2015年数学中考复习28 视图与投影

合集下载

中考数学常考易错点之视图与投影含答案

中考数学常考易错点之视图与投影含答案

5.3视图与投影易错清单1.由三视图确定小正方体的个数时,因无实物图,导致容易出错.【例1】(2014·宁夏模拟)如图是一个用相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是().A. 2B. 3C. 4D. 5【解析】由俯视图可知,该几何体有一行三列,再由主,左视图可知第一列有1个小立方块;第2列有2个小立方块;第3列有1个小立方块,一共有4个小立方块.【答案】 C【误区纠错】解答此类由视图还原几何体的问题,一般情况下都是由俯视图确定几何体的位置(有几行几列),再由另外两个视图确定第几行第几列处有多少个小正方体,简便的方法是在原俯视图上用标注数字的方法来解答.2.根据视图求几何图形的表面积和体积,因缺乏合理的方法而出错.【例2】(2014·云南模拟)如图所示,是一个几何体的三视图,则这个几何体的侧面积是().A. 18cm2B. 20cm2【解析】根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18(cm2).【答案】 A【误区纠错】由物体的三视图求几何体的侧面积,表面积,体积等,关键是由三视图想象出几何体的形状.名师点拨1.明确常见几何体的展开图,通过几何体的展开与折叠,体会平面图形与立体图形之间的关系.2.三视图是中考必考热点,一般考查由物体确定视图,由视图确定物体较少见,抓住三视图从三个方向观看这个特点,发挥空间想象力,便可做出准确判断.提分策略1.图形的展开与折叠.常见几何体的展开与折叠:①棱柱的平面展开图是由两个相同的多边形和一些长方形组成,按棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图,特别关注正方体的表面展开图;②圆柱的平面展开图是由两个相同的圆形和一个长方形连成的;③圆锥的平面展开图是由一个圆形和一个扇形组成的.【例1】如图给定的是纸盒的外表面,下面能由它折叠而成的是().【解析】将A,B,C,D分别展开,能和原图相对应的即为正确答案.A项展开得到,不能和原图相对应,故本选项错误;B项展开得到,能和原图相对应,故本选项正确;C项展开得到,不能和原图相对应,故本选项错误;D项展开得到,不能和原图相对应,故本选项错误.【答案】 B2.几何体的三视图三个视图是分别从正面、左面、上面三个方向看同一个物体所得到的平面图形,要注意用平行光去看.画三个视图时应注意尺寸的大小,即三个视图的特征:主视图(从正面看)体现物体的长和高,左视图体现物体的高和宽,俯视图体现物体的长和宽.【例2】如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是().A. 3个或4个或5个B. 4个或5个C. 5个或6个D. 6个或7个【解析】本题考查了由三视图判断几何体,主要考查了考生的空间想象能力以及三视图的相关知识.左视图与主视图相同,可判断出底面最少有2个小正方体,最多有4个小正方体,而第二行则只有1个小正方体,则这个几何体的小立方体可能有3个或4个或5个.根据这个思路可判断出该几何体有多少个小立方体.本题最大误区在于:判断不出左视图与主视图相同时最多有多少个小正方体,最少有多少个小正方体.【答案】 A【例3】如图(1),是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得图(2)所示几何体的视图().A. 主视图改变,俯视图改变B. 主视图不变,俯视图不变C. 主视图不变,俯视图改变D. 主视图改变,俯视图不变【解析】此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.只有熟练掌握三种视图的画法,本题才不会出现误判.根据图形可得:图(1)及图(2)的主视图一样,俯视图不一样,即主视图不变,俯视图改变.【答案】 C专项训练一、选择题1.(2014·湖北天门模拟)一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是().(第1题)A. 15个B. 13个C. 11个D. 5个2. (2014·江苏苏州高新区一模)如图是一个几何体的三视图,则这个几何体的侧面积是().(第2题)A. 12πcm2B. 8πcm2C. 6πcm2D. 3πcm23.(2014·云南曲靖模拟)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是().(第3题)A. ①②B. ②③C. ②④D. ③④4. (2014·江苏南京二模)若干桶方便面摆放在桌面上,它的三个视图如图,则这一堆方便面共有().(第4题)A. 7桶B. 8.桶C. 9桶D. 10桶5. (2014·天津塘沽区一模)如图是五棱柱形状的几何体,则它的三视图为().(第5题)6.(2013·山西模拟)如图是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体的个数为().(第6题)A. 2B. 3C. 4D. 67. (2013·广西南丹中学一模)如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是( ).(第7题)A. 2B. 3C. 4D. 58. (2013·河北四模)一个几何体的三视图如下:(第8题)其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( ). A. 2π B.C. 4πD. 8π二、 解答题9. (2014·四川乐山模拟)如图(1),是由一些棱长都为1cm 的小正方体组合成的简单几何体.(第9题(1))(1)该几何体的表面积(含下底面)为 ;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.(第9题(2))参考答与解析1. A 2. B 3. B 4. C 5. A 6. C 7. C 8. C 9. (1)26cm2(2)如图.(第9题)。

九年级数学总复习课件:第27课时视图与投影

九年级数学总复习课件:第27课时视图与投影

(3)中心投影:由一点(点光源)发出的光线 所形成的投影.如:物体在灯泡发出的光照射下 形成的投影. 2.三视图 (1)自几何体的前方向后投射,在正面投影面 上得到的视图称为②_主__视图; (2)自几何体的上方向③_下__投射,在水平投影 面上得到的视图称为俯视图; (3)自几何体的左侧向④_右__投射,在侧面投影 面上得到的视图称为左视图.
选项 正误
逐项分析
A × 圆锥的视图中包含圆,与题干不符
B × 圆柱的视图中包含圆,与题干不符
C √ 完全符合题意,故正确
三棱锥的视图不涉及矩形,与题干
D × 不符
3. (’14河南)将两个长方体如图放置,则所 构成的几何体的左视图可能是(C )
【解析】本题考查常见组合体的视图.找到从左 侧看所得到的平面图形即可,从左向右看该组合 体的上方的立方体的左视图是中间位置有实线的 长方形,下方的立方体的左视图是矩形.故选C.
类型一 三视图与投影 例 1(’14哈尔滨)如图所示的几何体是
由一些小正方体组合而成的,则这个几何体的 俯视图是D( )
例1题图
【解析】本题考查了小正方体组合体的俯视图. 俯视图是从物体上面向下看所得到的图形,从组 合体上面看到的平面图形共有两行,第一行是三 个正方形,第二行是左右两边各一个正方形,中 间空一个正方形.
1
由已知可得BF=18-4=14 cm, CE= 2 ×24=12 cm, EF=CD=AD=2 cm, ∴ B C C E 2 B E 2 1 2 2 1 6 2=20 cm.
第2题解图
右有m列,每一列最高有n层,对应到左视图中 即有m列,每一列即有n个正方形,并注意每列
中正方形的摆放位置. ③判断俯视图时,从上往下看,几何体从前往

数学中考一轮单元总复习达标精准突破-专题29 投影与视图

数学中考一轮单元总复习达标精准突破-专题29  投影与视图
(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);
(2)求小明原来的速度.
22.如图所示,某校墙边有甲、乙两根木杆,如果乙木杆的影子刚好不落在墙上,
AB=5m,BC=3m
(1)请你画出此时DE在阳光下的投影;
(2)若同时测量出DE在阳光下的投影长为6m,请你计算DE的长.
A. B. C. D.
【例题3】(2020湖南岳阳)如图,由4个相同正方体组成的几何体,它的左视图是( )
A. B.
C. D.
【例题4】(2020苏州)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是( )
A. B. C. D.
《投影与视图》单元精品检测试卷
本套试卷满分120分,答题时间90分钟
A. B. C. D.
16.三棱柱的三视图如图,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.
17.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.
18.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.
C.球的主视图和左视图都是圆,故此选项不符合题意;
D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,
【点拨】本题考查了简单几何体的三视图,熟练掌握确定三视图的方法是解答的关键.
6.(2020甘肃武威)下列几何体中,其俯视图与主视图完全相同的是( )
知识点三:视图知识的应用
1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。

【聚焦中考】2015届中考数学(安徽)九年级总复习 考点跟踪突破28 视图与投影

【聚焦中考】2015届中考数学(安徽)九年级总复习 考点跟踪突破28 视图与投影

考点跟踪突破28视图与投影一、选择题(每小题6分,共30分)1.(2014·贵阳)一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是( B )A.中B.功C.考D.祝2.(2014·宁夏)如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( D )3.(2014·师大附中模拟)如图,图①是一个底面为正方形的直棱柱,现将图①切割成图②的几何体,则图②的俯视图是( C )4.(2014·孝感)如图是某个几何体的三视图,则该几何体的形状是( D )A.长方体B.圆锥C.圆柱D.三棱柱5.(2014·呼和浩特)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( B )A.60πB.70πC.90πD.160π二、填空题(每小题6分,共30分)6.(2014·梅州)写出一个在三视图中俯视图与主视图完全相同的几何体__球或正方体__.7.(2014·湖州)如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是__3__.8.(2012·河源)春蕾数学兴趣小组用一块正方形木板在阳光下做投影试验,这块正方形木板在地面上形成的投影可能是__正方形、菱形(答案不唯一)__.(写出符合题意的两个图形即可)9.(2013·济宁)三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF =30°,则AB的长为__6__ cm.10.(2014·黔东南州)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为__8__.三、解答题(共40分)11.(10分)(2012·自贡)画出如图所示立体图形的三视图.解:如图所示:12.(10分)5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是__5__立方单位,表面积是__22__平方单位;(2)画出该几何体的主视图和左视图.解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形,每个正方形的面积为1,∴组合几何体的表面积为22.故答案为5,22(2)作图如下:13.(10分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的主视图和左视图.(2)根据三视图,请你求出这个组合几何体的表面积.(包括底面积) 解:(1)图形如下所示:(2)几何体的表面积为:(3+4+5)×2=24.14.(10分)如图,公路旁有两个高度相等的路灯AB ,CD.小明上午上学时发现路灯B 在太阳光下的影子恰好落到里程碑E 处,他自己的影子恰好落在路灯CD 的底部C 处.晚自习放学时,站在上午同一个地方,发现在路灯CD 的灯光下自己的影子恰好落在里程碑E 处.(1)在图中画出小明的位置(用线段FG 表示),并画出光线,标明太阳光、灯光; (2)若上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,他离里程碑E 恰好5米,求路灯高.解:(1)(2)∵上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,∴小明的影长CF为3米,∵GF ⊥AC ,DC ⊥AC ,∴GF ∥CD ,∴△EGF ∽△EDC ,∴GF CD =EF EC ,∴1.5CD =55+3,解得CD =2.4.答:路灯高为2.4米。

中考试题中的视图与投影

中考试题中的视图与投影

三、鲁班锁
3. 鲁班锁,民间也称作孔明锁、八卦锁,它起源于中国古代建筑中首创的榫卯结构,如图是鲁班锁的
其中一个部件,它的主视图是( )
第 3 题图
—1—
Байду номын сангаас
参考答案
中考试题中的数学文化
1. C 2. A 【解析】S 侧面=4×4+2 2×4×2=16+16 2. 3. C
—2—
第七章 图形的变化
第二节 视图与投影
中考试题中的数学文化
一、牟合方盖 所谓“牟合方盖” ,是以棱长为一寸的立方体八枚,合之则棱长为二寸的立方体,又以过立方体中之 二正圆柱垂直相贯并内切于立方体之相应侧面,则二内切于立方体的两垂直相贯的正圆柱的共同部分.“牟 合方盖”是刘徽研究球体体积公式时创建的几何模型,这一模型的建立,为最后获得球体体积公式提供了 充分条件. 1. 我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从 纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方 盖”的一种模型,它的主视图是( )
二、《九章算术》——堑堵 2. 我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑 堵”.某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为 1),则该“堑堵”的侧面积为( )
第 2 题图
A. 16+16 2
B. 16+8 2
C. 24+16 2
D. 4+4 2

中考数学《投影与视图》复习题附参考答案

中考数学《投影与视图》复习题附参考答案

投影与视图【基础知识回顾】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的其中照射光线叫做投影所在的平面叫做2、平行投影:太阳光可以近似地看作是光线,像这样的光线所形成的投影称为平行投影3、中心投影:由同一点(点光源)发出的光线形成的投影叫做,如物体在、、等照射下所形成的投影就是中心投影【名师提醒:1、中心投影的光线平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物高成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】二、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图。

其中,从看到的图形称为主视图,从看到的图形称为左视图,从看到的图形称为俯视图2、三种视图的位置及作用⑴画三视图时,首先确定的位置,然后在主视图的下面画出,在主视图的右边画出⑵主视图反映物体的和,左视图反映物体的和俯视图反映物体的和。

【名师提醒:1、在画几何体的视图时,看得见部分的轮廓线通常画成线,看不见部分的轮廓线通常画成线2、在画几何体的三视图时要注意主俯对正,主左平齐,左俯相等】三、立体图形的展开与折叠:1、许多立体图形是由平面图形围成的,将它们适当展开即为平面展开图,同一个立体图形按不同的方式展开,会得到不同的平面展开图2、常见几何体的展开图:⑴正方体的展开图是⑵n边形的直棱柱展开图是两个n边形和一个⑶圆柱的展开图是一个和两个⑷圆锥的展开图是一个与一个【名师提醒:有时会出现根据物体三视图中标注的数据求原几何体的表面积,体积等题目,这时要注意先根据三种视图还原几何体的形状,然后想象有关尺寸在几何体展开图中标注的是哪些部分,最后再根据公式进行计算】【重点考点例析】考点一:简单几何体的三视图例1 (2017•锦州)下列几何体中,主视图和左视图不同的是()A.B.C.D.思路分析:分别分析四种几何体的主视图和左视图,找出主视图和左视图不同的几何体.解:A、圆柱的主视图与左视图都是长方形,不合题意,故本选项错误;B、正方体的主视图与左视图相同,都是正方形,不合题意,故本选项错误;C、正三棱柱的主视图是长方形,长方形中有一条杠,左视图是矩形,符合题意,故本选项正确;D、球的主视图和左视图相同,都是圆,且有一条水平的直径,不合题意,故本选项错误.故选:C.点评:本题考查了简单几何体的三视图,要求同学们掌握主视图是从物体的正面看到的视图,左视图是从物体的左面看得到的视图.对应训练1.(2017•黄石)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④考点二:简单组合体的三视图例2 (2017•湛江)如图是由6个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.思路分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解:从物体左面看,是左边2个正方形,右边1个正方形.故选A.点评:本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.对应训练2.(2017•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()圆柱正方体正三棱柱球A.B.C.D.考点三:由三视图判断几何体例3(2017•扬州)某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥思路分析:如图所示,根据三视图的知识可使用排除法来解答.解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.点评:本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.例4 (2017•自贡)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()碗A.8 B.9 C.10 D.11思路分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:易得第一层有4碗,第二层最少有3碗,第三层最少有2碗,所以至少共有9个碗.故选B.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.对应训练3.(2017•云南)图为某个几何体的三视图,则该几何体是()A.B.C.D.4.(2017•玉林)某几何体的三视图如图所示,则组成该几何体共用了()小方块.A.12块B.9块C.7块D.6块4.C考点四:几何体的相关计算例5(2017•贺州)如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为()A.2cm3B.3cm3C.6cm3D.8cm3思路分析:根据三视图我们可以得出这个几何体是个长方体,它的体积应该是1×1×3=3cm3.解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3.点评:本题考查了由三视图判断几何体及长方体的体积公式,本题要先判断出几何体的形状,然后根据其体积公式进行计算.对应训练5.(2017•宁夏)如图是某几何体的三视图,其侧面积()A.6 B.4πC.6πD.12π【聚焦中考】1.(2017•烟台)下列水平放置的几何体中,俯视图不是圆的是()A.B.C.D.2.(2017•淄博)下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A.B.C.D.3.(2017•莱芜)下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个4.(2017•滨州)如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是()A.B.C.D.5.(2017•潍坊)如图是常用的一种圆顶螺杆,它的俯视图正确的是()A.B.C.D.6.(2017•青岛)如图所示的几何体的俯视图是()A.B.C.D.7.(2017•济南)图中三视图所对应的直观图是()A.B.C.D.8.(2017•威海)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变9.(2017•聊城)如图是由几个相同的小立方块组成的三视图,小立方块的个数是()A.3个B.4个C.5个D.6个9.B10.(2017•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm210.C11.(2017•济宁)三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为cm.【备考真题过关】一、选择题1.(2017•成都)如图所示的几何体的俯视图可能是()A.B.C.D.2.(2017•昆明)下面几何体的左视图是()A.B.C.D.3.(2017•安徽)如图所示的几何体为圆台,其主(正)视图正确的是()A.B.C.D.4.(2017•本溪)如图放置的圆柱体的左视图为()A.B.C.D.5.(2017•舟山)如图,由三个小立方体搭成的几何体的俯视图是()A.B.C.D.6.(2017•义乌)如图几何体的主视图是()A.B.C.D.7.(2017•株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是()A .B .C .D .8.(2017•营口)如图,下列水平放置的几何体中,主视图是三角形的是()A .B .C . D.9.(2017•宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A .B .C .D .10.(2017•新疆)下列几何体中,主视图相同的是( )A .①②B .①③C .①④D .②④11.(2017•桂林)下列物体的主视图、俯视图和左视图不全是圆的是( )A .橄榄球B .兵乓球C .篮球D .排球12.(2017•广东)下列四个几何体中,俯视图为四边形的是( )A .B .C .D .13.(2017•天津)如图是由3个相同的正方体组成的一个立体图形,它的三视图是( )A .B .C .D .正方体 圆柱 圆锥 球14.(2017•泰州)由一个圆柱体与一个长方体组成的几何体如图所示,这个几何体的左视图是()A.B.C.D.15.(2017•遂宁)如图所示的是三通管的立体图,则这个几何体的俯视图是()A.B.C.D.16.(2017•南平)如图是由六个棱长为1的正方体组成的一个几何体,其主视图的面积是()A.3 B.4 C.5 D.6 17.(2017•宿迁)如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是()A.3 B.4 C.5 D.618.(2017•十堰)用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.19.(2017•黔东南州)如图是有几个相同的小正方体组成的一个几何体.它的左视图是()A.B.C.D.20.(2017•盘锦)如图下面几何体的左视图是()A.B.C.D.21.(2017•茂名)如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A.B.C.D.22.(2017•荆门)过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.23.(2017•江西)一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则它的左视图可以是()A.B.C.D.24.(2017•大庆)图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是()A.B.C.D.25.(2017•遵义)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.26.(2017•铁岭)如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()A.B.C. D27.(2017•黑龙江)由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4 B.5 C.6 D.728.(2017•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个29.(2017•孝感)如图,由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是()A.B.C.D.30.(2017•曲靖)如图是某几何体的三视图,则该几何体的侧面展开图是()A.B.C.D.31.(2017•乐山)一个立体图形的三视图如图所示.根据图中数据求得这个立体图形的表面积为()A.2πB.6πC.7πD.8π31.D32.(2017•杭州)如图是某几何体的三视图,则该几何体的体积是()A.183B.543C.1083D.2163二、填空题33.(2017•南通)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是.34.(2017•绥化)由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.35.(2017•无锡)如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.。

2015届湘教版中考数学复习课件(第30课时_投影与视图)

2015届湘教版中考数学复习课件(第30课时_投影与视图)

考点聚焦
归类探究
回归教材
第30课时┃ 投影与视图
探究三 根据视图判断几何体的个数
命题角度:由三视图确定小正方体的个数.
例3 [2013· 益阳] 一个物体由多个 完全相同的小正方体组成,它的三视 图如图30-4所示,那么组成这个物体 的小正方体的个数为( C ) A. 2 C. 5
考点聚焦
B. 3 D. 10
考点聚焦
归类探究
回归教材
第30课时┃ 投影与视图
A. ③①④② C. ③④①②
B. ③②①④ D. ②④①③
考点聚焦
归类探究
回归教材
第30课时┃ 投影与视图
探究二 几何体的三视图
命题角度: 1. 已知几何体判定三视图;2. 由三视图想象几何体.
例2 图30-2中图形的俯视图大致是( D )
解 析
第30课时 投影与视图
第30课时┃ 投影与视图
考 点 聚 焦
考点1 投影的基本概念
投影:光线照射物体,会在平面上(如地面、墙壁)留下它 的影子,把物体映成它的影子叫作投影. 1. 2. 中心投影:如果光线从一点发出,这样的投影称为中心投 影.常见点光源有:探照灯、手电筒、蜡烛、路灯等. 平行投影:平行光线形成的投影称为平行投影.常见的平 行光线主要有太阳光. 性质:(1)中心投影的投影线交于一点(点光源); (2)平行投影的投影线相互平行.
考点聚焦
归类探究
回归教材
第30课时┃ 投影与视图
探究五 图形的展开与折叠
命题角度: 1. 正方体的表面展开与折叠; 2. 圆柱、棱柱的表面展开与折叠.
例5 [2014· 河北] 如图30-6①是边长 为1的六个小正方形组成的图形,它可以 围成图②的正方体,则图①中小正方形顶 点A,B围成的正方体上的距离是( B ) A. 0 C. 2

2015中考试题研究数学(浙江)精品复习课件:第28讲+视图与投影

2015中考试题研究数学(浙江)精品复习课件:第28讲+视图与投影

C . 60°
D.50°
2.(2014·杭州)已知直线a∥b,若∠1=40°50′,则∠2 =__∠B__.
3.(2014·温州)如图,直线AB,CD被BC所截,若AB∥CD, ∠1=45°,∠2=35°,则∠3=__70__度.
4.(2012·嘉兴)已知△ABC中,∠B是∠A的2倍,∠C比∠A大 20°,则∠A等于( A )
语数文学
第28讲 视图与投影
第28讲 视图与投影
1.三视图 (1)主视图:从__正面__看到的图; (2)左视图:从__左面__看到的图; (3)俯视图:从__上面__看到的图. 2.画“三视图”的原则
(1)位置:__主视图__;__左视图__;__俯 视图__.
(2)大小:__长对正,高平齐,宽相等__. (3)虚实:在画图时,看得见部分的轮廓通 常画成实线,看不见部分的轮廓线通常画成 虚线.
或多个不同的未知量需要用两个或多个不同的字母来表示,以免
混淆,从而导致错误.
3.几种常见几何体的三视图
几何体 圆柱 圆锥 球
主视图 长方形 三角形

左视图 长方形 三角形

俯视图 圆
圆和圆心 圆
4.三种视图的作用 (1)主视图可以分清长和高,主要提供正面的形状; (2)左视图可以分清物体的高度和宽度; (3)俯视图可以分清物体的长和宽,但看不出物体 的高.
5.投影 物体在光线的照射下,会在地面或墙壁上留下它的影子, 这就是投影现象. (1)平行投影:太阳光线可以看成平行光线,像这样的光线 所形成的投影称为平行投影. 在同一时刻,物体高度与影子长度成比例. 物体的三视图实际上就是该物体在某一平行光线(垂直于投 影面的平行光线)下的平行投影. (2)中心投影:探照灯、手电筒、路灯和台灯的光线可以看 成是从一点出发的光线,像这样的光线所形成的投影称为中 心投影.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

视图与投影
一、选择题(每小题6分,共30分)
1.(2014·温州)如图所示的支架是由两个长方体构成的组合体,则它的主视图是(D)
2.(2014·宁夏)如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是(D)
3.(2014·陕西)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是(A)
4.(2014·孝感)如图是某个几何体的三视图,则该几何体的形状是(D)
A.长方体B.圆锥
C.圆柱D.三棱柱
5.(2014·呼和浩特)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)
A.60πB.70πC.90πD.160π
二、填空题(每小题6分,共30分)
6.(2014·梅州)写出一个在三视图中俯视图与主视图完全相同的几何体__球或正方体__.
7.(2014·湖州)如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是__3__.
8.(2012·河源)春蕾数学兴趣小组用一块正方形木板在阳光下做投影试验,这块正方形木板在地面上形成的投影可能是__正方形、菱形(答案不唯一)__.(写出符合题意的两个图形即可)
9.(2013·济宁)三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF =30°,则AB的长为__6__ cm.
10.(2014·黔东南州)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为__8__.
三、解答题(共40分)
11.(10分)(2012·自贡)画出如图所示立体图形的三视图.
解:如图所示:
(10分)5个棱长为1的正方体组成如图的几何体.
(1)该几何体的体积是__5__立方单位,表面积是__22__平方单位;
(2)画出该几何体的主视图和左视图.
解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形,每个正方形的面积为1,∴组合几何体的表面积为22.故答案为5,22
(2)作图如下:
13.(10分)由几个相同的边长为1的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.
(1)请在下面方格纸中分别画出这个几何体的主视图和左视图.
(2)根据三视图,请你求出这个组合几何体的表面积.(包括底面积)
解:(1)图形如下所示:
(2)几何体的表面积为:(3+4+5)×2=24.
(10分)如图,公路旁有两个高度相等的路灯AB,CD.小明上午上学时发现路灯B在太阳光下的影子恰好落到里程碑E处,他自己的影子恰好落在路灯CD的底部C处.晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在里程碑E处.
(1)在图中画出小明的位置(用线段FG表示),并画出光线,标明太阳光、灯光;
(2)若上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,他离里程碑E恰好5米,求路灯高.
解:(1)
(2)∵上午上学时候高1米的木棒的影子为2米,小明身高为1.5米,∴小明的影长CF
为3米,∵GF⊥AC,DC⊥AC,∴GF∥CD,∴△EGF∽△EDC,∴GF
CD=EF
EC,∴
1.5
CD=
5
5+3,
解得CD=2.4.答:路灯高为2.4米。

相关文档
最新文档