2018考研线代重点解读:高斯消元法求解线性方程组

合集下载

用高斯消元法求解线性代数方程组

用高斯消元法求解线性代数方程组

用高斯消元法求解线性代数方程组12341115-413-2823113-21041513-21719x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 1111X *⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(X *是方程组的精确解)1 高斯消去法1。

1 基本思想及计算过程高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解.为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想.⎪⎩⎪⎨⎧=++II =++I =++III)(323034)(5253)(6432321321321x x x x x x x x x 把方程(I)乘(23-)后加到方程(II)上去,把方程(I)乘(24-)后加到方程(III )上去,即可消去方程(II)、(III)中的x 1,得同解方程组⎪⎩⎪⎨⎧=+-I I -=-I =++III)(20223)(445.0)(64323232321x x x x x x x将方程(II)乘(5.03)后加于方程(III ),得同解方程组: ⎪⎩⎪⎨⎧-=-I I -=-I =++III)(42)(445.0)(6432332321x x x x x x由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = —13。

下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n .⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++1,3322111,223232221211,11313212111n n n nn n n n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a(1-1)如果a 11 ¹ 0,将第一个方程中x 1的系数化为1,得)1(1,1)1(12)1(121+=+++n n n a x a x a x其中)0(11)0()1(1aa aijj=, j = 1, …, n + 1(记ij ij a a =)0(,i = 1, 2, …, n ; j = 1, 2, …, n + 1)从其它n –1个方程中消x 1,使它变成如下形式⎪⎪⎩⎪⎪⎨⎧=++=++=++++++)1(1,)1(2)1(2)1(1,2)1(22)1(22)1(1,1)1(12)1(121n n n nn n n n n n n n a x a x a a x a x a a x a x a x(1-2)其中n i a m a aij i ij ij ,,2)1(1)1( =⋅-=,1,,3,211)1(11+==n j a a m i i由方程(1—1)到(1—2)的过程中,元素11a 起着重要的作用,特别地,把11a 称为主元素.如果(1-2)中0)1(22≠a ,则以)1(22a 为主元素,又可以把方程组(1-2)化为: ⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=+++=+++++++)2(1,)2(3)2(3)3(1,3)2(33)2(33)2(1,2)2(23)2(232)1(1,1)1(12)1(121 n n n nn n n n n n n n n n n a x a x a a x a x a a x a x a x a x a x a x (1-3)针对(1—3) 继续消元,重复同样的手段,第k 步所要加工的方程组是:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++=++=+++=+++=++++-+---+---+-----++)1(1,)1()1()1(1,)1()1()1(1,1)1()1(11)2(1,2)2(23)2(232)1(1,1)1(13)1(132)1(121 k n n n k nn k k nk k n k n k nn k k kk k n k n k kn k k k k n n n n n n a x a x a a x a x a a x a x a x a x a x a x a x a x a x a x设0)1(≠-k kk a ,第k 步先使上述方程组中第k 个方程中x k 的系数化为1:)(1,)()(1,k n k n k kn k k k k k a x a x a x ++=++然后再从其它(n — k )个方程中消x k ,消元公式为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=⋅-=++==----nk i n k j a a a a n k k j a a a k kjk ik k ij k ij k kkk kjk kj ,11,,11,,1,)()1()1()()1()1()( (1—4)按照上述步骤进行n 次后,将原方程组加工成下列形式:⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+++=+++++-+---++)(1,)1(1,1)1(1)2(1,2)2(23)2(232)1(1,1)1(13)1(132)1(121 n n n n n n n n n nn n n n n n n n a x a x a x a x a x a x a x a x a x a x 回代公式为:⎪⎩⎪⎨⎧-=-==∑+=++1,,11)()(1,)(1, n k x a a x a x nk j j k kjk n k k n n nn (1-5)综上所述,高斯消去法分为消元过程与回代过程,消元过程将所给方程组加工成上三角形方程组,再经回代过程求解。

高斯消元法解线性方程组

高斯消元法解线性方程组

高斯消元法解线性方程组线性方程组是数学中常见的问题,其中包含多个线性方程,求解线性方程组即为找到满足所有方程的解。

高斯消元法是一种常用的方法,可以有效地解决线性方程组。

本文将介绍高斯消元法的原理和步骤,并通过一个具体的例子来演示其应用。

一、高斯消元法原理高斯消元法是通过一系列的行变换来将线性方程组转化为上三角形式,进而求解方程组。

具体步骤如下:1. 将线性方程组写成增广矩阵形式,其中每一行表示一个方程,最后一列为常数项。

2. 选择一个主元,通常选择第一列的第一个非零元素作为主元。

3. 将主元所在行的所有元素除以主元,使主元变为1。

4. 将主元所在列的其他行元素通过适当的倍数加到相应行,使得主元所在列的其他元素都变为0。

5. 重复步骤2-4,直到将矩阵转化为上三角形式。

6. 从最后一行开始,通过回代法求解每个未知数的值。

二、高斯消元法步骤示例为了更好地理解高斯消元法的步骤,下面以一个具体的线性方程组为例进行演示。

假设有如下线性方程组:2x + y - z = 1-3x - y + 2z = -2-2x + y + 2z = 3首先,将线性方程组写成增广矩阵形式:[ 2 1 -1 | 1 ][-3 -1 2 | -2 ][-2 1 2 | 3 ]选择第一列的第一个非零元素2作为主元,将主元所在行的所有元素除以主元,使主元变为1,得到:[ 1 0 -0.5 | 0.5 ][-3 -1 2 | -2 ][-2 1 2 | 3 ]然后,将主元所在列的其他行元素通过适当的倍数加到相应行,使得主元所在列的其他元素都变为0,得到:[ 1 0 -0.5 | 0.5 ][ 0 -1 1.5 | -0.5 ][ 0 1 3 | 4 ]接下来,选择第二列的第二个非零元素-1作为主元,将主元所在行的所有元素除以主元,使主元变为1,得到:[ 1 0 -0.5 | 0.5 ][ 0 1 -1.5 | 0.5 ][ 0 1 3 | 4 ]再次进行行变换,将主元所在列的其他行元素通过适当的倍数加到相应行,使得主元所在列的其他元素都变为0,得到:[ 1 0 -0.5 | 0.5 ][ 0 1 -1.5 | 0.5 ][ 0 0 4.5 | 3 ]将矩阵转化为上三角形式后,从最后一行开始,通过回代法求解每个未知数的值。

用列主元高斯消元法求线性代数方程组的解

用列主元高斯消元法求线性代数方程组的解

课程设计任务书前 言回顾普通解方程组的方法,一般都是先逐个削去未知变量,最终得到只有一个未知变量的方程,解之,把得到的值回代到消去变量过程中得到的方程组,逐个求出未知变量。

这种解线性方程组的基本方法就是这里要介绍的高斯消去法。

数学上,高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。

当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。

高斯消元法可以用在电脑中来解决数千条等式及未知数。

高斯消元法可以用来找出一个可逆矩阵的逆矩阵。

用关联矩阵表述网络拓扑结构,并根据厂站拓扑结构和网络拓扑结构等概念简化了电力系统的拓扑结构。

根据广义乘法和广义加法的运算规则,将改进的高斯消元算法应用于电力系统拓扑结构分析中,并引入稀疏、分块处理等技术提高了上述拓扑分析的效率。

采用上述高斯消元算法对山东电网220kV 以上的变电站进行拓扑结构分析,结果表明了运用该高斯消元法进行网络拓扑分析的正确性和有效性。

用列主元素法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

然后换行使之变到主元位子上,在进行消元计算。

设)()(k k b X A ,确定第k 列主元所在位置k i ,在交换k i 行和k 行后,在进行消元,并用MATLAB 软件进行求解。

目录摘要......................................................................................... 错误!未定义书签。

第1章绪论 ........................................................................... 错误!未定义书签。

第2章高斯消元法的算法描述 (2)2.1高斯消元法的原理概述 (2)2.1.1高斯消元法的消元过程 (2)2.1.2高斯消元法的回带过程 (3)2.1.3高斯消元法的复杂度分析 (4)2.2列主高斯消元法原理简介 (5)2.2.1列主高斯消元法的消元过程 (6)2.2.2列主高斯消元法的回带过程 (6)2.2.3列主高斯消元法的算法描述 (6)第3章高斯消元法的物理应用 (9)3.1电网模型的描述 (9)3.2电网模型的问题分析 (9)3.3求解计算 (11)参考文献 (13)摘 要用列主元素高斯消去法法,选取每列的绝对值最大的元素作为消去对象并作为主元素。

高斯消元法求方程

高斯消元法求方程

高斯消元法求方程高斯消元法是一种常用的线性方程组求解方法,通过对系数矩阵进行初等行变换,将线性方程组化简为阶梯形矩阵或行最简形矩阵,进而求得方程组的解。

本文将介绍高斯消元法的原理和具体步骤。

一、高斯消元法原理高斯消元法的基本思想是通过行变换将线性方程组转化为更简单的形式,从而求解方程组。

首先将线性方程组的系数矩阵和增广矩阵写出,然后通过一系列的初等行变换,将系数矩阵化简为阶梯形矩阵或行最简形矩阵,最后根据化简后的矩阵得到方程组的解。

二、高斯消元法步骤下面以一个具体的线性方程组为例,演示高斯消元法的步骤。

假设有如下线性方程组:```2x + y - z = 1x - y + z = 23x + 2y - 2z = 3```1. 写出增广矩阵将上述方程组的系数矩阵和常数项构成增广矩阵:```2 1 -1 | 11 -1 1 | 23 2 -2 | 3```2. 第一步消元选取主元(第一行第一列的元素2),将其他行的对应列元素消为零。

具体操作为:将第二行乘以2,然后与第一行相减;将第三行乘以3,然后与第一行相减。

消元后的矩阵为:```2 1 -1 | 10 -3 3 | 00 -1 1 | 0```3. 第二步消元选取主元(第二行第二列的元素-3),将其他行的对应列元素消为零。

具体操作为:将第三行乘以-3,然后与第二行相加。

消元后的矩阵为:```2 1 -1 | 10 1 -1 | 00 0 0 | 0```4. 矩阵化简将矩阵化简为阶梯形矩阵。

由于第三行全为0,可将其放在最后。

化简后的矩阵为:```2 1 -1 | 10 1 -1 | 00 0 0 | 0```5. 回代求解从化简后的矩阵最后一行开始,依次回代求解未知数。

由于最后一行全为0,得到一个约束条件0=0。

将其他未知数代入该约束条件,可得到一个自由变量。

例如,令z=t,那么x=1+t,y=t,其中t为任意常数。

因此该线性方程组的解为:```x = 1 + ty = tz = t```三、总结高斯消元法是一种常用的线性方程组求解方法,通过对系数矩阵进行初等行变换,将线性方程组化简为阶梯形矩阵或行最简形矩阵,进而求得方程组的解。

高斯消元法是线性代数中的一个算法可用来求解线性方

高斯消元法是线性代数中的一个算法可用来求解线性方

高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵。

高斯消元法的原理是:若用初等行变换将增广矩阵化为,则AX = B与CX = D是同解方程组。

所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解。

以上是线性代数课的回顾,下面来说说高斯消元法在编程中的应用。

首先,先介绍程序中高斯消元法的步骤:(我们设方程组中方程的个数为equ,变元的个数为var,注意:一般情况下是n个方程,n个变元,但是有些题目就故意让方程数与变元数不同)1. 把方程组转换成增广矩阵。

2. 利用初等行变换来把增广矩阵转换成行阶梯阵。

枚举k从0到equ – 1,当前处理的列为col(初始为0) ,每次找第k行以下(包括第k行),col列中元素绝对值最大的列与第k行交换。

如果col列中的元素全为0,那么则处理col + 1列,k不变。

3. 转换为行阶梯阵,判断解的情况。

①无解当方程中出现(0, 0, …, 0, a)的形式,且a != 0时,说明是无解的。

②唯一解条件是k = equ,即行阶梯阵形成了严格的上三角阵。

利用回代逐一求出解集。

③无穷解。

条件是k < equ,即不能形成严格的上三角形,自由变元的个数即为equ – k,但有些题目要求判断哪些变元是不缺定的。

这里单独介绍下这种解法:首先,自由变元有var - k个,即不确定的变元至少有var - k个。

我们先把所有的变元视为不确定的。

在每个方程中判断不确定变元的个数,如果大于1个,则该方程无法求解。

如果只有1个变元,那么该变元即可求出,即为确定变元。

以上介绍的是求解整数线性方程组的求法,复杂度是O(n3)。

浮点数线性方程组的求法类似,但是要在判断是否为0时,加入EPS,以消除精度问题。

高斯消元法简介在信息学竞赛中,很多问题都可以转化成线性方程组或者与之相关的问题。

因此,我们需要了解线性方程组的各种解法。

线性代数中高斯消元法的应用

线性代数中高斯消元法的应用

线性代数中高斯消元法的应用线性代数是数学学科中的重要分支,它研究的是向量空间及其线性变换性质。

高斯消元法是线性代数中的一种常见的解线性方程组的方法,应用广泛。

一、高斯消元法的原理高斯消元法是用于解决线性方程组的方法,通过变换系数矩阵和常数向量,将其化为简化的上三角矩阵或阶梯形矩阵,从而得到方程组的解。

其基本思想是将未知量逐步解出,并代回到其他方程中,最终得到全体未知量的解。

具体来说,高斯消元法首先需要将系数矩阵和常数向量按照矩阵乘法法则组成增广矩阵,然后通过行变换将矩阵的首列化为1,并将其余元素化为0。

接下来,将第二行变为第一行的相反数倍加上第二行,并重复之前的操作,直到增广矩阵变为一个上三角矩阵或者阶梯形矩阵。

这时,从最后一行开始逐个解出未知量,再将其代入到其他方程中,最终得到所有未知量的解。

二、高斯消元法的应用高斯消元法在科学工程中有广泛的应用,例如在电路分析、统计学、计算机图像处理等领域都有经典的应用。

1. 电路分析在电路分析中,高斯消元法可以用来解决线性电路中的电压和电流问题。

如图所示,设电路有n个节点,使用基尔霍夫电流定律可以得到n个线性方程式,将其转化为矩阵形式后,可以使用高斯消元法求解。

2. 统计学在统计学中,高斯消元法通常用于最小二乘法的求解。

最小二乘法是用来描述数据点之间的函数关系的一种方法。

例如,假设我们有一堆数据点(x1,y1),(x2,y2),...,(xn,yn),其中y是我们要预测的值,x是我们要输入的值。

求解最小二乘法就是要找到一个函数y=f(x),使得所有的数据点都离这个函数最近,也就是残差平方和最小。

通过高斯消元法,可以求出最小二乘法的解析解。

3. 计算机图像处理计算机图像处理中也有很多应用可以使用高斯消元法来解决,例如,图像去除噪声问题。

在图像中,噪声的存在会严重干扰到像素的值,通过高斯消元法可以找到一组联立方程来以最小误差的方式去除噪声,并还原原始图像。

三、高斯消元法的优缺点高斯消元法是解决线性方程组最广泛的方法之一,但是它也存在一些缺点。

高斯消元法求解线性方程组

高斯消元法求解线性方程组

高斯消元法求解线性方程组线性方程组是数学中重要的概念,它描述了一组线性方程的集合。

解决线性方程组的问题在科学和工程领域中具有广泛的应用。

高斯消元法是一种常用的方法,用于求解线性方程组。

本文将介绍高斯消元法的原理和步骤,并通过实例演示其应用。

一、高斯消元法的原理高斯消元法是一种基于矩阵变换的方法,用于将线性方程组转化为简化的行阶梯形式。

其基本思想是通过一系列的行变换,将方程组中的系数矩阵化为上三角矩阵,从而简化求解过程。

具体而言,高斯消元法的步骤如下:1. 将线性方程组的系数矩阵和常数向量写成增广矩阵的形式。

2. 选取一个主元素,通常选择第一列的第一个非零元素作为主元素。

3. 通过行变换,将主元素下方的所有元素化为零。

4. 选取下一个主元素,并重复步骤3,直到将矩阵化为上三角形式。

5. 通过回代法,求解得到线性方程组的解。

二、高斯消元法的步骤为了更好地理解高斯消元法的步骤,我们以一个具体的线性方程组为例进行演示。

假设我们有以下线性方程组:```2x + 3y - z = 14x - y + z = -2x + 2y + 3z = 3```首先,我们将其写成增广矩阵的形式:```[2, 3, -1 | 1][4, -1, 1 | -2][1, 2, 3 | 3]```接下来,我们选取第一列的第一个非零元素2作为主元素,并通过行变换将主元素下方的元素化为零。

具体步骤如下:1. 将第二行乘以2,然后与第一行相减,得到新的第二行:`[0, -7, 3 | -4]`2. 将第三行乘以0.5,然后与第一行相减,得到新的第三行:`[0, 0.5, 2.5 | 1.5]`此时,得到的矩阵为:```[2, 3, -1 | 1][0, -7, 3 | -4][0, 0.5, 2.5 | 1.5]```接下来,我们选取第二列的第二个非零元素-7作为主元素,并通过行变换将主元素下方的元素化为零。

具体步骤如下:1. 将第三行乘以14,然后与第二行相加,得到新的第三行:`[0, 0, 35 | 7]`此时,得到的矩阵为:```[2, 3, -1 | 1][0, -7, 3 | -4][0, 0, 35 | 7]```最后,我们通过回代法求解得到线性方程组的解。

线性代数 第3章 主要学习内容

线性代数 第3章 主要学习内容

求解线性方程组 首先要判断线性 方程组是否有解
若无解则结束
若有解则利用高斯消 元法化简方程组并求 得全体未知数的取值
实际上,高斯消元法通过对线性方程 组进行行变换,将其转化为三角形方 程组,然后再通过回代法求解出未知 数的值,由以下例题加以说明。
3.1 高斯消元法求解线性方程组
例1.《九章算术》第八章中介绍“方程术”的案例为:
方程组(3-11)的解为:
3.3 高斯消元法求逆矩阵
思考:可逆矩阵的乘积矩阵是否可逆?
3.3 高斯消元法求逆矩阵
解:由题意 根据例8的结果知
3.3 高斯消元法求逆矩阵
3.3 高斯消元法求逆矩阵
3.3 高斯消元法求逆矩阵
回顾与小结
1.逆矩阵的定义; 2.用逆矩阵的定义求方阵的逆矩阵; 3.用高斯消元法求方阵的逆矩阵。
“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉, 实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗.问上、中、下禾实一秉各几何?”
将其翻译过来就是:现有上等谷子3捆,中等谷子2捆,下等谷子1捆,果实共计39斗; 上等谷子2捆,中等谷子3捆,下等谷子1捆,果实共计34斗;上等谷子1捆,中等谷子2捆, 下等谷子3捆,果实共计26斗,问上等、中等、下等谷子1捆分别是几斗?
3.1 高斯消元法求解线性方程组
解:利用高斯消元法从上往下消元依次为:
求解线性方程组首先要 判断线性方程组是否有 解,若无解则结束;若 有解,则利用高斯消元 法化简方程组并求得全 体未知数的取值
3.1 高斯消元法求解线性方程组
例3 求解线性方程组
3.1 高斯消元法求解线性方程组
解:利用高斯消元法从上往下消元依次为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018考研线代重点解读:高斯消元法求
解线性方程组
解线性方程组是线性代数的复习重点,高斯消元法是最基础和最直接的求解线性方程组的方 法,2018考生必须要掌握,下面我们就具体来谈谈如何把这部分的基础打好。

线性方程组的三种形式包括原始形式、 矩阵形式、向量形式,高斯消元法是最基础和最
直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:
(1) 把某个方程的k 倍加到另外一个方程上去;
(2) 交换某两个方程的位置;
(3) 用某个常数k 乘以某个方程。

我们把这三种变换统称为线性方程组的初等变换。

因此在求解线性方程组时只需对系数矩阵和增广矩阵进行初等变换。

高斯消元法中对线性方程组的初等变换, 就对应的是矩阵的初等行变换。

阶梯形方程组,
对应的是阶梯形矩阵。

换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换 化为阶梯形矩阵,求得解。

阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主
元。

对不同的线性方程组的具体求解结果进行归纳总结
(有唯一解、无解、有无穷多解 ),再 经过严格证明,可得到关于线性方程组解的判别定理:
首先是通过初等变换将方程组化为阶 0=d 这一项,则方程组无解,若未出现 0=d —项,则
主元上方的元素也全为零, 这对于求解未知量的值更加方便,
初等变换。

在求解过程中,选择阶梯形还是最简形,取决于个人习惯。

常数项全为零的线性方程称为齐次方程组, 齐次方程组必有零解。

齐次方程组的方程组
个数若小于未知量个数,则方程组一定有非零解。

利用高斯消元法和解的判别定理,
以及能 够回答前述的基本问题(1)解的存在性问题和(2)如何求解的问题,利用高斯消兀法和解的判 别定理,以及能够回答前述的基本问题
(1)解的存在性问题和(2)如何求解的问题,这是以线 性方程组为出发点建立起来的最基本理论。

对于n 个方程n 个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解, 这种按特定规则表示的系数组合称为一个线性方程组 (或矩阵)的行列式。

行列式的特点:有 n!项,每项的符号由角标排列的逆序数决定,是一个数。

方程组有解;在方程组有解的情况下,
唯一解,若r
若阶梯形的非零行数目 r 等于未知量数目n ,方程组有 在利用初等变换得到阶梯型后, 还可进一步得到最简形,
使用最简形,最简形的特点是 梯形,若得到的阶梯形方程组中出现 但代价是之前需要经过更多的
通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。

用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。

总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。

相关文档
最新文档