以原点对称,偶函数以y轴对称。
通过判断函数的奇偶性,可以简化一些计算和问题的分析。
2.利用导数判断函数的增减性:函数的导数代表其斜率,通过求导可以判断函数在某一区间内的增减情况,有助于解决最值和特殊点问题等。
3.利用周期性解决重复性问题:某些函数具有周期性特征,通过寻找周期性解决问题,可以简化计算和分析过程。
技巧三:函数图像的应用1.利用函数图像解读问题:观察函数的图像,可以帮助理解函数的性质和规律,进而解决相关问题。
2.利用函数图像求解交点和切点:通过观察函数图像的交点和切点,可以求解函数的零点、最大最小值和特殊点等问题。
技巧四:函数图像的变换1.利用平移变换函数图像:平移函数图像可以改变函数图像的位置,通过平移变换可以简化计算和分析过程。
2.利用伸缩变换函数图像:伸缩函数图像可以改变函数图像的尺寸,通过伸缩变换可以观察到函数的变化规律。
技巧五:函数组合和复合1.利用函数组合化简问题:将多个函数组合起来,可以简化计算和分析过程,有助于解决复杂的问题。
2.利用函数复合求解复合函数值:通过将自变量代入复合函数,可以求解复合函数的值,解决相关问题。
技巧六:方程和不等式的解法1.利用函数解方程:将方程转化为函数等式,通过解函数等式来求解方程,可以简化计算和分析过程。
2.利用函数解不等式:将不等式转化为函数不等式,通过解函数不等式来求解不等式,解决相关问题。
数学不等式与函数题解题技巧和思路分享

数学不等式与函数题解题技巧和思路分享数学是一门既抽象又具体的学科,其中不等式与函数是数学中的重要内容。
解题技巧和思路在数学学习中起到至关重要的作用。
本文将分享一些解决数学不等式与函数题的技巧和思路,帮助读者更好地应对这类题目。
一、不等式题解题技巧不等式题是数学中常见的题型,解题时需要注意以下几个技巧:1. 观察不等式的形式:不等式可以分为一元不等式和多元不等式。
对于一元不等式,我们可以通过图像、区间、符号等方式进行分析;对于多元不等式,需要考虑各个变量之间的关系。
2. 利用性质进行转化:有时候,我们可以通过一些性质将不等式转化为更简单的形式。
例如,对于二次不等式,可以利用平方差公式将其转化为完全平方差形式,从而更方便进行求解。
3. 运用数学方法:在解决不等式问题时,可以借助数学方法进行推导和证明。
例如,可以利用数列的性质、平均值不等式、柯西-施瓦茨不等式等进行推导,从而得到更加准确的结果。
4. 注意特殊情况:在解决不等式问题时,需要注意特殊情况的存在。
例如,当不等式中的变量为负数或零时,不等式的符号可能会发生变化,需要进行特殊处理。
二、函数题解题技巧函数题是数学中的重要内容,解题时需要注意以下几个技巧:1. 理解函数的定义与性质:在解决函数题时,首先需要理解函数的定义与性质。
例如,对于一元函数,需要了解其定义域、值域、单调性、奇偶性等性质,从而更好地进行分析和推导。
2. 利用函数的图像进行分析:函数的图像可以直观地反映函数的性质。
通过观察函数的图像,可以获得一些关于函数的信息,从而更好地解决函数题。
3. 运用函数的性质进行推导:在解决函数题时,可以利用函数的性质进行推导和证明。
例如,可以利用导数的定义和性质进行函数的最值求解,利用函数的连续性进行函数的极限计算等。
4. 注意函数的特殊情况:在解决函数题时,需要注意函数的特殊情况。
例如,当函数的定义域存在间断点时,需要进行特殊处理;当函数存在极值点时,需要进行极值点的求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三讲函数与不等式问题的解题技巧【命题趋向】全国高考数学科《考试大纲》为走向高考的莘莘学子指明了复习备考的方向.考纲是考试法典,是命题的依据,是备考的总纲.科学备考的首要任务,就是要认真学习、研究考纲.对照2007年的考纲和高考函数试题有这样几个特点:1.通过选择题和填空题,全面考查函数的基本概念,性质和图象.2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现.3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查.4.一些省市对函数应用题的考查是与导数的应用结合起来考查的.5.涌现了一些函数新题型.6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导.函数类试题在试题中所占分值一般为22---35分.而2007年的不等式试题则有这样几个特点:1.在选择题中会继续考查比较大小,可能与函数、方程、三角等知识结合出题.2.在选择题与填空题中注意不等式的解法建立不等式求参数的取值范围,以及求最大值和最小值应用题.3.解题中注意不等式与函数、方程、数列、应用题、解几的综合、突出渗透数学思想和方法.分值在27---32分之间,一般为2个选择题,1个填空题,1个解答题.可以预测在2008年的高考试题中,会有一些简单求函数的反函数,与导数结合的函数单调性-函数极值-函数最值问题;选择题与填空题中会出现一些与函数、方程、三角等知识结合的不等式问题,在解答题中会出现一些不等式的解法以及建立不等式求参数的取值范围,和求最大值和最小值的应用题特别是不等式与函数、方程、数列、应用题、解几的综合题,这些题目会突出渗透数学思想和方法,值得注意。
【考点透视】1.了解映射的概念,理解函数的概念.2.了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图象的绘制过程.3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数.4.理解分数指数的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.7.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力.8.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式.9.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题. 10.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力. 11.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.12.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.【例题解析】 1.函数的定义域及其求法函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题. 例1.(2007年广东卷理)已知函数()f x =的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅ 命题意图: 本题主要考查含有分式、无理式和对数的函数的定义域的求法. 解:函数()f x =的定义域M={}1,x x < g(x)=ln(1)x +的定义域N={}1,x x >-∴M ∩N={|11}x x -<<.故选C例2. ( 2006年湖南卷)函数y ( )(A )(3,+∞) (B )[3, +∞) (C )(4, +∞) (D )[4, +∞) 命题意图: 本题主要考查含有无理式和对数的函数的定义域的求法.解:由20 4.log 20x x x >⎧⇒>⎨->⎩,故选D.2.求函数的反函数求函数的反函数,有助与培养人的逆向思维能力和深化对函数的定义域、值域,以及函数概念的理解.例3.(2006年安徽卷)函数22,0,0x x y x x ≥⎧=⎨-<⎩ 的反函数是( ) (A),020xx y x ⎧≥⎪=< (B)2,00x x y x ≥⎧⎪=< (C),020xx y x ⎧≥⎪=⎨⎪<⎩(D)2,00x x y x ≥⎧⎪=⎨<⎪⎩ 命题意图: 本题主要考查有关分段函数的反函数的求法.()121:2,.(),(0);22,0,()0.,020.yxy x x f x x y x y f x x xx y x --=∴=∴=≥=-<∴=<⎧≥⎪∴=⎨⎪<⎩解又故选C.例4.(2007年湖北卷理)已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 命题意图: 本题主要考查反函数的求法及待定系数法等知识.解:()()11112,,.2222y x a x y a y x a x a =-∴=+∴=+=+与3y bx =+比较得a =6,1.2b =故填162;3.复合函数问题复合函数问题,是新课程、新高考的重点.此类题目往往分为两类:一是结合函数解析式的求法来求复合函数的值.二是应用已知函数定义域求复合函数的定义域.例5.(2007年北京卷文)对于函数①()2f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 能使命题甲、乙均为真的所有函数的序号是( ) A.①②B.①③C.②D.③命题意图: 本题主要考查利用复合函数和函数单调性等知识解决问题的能力. 解:22()(2),(2)f x x f x x =-∴+=是偶函数,又函数2()(2)f x x =-开口向上且在()-∞2,上是减函数,在(2)+∞,上是增函数.故能使命题甲、乙均为真的函数仅有2()(2)f x x =-.故选C例6.(2006年安徽卷)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________.命题意图: 本题主要考查代数式恒等变形和求复合函数的值的能力. 解:由()()12f x f x +=,得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+.4.函数的单调性、奇偶性和周期性函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例7.(2006年全国卷) 已知函数()1,1xf x a z =-+,若()f x 为奇函数,则a =________.命题意图: 本题主要考查函数的解析式的求解以及函数的奇偶性应用. 常规解法:由f(x)为奇函数,所以f(x)+f(-x)=0,即,0121121=+-++--x xa a .2112212112112121=++⋅=⎪⎭⎫ ⎝⎛+++=∴-x x x x a 应填21. 巧妙解法:因为f(x)为奇函数,所以f(0)=0,即.21,01210=∴=+-a a 应填21. 点评:巧妙解法巧在利用了f(x)为奇函数,所以f(0)=0,这一重要结论.例8.(2007年全国卷理I )()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件命题意图: 本题主要考查两个函数的加法代数运算后的单调性以及充分条件和必要条件的相关知识. 解 先证充分性:因为()f x ,()g x 均为偶函数, 所以()(),f x f x -=()()g x g x -=,有()()()()()()h x f x g x f x g x h x -=-+-=+=,所以 ()h x 为偶函数.反过来,若()h x 为偶函数,()f x ()g x 不一定是偶函数.如2()h x x =,(),f x x =2()g x x x =-,故选B. 方法二:可以选取两个特殊函数进行验证. 故选B点评:对充要条件的论证,一定既要证充分性,又要证必要性,二着缺一不可.同时,对于抽象函数,有时候可以选取特殊函数进行验证. 5.函数的图象与性质函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想. 例9.(2006年山东卷)函数y=1+a x (0<a <1)的反函数的图象大致是 ( )(A ) (B ) (C ) (D )命题意图: 本题主要考查对数函数的图象,互为反函数图象间关系及对数的运算性质等知识.解:∵y=1+a x (0<a <1),∴()()1log (1),01a f x x a -=-<<.此函数图象是由函数()()log ,01a f x x a =<<向右平移一个单位得到的. 故选A. 6. 函数综合问题函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样. 这里主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养读者的思维和创新能力.例10.(2007年浙江卷文)已知.|1|)(22kx x x x f ++-= (Ⅰ)若k = 2,求方程0)(=x f 的解;(Ⅱ)若关于x 的方程0)(=x f 在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明.41121<+x x命题意图:本题主要考查函数的基本性质、方程与函数的关系等基础知识,以及综合运用所学知识、分类讨论等思想方法分析和解决问题的能力。