高中数学 第一章 概念、方法、题型、易误点及应试技巧总结素材 北师大版必修5
高中数学第1章归纳总结同步导学案北师大版必修5

第一章归纳总结知识结构知识梳理一、数列的概念与函数特征1.数列的定义:按一定次序排列的一列数叫做数列,数列还可以看作一个定义域为N +(或它的有限子集{1,2,…,n })的函数的一列函数值.2.通项公式:如果数列{a n }的第n 项与n 之间的函数关系可以用一个公式来表示,这个公式就叫做这个数列的通项公式.3.a n 与S n 之间的关系:如果S n 是数列{a n }的前n 项和,则S n =a 1+a 2+…+a n .S 1, (n =1) 数列{a n }的前n 项和S n 与a n 之间的关系是a n = .S n -S n-1, (n ≥2)4.数列的分类(1)根据数列的项数可以对数列进行分类:项数有限的数列叫作有穷数列,项数无限的数列叫作无穷数列.(2)按照项与项之间的大小关系、数列的增减性,可以分为以下几类:①一般地,一个数列{a n },如果从第2项起,每一项都大于它前面的一项,即a n+1>a n ,那么这个数列叫作递增数列.②一个数列{a n },如果从第2项起,每一项都小于它前面的一项,即a n+1<a n ,那么这个数列叫作递减数列.③一个数列{a n },如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,那么这个数列叫作摆动数列.④一个数列{a n },如果它的每一项都相等,那么这个数列叫作常数列. 5.根据数列的通项公式判定数列的单调性(1)已知a n =f (n ),若f (x )的单调性可以确定,则{a n }的单调性可以确定. (2)比较法 ①作差比较法n ∈N +,a n+1-a n >0⇒{a n }为递增数列; n ∈N +,a n+1-a n =0⇒{a n }为常数列; n ∈N +,a n+1-a n <0⇒{a n }为递减数列. ②对各项同号的数列,可用作商比较法.n ∈N +,a n >0(<0),nn a a 1+>1(<1) ⇔{a n }为递增数列; n ∈N +,a n >0(<0),nn a a 1+=1⇔{a n }为常数列; n ∈N +,a n >0(<0),nn a a 1+<1(>1) ⇔{a n }为递减数列. 二、等差数列1.定义:若一个数列从第二项起,每一项与其前一项的差等于同一个常数,则这个数列就叫等差数列,其中的常数叫等差数列的公差,它常用字母d 表示.即定义的表达式为a n+1-a n =d (n ∈N +)或a n -a n-1=d (n ≥2,n ∈N +).2.通项公式:若数列{a n }为等差数列,则a n =a 1+(n -1)d .3.前n 项和公式:若数列{a n }为等差数列,则前n 项和S n =2)(1n a a n +=na 1+2)1(-n n d . 4.等差中项:若三个数a,A,b 成等差数列,则A 叫做a 与b 的等差中项,并且A =2ba +.5.等差数列的性质:(1)已知等差数列{a n }的公差为d ,且第m 项为a m ,第n 项为a n ,则a n =a m +(n-m )d ; (2)在等差数列{a n }中,若m+n=p+q ,(m,n,p,q ∈N +)则a m +a n =a p +a q ;(3)若数列{a n }满足S n =an 2+bn ,则{a n }为等差数列,且a 1=a+b ,d =2a ;(4)若数列{a n }满足S n =an 2+bn+c (c ≠0),则{a n }从第2项起成等差数列; (5)等差数列和的最大值、最小值.1° 在等差数列{a n }中,a 1>0,d <0,则S n 有最大值;若a 1<0,d >0,则S n 有最小值. 2° 求S n 的最值的方法: ① 因为S n =2d n 2+(a 1-2d)n ,所以可转化为二次函数求最值,但应注意n ∈N +; a n ≥0, a n ≤0,②利用 则S n 为最大值; 则S n 为最小值.a n+1<0, a n+1>0,三、等比数列1.定义:若一个数列从第二项起,每一项与其前一项的比等于同一个常数,则此数列叫做等比数列;这个常数叫做等比数列的公比,用字母q 表示.2.等比中项:若三个数a,G,b 成等比数列,则G 叫做a 与b 的等比中项,且G =±ab .3.通项公式:等比数列{a n }的通项公式a n =a 1q n-1.4.前n 项和公式:若等比数列{a n }的前n 项和为S n ,公比为q ,当q =1时,S n =na 1;当q ≠1时S n =q q a n --1)1(1=qq a a n --11.5.等比数列的重要性质:(1)在等比数列{a n }中,若k +l =m+n ,(k,l,m,n ∈N +)则a k ·a l =a m ·a n . (2)数列{a n }为等比数列,则a n =a 1q n-1=qa 1·q n. ①q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; ②q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; ③q =1时,{a n }是常数列; ④q <0时,{a n }是摆动数列.6.等差、等比数列的判定方法的区别.判定方法:(1)定义法:a n+1-a n =d (d 为常数)⇔ {a n }为等差数列;nn a a 1+=q (q 为非零常数) ⇔{a n }为等比数列.(2)中项公式法:2a n+1=a n+a n+2 (n∈N+)⇔{a n}为等差数列.a2n+1=a n·a n+2 (a n·a n+1·a n+2≠0,n∈N+)⇔{a n}为等比数列.(3)通项公式法:a n=pn+q(p、q为常数) ⇔{a n}为等差数列;a n=cq n(c、q均是不为0的常数,n∈N+)⇔{a n}为等比数列;S n=kq n-k(k为常数,且q≠0,1) ⇔{a n}为等比数列.四、数列的综合应用1.函数思想、方程思想、分类讨论等思想在解决数列综合问题时常常用到.2.数列与函数、数列与不等式的综合、用数列知识解决实际问题等内容.3.数列的综合题形式多样,解题思路灵活,但万变不离其宗,都离不开数列的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.4.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.5.通过解题后的反思,找准自己的问题,总结成功的经验,吸取失败的教训,增强解综合题的信心和勇气,提高分析问题和解决问题的能力.专题探究专题1 数列通项公式的求法数列的通项公式是给出数列的主要方式,其本质就是函数的解析式.根据数列的通项公式,不仅可以判断数列的类型,研究数列的项的变化趋势与规律,而且有利于求数列的前n项和.求数列的通项公式是数列的核心问题之一.现根据数列的结构特征把常见求通项公式的方法总结如下:1.知S n求a n[例1](1)已知数列{a n}的前n项和S n=(-1)n+1n,求a n;(2)已知数列{a n}的前n项和S n=3+2n,求a n.S1(n=1)[分析]利用a n= ,求数列{a n}的通项公式.S n-S n-1 (n≥2)[解析](1)当n≥2时,a n=S n-S n-1=(-1) n+1n-(-1) n(n-1)=(-1) n(1-2n),当n=1时,a1=S1=(-1) 2×1=1,适合上式.∴a n=(-1) n(1-2n).(2)当n≥2时,a n=S n-S n-1=3+2n-(3+2n-1)=2n-1,当n=1时,a1=S1=3+21=5,不满足上式.5 (n=1)∴a n= .2n-1(n≥2)[说明]已知S n求a n,即已知数列的前n项和公式,求数列的通项公式,其方法是a n=S n-S n-1 (n≥2),这里常忽略了条件n≥2而导致错误,因此必须验证n=1时是否成立,若不成立,则S1(n=1)通项公式只能用分段函数a n= 来表示.S n-S n-1(n≥2)变式应用1 (1)已知数列{a n}的前n项和S n=n2+3n+1,求通项a n;(2)已知数列{a n}的前n项和S n=3n+2n,求通项a n.[解析](1)当n≥2时,a n=S n-S n-1=n2+3n+1-(n-1) 2-3(n-1)-1=2n+2,又n =1时,a 1=S 1=5不满足上式. 5 (n =1) ∴a n = .2n +1 (n ≥2)(2)当n ≥2时,a n =S n -S n-1=3n +2n -[3n-1+2(n -1)]=2·3n-1+2=2(3n-1+1) 又n =1时,a 1=S 1=5不满足上式, 5 (n =1) ∴a n = .2(3n-1+1) (n ≥2)2.累加法[例2] 已知a 1=1,a n+1-a n =2n-n ,求a n .[分析] 当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1),而a 2-a 1=21-1,a 3-a 2=22-2,…,a n -a n-1=2n-1 -(n -1),层层累加就可以求出a n .[解析] ∵a n+1-a n =2n-n ,∴a 2-a 1=21-1, a 3-a 2=22-2, a 4-a 3=23-3, …a n -a n-1=2n-1-(n -1).∴当n ≥2时,有a n -a 1=(2+22+…+2n-1)-[1+2+3+…+(n -1)].∴a n =(1+2+22+…+2n-1)-2)1(-n n =2n -2)1(-n n -1,a 1=1也适合上式. ∴数列{a n }的通项公式a n =2n -2)1(-n n -1.[说明] 已知a 1且a n+1-a n =f (n )(f (n )是可求和数列)的形式均可用累加法求a n .变式应用2 已知{a n }中,a 1=1,且a n+1-a n =3n(n ∈N +),求通项 a n .[解析] ∵a n+1-a n =3n(n ∈N +), ∴a 2-a 1=3, a 3-a 2=32, a 4-a 3=33, ……a n -a n-1=3n-1 (n ≥2), 以上各式相加得 a n -a 1=3+32+33+…+3n-1=31)31(31---n =23n -23,∴a n =a 1+23n -23=23n -21 (n ≥2).又a 1=1满足上式,∴a n =23n -21(n ∈N +).3.累乘法[例3] 在数列{a n }中,已知a 1=1,a n+1=2na n ,求a n . [分析] 由a n+1=2na n ,可得n n a a 1+=2n ,于是12a a =2, 23a a =22, 34a a =23,…, 1-n n a a =2n-1,将上面各式相乘,便可求出数列{a n }的通项公式. [解析] 由a n+1=2na n ,得nn a a 1+=2n , ∴12a a =2, 23a a =22, 34a a =23,…, 1-n n a a =2n-1. 将上述(n -1)个式子相乘, 得12a a .23a a .34a a (1)-n n a a =2·22·23·…·2n-1, ∴a n =a 1×21+2+3+…+(n -1)=22)1(-n n .[说明] 已知a 1且nn a a 1+=f (n )(f (n )是可求积数列)的形式均可用累乘法求a n . 变式应用3 已知数列{a n },a 1=31,前n 项和S n 与a n 的关系是S n =n (2n -1)a n ,求通项a n . [解析] ∵S n =n (2n -1)a n ,∴S n-1=(n -1)(2n -3)a n-1 (n ≥2),两式相减,得a n =n (2n -1)a n -(n -1)(2n -3)a n-1 (n ≥2), 即(2n +1)a n =(2n -3)a n-1, ∴1-n n a a =1232+-n n . ∴12a a =51, 23a a =73, 9534=a a , ……12321+-=-n n a a n n (n ≥2),以上各式相乘,得)12)(12(31-+=n n a a n , 又∵a 1=31, ∴a n =)12)(12(1-+n n (n ≥2).a 1=31满足上式,∴a n =)12)(12(1-+n n (n ∈N +).4.构造转化法[例4] 在数列{a n }中,a 1=1,a n+1=32a n+1,求a n . [分析] 通过整理变形,进而构造等比数列,由等比数列的通项间接求数列{a n }的通项公式.[解析] 由已知得a n+1-32a n =1, ① ∴a n -32a n-1=1(n ≥2),②①-②,得a n+1-a n =32(a n -a n-1).令b n =a n+1-a n ,则1-n n b b =32, ∴{b n }为等比数列,公比为32, b 1=a 2-a 1=32a 1+1-a 1=32, ∴b n =32×(32)n-1=(32)n ,即a n+1-a n =(32)n,③由①③得a n =3-3×(32)n.[说明] 已知a 1且a n+1=pa n +q (p,q 为常数)的形式均可用上述构造法,特别地,若p =1,则{a n }为等差数列;若q =0,p ≠0,则{a n }为等比数列.变式应用4 已知数列{a n }满足a 1=1,a n+1=3a n +2(n ∈N +).求数列{a n }的通项公式. [解析] ∵a n+1=3a n +2(n ∈N +), ∴a n+1+1=3(a n +1), ∴111+++n n a a =3(n ∈N +).∴数列{a n +1}是以a 1+1=2为首项,3为公比的等比数列.∴a n +1=2·3n-1,∴a n =2·3n-1-1(n ∈N +).专题2 数列的前n 项和的求法求数列的前n 项和是数列运算的重要内容之一,也是历年高考考查的热点.对于等差、等比数列,可以直接利用求和公式计算,对于一些具有特殊结构的运算数列,常用倒序相加法、裂项相消法、错位相减法等求和. 1.分组转化法如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n 项和可考虑拆项后利用公式求解. [例5] 求下列数列的前n 项和.(1)-1,4,-7,10,…,(-1) n(3n -2),…; (2)121,241,381,…,(n +n 21). [分析] (1)∵a 2n -1+a 2n =3,故可将其视作一项,但要对n 的奇偶性进行讨论. (2)∵a n =n +n 21,即{a n }是一个等差数列{n }与等比数列{n21}的和构成的,故可用拆项分组求和法.[解析] (1)当n 为偶数时,令n =2k (k ∈N +), S n =S 2k =-1+4-7+10+…+(-1) n (3n -2) =3·k =23n ; 当n 为奇数时,令n =2k +1(k ∈N +),S n =S 2k +1=S 2k +a 2k +1=3k -(6k +1)=213+-n .213+-n (n 为奇数) ∴S n =23n(n 为偶数) (2)S n =121+241+381+…+(n +n 21)=(1+2+3+…+n )+(21+41+81+…+n 21)=2)1(+n n +21121121--)(n =2)1(+n n +1-n 21.[说明] 形如{a n +b n }的求和问题,其中{a n }为等差数列,{b n }为等比数列,可用“拆项分组求和”法.变式应用5 求和:(x +y1)+(x 2+21y )+…+(x n+n y 1)(x ≠0,x ≠y ≠1).[解析] 当x ≠1,y ≠0,y ≠1时,(x +y1)+(x 2+21y )+…+(x n+n y 1)=(x +x 2+…+x n)+(y 1+21y+…+n y 1)=x x x n --1)1(+yyy n11)11(1--=nn n n y y y x x x --+--+111)1(. 2.裂项相消法对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法.可用待定系数法对通项公式进行拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项.[例6] 求和:1+n+++++++++ 2113211211 (n ∈N +). [分析] 先分析通项有何特点,本题通项a n =)1(22)1(1211+=+++++n n n n n =2 (n 1-11+n ),因此可采用裂项相消法求和.[解析] ∵a n =n +++ 211=)1(2+n n =2(111+-n n ),∴a 1=2(1-21),a 2=2(3121-), a 3=2(31-41),…,a n =2(111+-n n ),∴S n =a 1+a 2+a 3+…+a n =2[(1-21)+(21-31)+(4131-)+…+(111+-n n )]=2(1-11+n )=12+n n.[说明] 所谓裂项相消,就是将数列的每一项“一拆为二”,即每一项拆成两项之差,以达到隔项相消之目的.常见的裂项变形有:①a n =111)1(1+-=+n n n n ;②a n =)(12112121)12)(12(1+--=+-n n n n ;③a n =)2)(1(1++n n n =21[)2)(1(1)1(1++-+n n n n ];④a n =11++n n =n n -+1.变式应用6 求和:311⨯+)2(1421+++⨯n n =.[答案]43-)2)(1(232+++n n n [解析] ∵a n =)(21121)2(1+-=+n n n n ,∴)2(1421311+++⨯+⨯n n =21[(1-)211()1111()5131()4121()31+-++--++-+-+n n n n ] =21 (1+21-11+n -21+n )=43-)2)(1(232+++n n n .3.错位相减法若数列{a n }为等差数列,数列{b n }是等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n },当求该数列的前n 项的和时,常常采用将{a n b n }的各项乘以公比q ,并项后错位一项与{a n b n }的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.[例7] 数列{a n }的前n 项和为S n ,a 1=1,a n+1=2S n (n ∈N +). (1)求数列{a n }的通项a n ; (2)求数列{na n }的前n 项和T n . [解析] (1)∵a n+1=2S n , ∴S n+1-S n =2S n ,∴nn S S 1+=3. 又∵S 1=a 1=1,∴数列{S n }是首项为1,公比为3的等比数列.∴S n =3n-1(n ∈N +).当n ≥2时,a n =2S n-1=2·3n-2,1 (n =1) a 1=1不满足上式,∴a n = .2·3n-2(n ≥2)(2)T n =a 1+2a 2+3a 3+…+na n . 当n =1时,T 1=1;当n ≥2时,T n =1+4·30+6·31+…+2n ·3n-2,① ∴3T n =3+4·31+6·32+…+2n ·3n-1,②①-②得:-2T n =-2+4+2(31+32+…+3n-2)-2n ·3n-1=2+2·31)31(32---n -2n ·3n-1=-1+(1-2n )·3n-1. ∴T n =21+(n -21)3n-1(n ≥2). 又∵T 1=a 1=1也满足上式,∴T n =21+(n -21)3n-1(n ∈N +). 变式应用7 试求21,1678543,,,…的前n 项和.[解析] ∵S n =21+43+85+167+…+nn 212-①, 21S n =41+83+165+…+n n 232-+1212+-n n ②, ①-②得, 21S n =21+42+82+162+…+n 22-1212+-n n=21+21+1218141-+++n -1212+-n n =21+211)211(211---n -1212+-n n=123223++-n n , ∴S n =3-nn 232+. 4.倒序相加法如果求和的结构中“每两项”的和为同一常数,可以用倒序相加法求解. [例8] 设f (x )=x222+,类比推导等差数列前n 项和公式的方法,求f (-2008)+f (-2007)+…+f (0)+ f (1) +…+f (2008)+f (2009).[解析] ∵f (x )+f (1-x )=xx -+++1222222 =22222222+⋅⋅++xxx =xxx 222222+++=1. 设S =f (-2008)+f (-2007)+…+f (0)+f (1)+…+f (2008)+f (2009), 则S =f (2009)+f (2008)+…+f (1)+f (0)+…+f (-2007) +f (-2008).∴2S =[f (-2008)+f (2009)]+[f (-2007)+ f (2008)]+…+2[f (0)+f (1)]+…+[f (2009)+ f (-2008)]=2009×2,∴S =2009.变式应用8 设f (x )= 244+x x,求和. S=f (20021)+f (20022)…+f (20022001). [解析] ∵f (x )= 244+x x, ∴f (1-x )= 24411+--x x =x 4241⋅+=242+x , ∴f (x )+f (1-x )=1.∴S=f (20021)+f ()()2002200120022f ++ ① S=f ()()()200212002200020022001+++ f ②①+②得,2S =2001,∴S =22001. 5.分段求和法如果一个数列是由各自具有不同特点的两段构成,则可考虑利用分段求和.[例9] 已知数列{a n }的前n 项和为S n ,且a n +S n =1(n ∈N +).(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =3+log 4a n ,设T n =|b 1|+|b 2|+…+|b n |,求T n .[解析] (1)由a n +S n =1,得a n-1+S n-1=1,两式相减得,a n -a n-1+a n =0,∴2a n =a n-1,即1-n n a a =21 (n ≥2). 又n =1时,a 1+S 1=1,∴a 1=21. ∴数列{a n }是首项为21,公比为21的等比数列. ∴a n =a 1q n-1=21·(21)n-1=(21)n . (2)解法一:∵b n =3+log 4(21)n =3-2n =26n -. 当n ≤6时,b n ≥0,T n =b 1+b 2+…+b n =4)11(n n -; 当n >6时,b n <0,T n =b 1+b 2+…+b 6-(b 7+b 8+…+b n )=46011)21(2)7)(6()21)(6(4562+-=-⋅--+---⨯n n n n n ][. 4)11(n n - (n ≤6)综上可知,T n = .460112+-n n (n ≥7) 解法二:∵b n =3+log 4(21)n =3-2n =26n -. 当n ≤6时,b n ≥0,|b n |=b n .∴T n =b 1+b 2+…+b n =4)11(n n -. 当n >6时,b n <0,|b n |=-b n .∴T n =b 1+b 2+…+b 6-b 7-b 8-…-b n=2(b 1+b 2+…+b 6)-(b 1+b 2+…+b n )=2T 6-T n =460112+-n n . 4)11(n n - (n ≤6)综上可知,T n = .460112+-n n (n ≥7)变式应用9 数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n+1+a n =0(n ∈N +).(1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n .[解析] (1)由{a n }满足2a n+1=a n+2+a n 可知,数列{a n }为等差数列,故可求其通项公式;(2)求S n 关键要搞清{a n }项的符号的变化.(1)∵a n+2-2a n+1+a n =0,∴2a n+1=a n+2+a n ,∴{a n }为等差数列.∵a 1=8,a 4=2,∴d =4128--=-2, ∴a n =8-2(n -1)=10-2n .(2)∵a 1>a 2>a 3>a 4>a 5=0>a 6+…>a n (n ≥6),a 6=-2.∴n ≤5时,S n =8n +21n (n -1)(-2)=9n-n 2; n >5时,S n =S 5-(a 6+a 7+…+a n )=20-2))(5(6n a a n +- =20-2)2102)(5(n n -+--=n2-9n+40.9n-n2(n≤5,n∈N+)∴S n= .n2-9n+40(n≥6,n∈N+)。
北师大版高中数学必修5第一章《数列》小结与复习

解法二: ∵{an }是等差数列, 设S n An 2 Bn A B 13 由a1 S1 13,S 3 S11,代入得 9 A 3 B 121A 11B 解得A 1,B 14, S n n 2 14n
22 42 例9 求(1)Sn 1 3 3 5 (2) Sn 1 1 2 1 2 3 1 2 3 (3) 2 3 2 2 2 n n 2
得:an 2 3 3 n1 an 3n 2
性质的应用
{an }中, 例5 在 等 差 数 列
10 (1)若a3 50, a5 30, 则a7 ______;
( 2)若a1 a4 a7 39, a 2 a5 a8 33, 则
27 a3 a6 a9 ______ 24 ( 3)若a15 8, a60 20, 则a75 _____; 已知等差数列中的任意两项,可以求 出其他的元素.这里应用的是方程组的思 想.
a15
50
4
例7 已知数列{an}为等比数列,a2=50,a5=6.25,设
bn=log2an.
(1)求证:数列{bn}为等差数列;
(2)求数列{bn}的前n项和;
(3)求数列{bn}中的最大值. 1 3 解 (1) a5 a2 q q 2 an 1 bn bn1 log 2 log 2 1 an 1 2 ∴数列{bn}为公差是-1的等差数列
一教学目标:1、知识与技能:⑴进一步理解数列基础知识和方法,能清晰 地构思解决问题的方案;⑵进一步学习有条理地、清晰地表达数学问题,提 高逻辑思维能力;⑶加强对等差数列与等比数列的性质的理解,提高“知三 求二”的熟练程度;⑷在理解的基础上进一步熟练地构建数列模型解决实际 问题。2、过程与方法:⑴通过实例,发展对解决具体问题的过程与步骤进 行分析的能力;⑵通过独立思考、合作交流、自主探究的过程,发展应用数 列基础知识的能力;⑶在解决具体问题的过程中更进一步地感受数列问题中 蕴含的思想方法。3、情感态度与价值观:⑴通过具体实例,感受和体会数 列在解决具体问题中的意义和作用,认识数列知识的重要性;⑵感受并认识 ⑶在解决实际问题过程中形成和发展正确的价值观 二、教学重点 1.系统化本章的知识结构;2.提高对几种常见类型的认识;3. 优化解题思路和解题方法,提升数学表达的能力。教学难点 解题思路和解 题方法的优化。 三、教学方法:探究归纳,讲练结合 四、教学过程
高中数学 第一章 数列教案 北师大版必修5

§1数列1.1 数列的概念(教师用书独具)●三维目标1.知识与技能理解数列及其有关概念,了解数列和函数之间的关系.2.过程与方法按照观察、猜想、发现、归纳和总结的学习过程,进行启发式教学,体会归纳思想.3.情感、态度与价值观通过本节课学习,体会数学源于生活,提高数学学习兴趣.●重点难点重点:了解数列的概念,了解数列是一种特殊函数.根据数列的前n项写出它的一个通项公式.难点:将数列作为一种特殊函数去认识,了解数列与函数之间的关系.(教师用书独具)●教学建议问题/情境设计意图师生活动同学们都知道大自然是美丽的,但如果我说,大自然还是懂数学的,你相信吗?下面,请看图片.师:多媒体课件展示生动丰富的大自然场景:花菜、向日葵、菠萝等,这些事物似乎都与这列数有关:1,1,2,3,5,8,13,21……生:观察图片,投入到教学活动中来.如果细心观察,就会发现自然界的一些看似千差万别的事物,似乎都能在这一列数中找到联系,这是巧合,还是别的什么原因?同学们若感兴趣,想研究它,就需要先来学习我们今天的内容:数列的概念.●教学流程创设问题情境,提出3个问题⇒引导学生解答问题,引出数列的有关概念⇒通过例1及变式训练,使学生进一步认识数列的有关概念⇒通过例2及变式训练,使学生掌握数列的通项公式的求法⇒通过例3及互动探究,让学生掌握利用通项公式确定数列的项的问题⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第1页)课标解读1.了解数列、通项公式的概念.2.了解数列是自变量为正整数的一类函数(难点).3.能根据通项公式确定数列的某一项(重点).4.能根据数列的前几项写出数列的一个通项公式(重点、难点).数列的有关概念及表示【问题导思】小山想利用电子邮箱发送一个E-mail,但是由于长时间未登录邮箱,从而他忘记了邮箱的密码,只记得密码由3~8这6个数字构成,如:(1)3 4 5 6 7 8;(2)4 6 8 7 3 5;(3)7 6 5 3 8 4.1.这三组数字有什么异同之处?【提示】都是由3~8这6个数字构成,但是排列顺序不同.2.小山把上面3组数当成密码来试验时,都没有打开邮箱,他说:“仅仅知道数字及个数还不能确定密码”.那么,找到密码还需要确定什么?【提示】 数字的排列顺序. 1.数列的有关概念数列 按一定次序排列的一列数叫作数列 项 数列中的每一个数叫作这个数列的项首项 数列的第1项常称为首项 通项数列中的第n 项a n ,叫数列的通项2.数列的表示①一般形式:a 1,a 2,a 3,…,a n ,…; ②字母表示:上面数列也记为{a n }.数列的分类【问题导思】当n 分别取1,2,3,4,…时,sin n π2的值排成一个数列:1,0,-1,0…;当n分别取1,2,3,4,5时,sinn π2的值排成一个数列:1,0,-1,0,1.这两个数列是同一数列吗?若不是同一数列,这两个数列有何区别与联系?【提示】 不是同一数列.第一个数列有无穷多项,第二个数列共有5项,这5项恰好是第一个数列的前5项.按数列的项数,数列分为有穷数列与无穷数列. (1)项数有限的数列叫作有穷数列; (2)项数无限的数列叫作无穷数列.数列的通项公式【问题导思】传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.如图:图1-1-1上图表示的数可构成数列1,4,9,16,…,这个数列的第n 项a n 与n 之间能否用一个函数式表示?怎样表示?【提示】 可以.函数式可表示为a n =n 2.1.如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个式子表示成a n =f (n ),那么这个式子就叫作这个数列的通项公式,数列的通项公式就是相应函数的解析式.2.数列可以看作定义域为正整数集N +(或它的有限子集)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列.(对应学生用书第2页)数列的有关概念下列说法哪些是正确的?哪些是错误的?并说明理由.(1){0,1,2,3,4}是有穷数列; (2)所有自然数能构成数列; (3)同一个数在数列中可能重复出现; (4)数列1,2,3,4,…,2n 是无穷数列.【思路探究】 紧扣数列的有关概念,验证每一个说法是否符合条件. 【自主解答】 (1)错误.{0,1,2,3,4}是集合,不是数列. (2)正确.如将所有自然数按从小到大的顺序排列. (3)正确.数列中的数可以重复出现.(4)错误.数列1,2,3,4,…,2n ,共有2n 项,是有穷数列.1.数列{a n }表示数列a 1,a 2,a 3,…,a n ,…,不是表示一个集合,与集合表示有本质的区别.2.从数列的定义可以看出,如果组成数列的数相同而排列次序不同,那么它们就是不同的数列;在定义中,并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.下列说法正确的是( )A .数列3,5,7与数列7,5,3是相同数列B .数列2,3,4,4可以记为{2,3,4}C .数列1,12,13,…,1n ,…可以记为⎩⎨⎧⎭⎬⎫1nD .数列{2n +1}的第5项是10【解析】 数列是有序的,选项A 错;数列与数集是两个不同的概念,选项B 错;对于D ,当n =5时,a 5=2×5+1=11,选项D 错,故选C.【答案】 C由数列的前n 项写出数列的一个通项公式写出下列数列的一个通项公式. (1)1,-3,5,-7,9,…; (2)3,3,15,21,33,…; (3)22-12,32-13,42-14,52-15,…;(4)0.9,0.99,0.999,0.9999,…; (5)32,1,710,917,…. 【思路探究】 分析各项a n 与对应序号n 之间的关系,从中发现规律,得到一个合适的函数解析式,再验证是否正确即可.【自主解答】 (1)数列各项的绝对值为1,3,5,7,9,…是连续的正奇数,考虑(-1)n +1具有转换符号的作用,所以数列的一个通项公式为a n =(-1)n +1(2n -1).(2)数列可化为3,9,15,21,27,…, 即3×1, 3×3,3×5,3×7,3×9,…,每个根号里面可分解成两个数之积,前一个因数为常数3,后一个因数为2n -1,故原数列的一个通项公式为a n =3(2n -1)=6n -3.(3)这个数列的前4项的分母都是序号加上1,分子都是分母的平方减去1,所以它的一个通项公式是:a n =(n +1)2-1n +1.(4)原数列可变形为:1-110,1-1102,1-1103,1-1104,…,故所给数列的一个通项为a n =1-110n . (5)将数列统一为32,55,710,917,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1;对于分母2,5,10,17,…联想到数列1,4,9,16,…即数列{n 2},可得分母的通项公式为c n =n 2+1,∴可得原数列的一个通项公式为a n =2n +1n 2+1.1.本题通过观察各项与项数的关系,再进行比较,归纳出结论,主要从以下几个方面来考虑:(1)符号用(-1)n或(-1)n +1来调节.(2)分式形式的数列,分子、分母分别找通项,要充分借助分子、分母的关系.(3)将数列的各项分解成若干个基本数列后再进行分析归纳.2.根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,可以用添项、还原、分割等办法,转化为一些常见数列的通项公式来求.根据数列的前几项,写出数列的一个通项公式. (1)23,415,635,863,…;(2)12,2,92,8,252,…; (3)2,22,222,2 222,….【解】 (1)分子均为偶数,分母分别为1×3,3×5,5×7,7×9是相邻两个奇数的乘积,故a n =2n(2n -1)(2n +1).(2)将分母统一成2,在数列12,42,92,162,252,…中分母为2,分子为n 2,故a n =n 22.(3)由9,99,999,9 999,…的通项公式a n =10n-1可知,2,22,222,2 222,…的通项公式为a n =29(10n-1).利用通项公式确定数列的项已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出数列的第4项和第6项;(2)-49和68是该数列的项吗?若是,是第几项?若不是,请说明理由. 【思路探究】 (1)将n =4,6代入a n 即可.(2)若某个数是数列的某一项,则在通项中必存在一个正整数n 与其对应,否则就不是数列中的项.【自主解答】 (1)∵a n =3n 2-28n , ∴a 4=3×42-28×4=-64,a 6=3×62-28×6=-60.(2)令3n 2-28n =-49,即3n 2-28n +49=0, 解得n =7,或n =73(舍).∴-49是该数列的第7项, 即a 7=-49.令3n 2-28n =68,即3n 2-28n -68=0, 解得n =-2,或n =343.∵-2∉N +,343∉N +,∴68不是该数列的项.1.数列的通项公式给出了第n 项a n 与它的位置序号n 之间的关系,只要用序号代替公式中的n ,就可以求出数列的相应项.2.判断某数值是否为该数列的项,需假定它是数列中的项去列方程.若方程的解为正整数则是数列的一项;若方程无解或解不是正整数,则不是该数列的一项.若本例的条件不变,(1)试写出该数列的第3项和第8项;(2)问20是不是该数列的一项,若是,应是第几项?【解】 (1)∵a n =3n 2-28n , ∴a 3=3×32-28×3=-57,a 8=3×82-28×8=-32.(2)设3n 2-28n =20,解得n =10或n =-23(舍去).∵n ∈N +,∴20是该数列的第10项.(对应学生用书第3页)归纳推理在求数列通项公式中的应用(12分)根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和点数,并写出由图中点数依次组成的数列的通项公式.(1) (3) (6) 图1-1-2【思路点拨】 观察图形的构成规律,寻找点数构成的数列中a 1与a 2,a 2与a 3的关系,便可发现a 4,a 5,…,a n 的取值规律及图形的构成特征.【规范解答】 观察前3个图形和点数,易知(10) (15)4分记图形中的点数构成的数列为{a n }.观察可知:a 1=1=22=1×22, a 2=3=62=2×32, a 3=6=122=3×42, a 4=10=202=4×52, a 5=15=302=5×62.9分∴数列{a n }的通项公式为a n =n (n +1)2.12分本题先观察数列前n 项的共同特点,再概括出数列的通项公式.这种推理就是归纳推理.归纳推理就是由个别事实概括出一般结论的推理,归纳推理是一种重要的推理方法,在数学领域有着广泛的应用.1.对通项公式的理解(1)数列的通项公式的表示形式不一定是唯一的,如数列:1,0,-1,0,1,0,-1,0,…,通项公式可以是a n =sinn π2,也可以是a n =cosn -12π(n ∈N +).(2)并不是所有数列都能写出通项公式.如由π的精确度的数值排列:3,3.1,3.14,3.141,3.1415,…就写不出通项公式.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴涵着“从特殊到一般”的思想.3.数列是一类特殊函数,因此用函数观点解决数列问题是一种常用的方法,但要注意其定义域为正整数集或其有限子集.(对应学生用书第4页)1.下列说法中,正确的是( )A .数列1,3,5,7可表示为{}1,3,5,7B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列{n +1n }的第k 项为1+1kD .数列0,2,4,6,8,…可记为{2n }【解析】 由数列定义知A 错,B 中排列次序不同,D 中n ∈N . 【答案】 C2.(2013·宝鸡高二检测)数列13,24,35,46,…的一个通项公式是( )A .a n =1n -1B .a n =n 2n -1C .a n =n n +2 D .a n =n2n +1【解析】 观察前4项的特点易知a n =nn +2.【答案】 C3.(原创题)在数列{n 2-1n }中,第7项是________.【解析】 令n =7,则n 2-1n =72-17=487.【答案】4874.已知数列{a n },a n =kn -5,且a 8=1,求a 16. 【解】 由a 8=1,得8k -5=1,解得k =34,∴a n =34n -5,∴a 16=34×16-5=7.(对应学生用书第79页)一、选择题1.下列解析式中不是数列1,-1,1,-1,1,…的通项公式的是( ) A .a n =(-1)nB .a n =(-1)n +1C .a n =(-1)n -1 D .a n =⎩⎪⎨⎪⎧1 n 为奇数,-1 n 为偶数.【解析】 A 中当n =1时,a 1=-1,n =2时,a 2=1,显然不是数列1,-1,1,-1,1,…的通项公式.【答案】 A2.已知数列{a n }的通项公式是a n =n 2+2,则其第3、4项分别是( ) A .11,3 B .11,15 C .11,18 D .13,18【解析】 a 3=32+2=11,a 4=42+2=18. 【答案】 C3.已知数列1,3,5,7,…,2n -1,…则35是它的( ) A .第22项 B .第23项 C .第24项 D .第28项【解析】 令2n -1=35,解得n =23. 【答案】 B4.下列四个数中,是数列{n (n +1)}中的一项的是( ) A .380 B .39 C .32 D .23【解析】 分别令n (n +1)=380,39,32,23解出n ∈N +即可,验证知n =19时,19×20=380.【答案】 A5.(2013·德州高二检测)数列-13×5,25×7,-37×9,49×11,…的通项公式a n 为( )A .(-1)n +11(2n +1)(2n +3)B .(-1)n +1n(2n +1)(2n +3)C .(-1)n1(2n +1)(2n +3)D .(-1)nn(2n +1)(2n +3)【解析】 观察式子的分子为1,2,3,4,…,n ,…,分母为3×5,5×7,7×9,…,(2n +1)(2n +3),…,而且正负间隔,故通项公式a n =(-1)nn(2n +1)(2n +3).【答案】 D 二、填空题6.数列35,12,511,37,717,…的一个通项公式是________.【解析】 数列35,12,511,37,717,…即数列35,48,511,614,717,…,故a n =n +23n +2.【答案】 a n =n +23n +27.已知数列{a n }的通项公式a n =-n 2+7n +9,则其第3、4项分别是________、________. 【解析】 a 3=-32+7×3+9=21,a 4=-42+7×4+9=21. 【答案】 21 218.已知曲线y =x 2+1,点(n ,a n )(n ∈N +)位于该曲线上,则a 10=________. 【解析】 ∵点(n ,a n )位于曲线y =x 2+1上,∴a n =n 2+1,故a 10=102+1=101. 【答案】 101 三、解答题9.根据数列的前几项,写出下列各数列的一个通项公式. (1)-1,7,-13,19,… (2)0.8,0.88,0.888,… (3)12,14,-58,1316,-2932,6164,… 【解】 (1)符号可通过(-1)n表示,后面的数的绝对值总比前面的数的绝对值大6, 故通项公式为a n =(-1)n·(6n -5).(2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =89(1-110n ).(3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32.原数列可化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n·2n-32n .10.已知数列{a n }中,a 1=2,a 17=66,通项公式是项数n 的一次函数. (1)求数列{a n }的通项公式; (2)88是否是数列{a n }中的项?【解】 (1)设a n =an +b .∴a 1=a +b =2,①a 17=17a +b =66.②②-①,得16a =64,∴a =4,b =-2. ∴a n =4n -2(n ∈N +).(2)令4n -2=88⇒4n =90,n =452∉N +,∴88不是数列{a n }中的项.图1-1-311.如图1-1-3所示,有n (n ≥2)行n +1列的士兵方阵:(1)写出一个数列,用它表示当n 分别为2,3,4,5,6,…时方阵中的士兵人数.(2)说出(1)中数列的第5,6项,用a 5,a 6表示; (3)若把(1)中的数列记为{a n },求该数列的通项公式a n ; (4)求a 10,并说明a 10所表示的实际意义.【解】 (1)当n =2时,表示士兵的人数为2行3列,人数为6;当n =3时,表示3行4列,人数为12,依此类推,故所求数列为6,12,20,30,42,….(2)方阵的行数比数列的序号大1,因此第5项表示的是6行7列,第6项表示7行8列,故a 5=42,a 6=56.(3)根据对数列的前几项的观察、归纳,猜想数列的通项公式. 前4项分别为:6=2×3,12=3×4,20=4×5,30=5×6 因此a n =(n +1)(n +2).(4)由(3)知a 10=11×12=132,a 10表示11行12列的士兵方阵中士兵的人数.(教师用书独具)数列{a n }的通项公式是a n =n 2-21n2(n ∈N +).(1)0和1是不是数列{a n }中的项?如果是,那么是第几项?(2)数列{a n }中是否存在连续且相等的两项?若存在,分别是第几项?【思路探究】 若某个数是数列的某一项,则在通项中必存在一个正整数n 与其对应,否则就不是数列中的项.【自主解答】 (1)若0是{a n }中的第n 项,则n 2-21n2=0,∵n ∈N +,∴n =21.∴0是{a n }中的第21项. 若1是{a n }中的第n 项,则n 2-21n2=1,∴n 2-21n =2,即n 2-21n -2=0. ∵方程n 2-21n -2=0不存在正整数解, ∴1不是{a n }中的项.(2)假设{a n }中存在第m 项与第m +1项相等,即a m =a m +1,则解得m =10. ∴数列{a n }中存在连续的两项第10项与第11项相等.1.本题易忽视n ∈N +,导致解方程n 2-21n -2=0出错.2.数列通项公式反映了一个项与项数的函数关系,通项公式的作用: (1)求数列中任意一项;(2)检验某数是否是该数列中的一项.在上述例题中,当n 为何值时,a n <0? 【解】 由a n <0,得0<n <21, 又∵n ∈N +,∴当n =1,2,3,…,20时,a n <0.1.2 数列的函数特性(教师用书独具)●三维目标1.知识与技能了解递增数列、递减数列、常数列的概念.掌握判断数列增减性的方法.2.过程与方法通过画数列图像,观察图像的升降趋势的学习过程使学生体会数列的增减性,学习过程采用启发、引导式教学.3.情感、态度与价值观通过本节课的学习培养学生数形结合思想,函数思想的应用.●重点难点判定数列的增减性.(教师用书独具)●教学建议针对判断数列的增减性问题可以从以下两种方法着手解决:(1)图像法:利用数列的图像的升、降趋势进行判断.(2)定义法:根据相邻两项a n与a n+1的大小关系来判断.判断这两项的大小可采用作差或作商的方法.●教学流程根据本节知识,提出问题:从函数的单调性上观察数列特点⇒引导学生回答问题引出递增、递减、常数列,讲解各自特点⇒通过例1及变式训练,使学生掌握数列的图像及应用⇒通过例2及变式训练,让学生掌握数列增减性的判断⇒通过例3及变式训练,使学生会求数列的最大(小)项问题⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正(对应学生用书第4页)课标解读1.了解数列的几种简单的表示方法(列表、图像、通项公式)(重点).2.了解递增数列、递减数列、常数列的概念.3.掌握判断数列增减性的方法(难点).数列的表示法表示一个数列我们可以用图像、列表、通项公式.数列增减性【问题导思】观察以下几个数列:①1,2,3,4,…;②-2,-4,-6,-8,…;③1,1,1,1,….从函数的单调性上考查,以上三个数列有何特点?【提示】①是递增的数列②是递减的数列③是常数列名称定义表达式图像特点递增数列从第2项起,每一项都大于它前面的一项a n+1>a n上升递减数列从第2项起,每一项都小于它前面的一项a n+1<a n下降常数列各项都相等a n+1=a n不升不降(对应学生用书第5页)数列的图像及应用已知数列{a n }的通项公式为a n =22n -9,画出它的图像,并判断增减性.【思路探究】 借助函数y =22x -9的图像作出数列{a n }的图像,然后根据图像的升降趋势判断单调性.【自主解答】 图像如图所示,该数列在{1,2,3,4}上是递减的,在{5,6,…}上也是递减的.1.解答本题的关键是借助函数y =1x -92的图像.2.若数列的通项公式a n =f (n )所对应的函数y =f (x )是基本初等函数,则可利用对应函数的图像及性质,研究数列的性质.把数列{n 2-9n }用列表法表示出来,在直角坐标系中画出它的图像,并根据图像指出它的增减性.【解】 列表法表示为: 序号 1 2 3 4 5 6 7 8 … 项-8-14-18-20-20-18-14-8…记a n =n 2-qn ,数列图像如图所示:由图像直观地看出它在{1,2,3,4}上是递减的,在{5,6,7,8,…}上是递增的.数列增减性的判断已知数列{a n }的通项公式a n =nn 2+1,试判断该数列的增减性.【思路探究】 可用作差法或作商法判断数列的增减性.【自主解答】 a n +1-a n =n +1(n +1)2+1-nn 2+1=1-n 2-n[(n +1)2+1](n 2+1). 因为n ∈N +,所以1-n 2-n <0, 所以a n +1-a n <0,即a n +1<a n .故该数列为递减数列.1.本题中1-n 2-n 的符号判断是关键,不要忽视n ∈N +这一条件.2.应用函数单调性的判断方法来判断数列的单调性,常用的方法有:作差法,将a n +1-a n 与0进行比较;作商法,将a n +1a n与1进行比较(在作商时,要注意a n <0还是 a n >0).判断数列1,23,35,47,…,n2n -1,…的增减性.【解】 设a n =n2n -1. ∵a n +1-a n =n +12n +1-n 2n -1=-1(2n +1)(2n -1)<0,∴a n +1<a n ,∴{a n }是递减数列.求数列的最大(小)项已知数列{a n }的通项公式a n =(n +1)(1011)n(n ∈N +),试问数列{a n }有没有最大项?若有,求最大项和最大项的项数;若没有,说明理由.【思路探究】 假设存在最大项→作差a n +1-a n →讨论差式的符号→确定最大项 【自主解答】 法一 假设数列{a n }中存在最大项. ∵a n +1-a n=(n +2)(1011)n +1-(n +1)(1011)n =(1011)n ·9-n11,当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 故a 1<a 2<a 3<…<a 9=a 10>a 11>a 12…,所以数列中有最大项,最大项为第9、10项,且a 9=a 10=1010119.法二 假设数列{a n }中有最大项,并设第k 项为最大项,则⎩⎪⎨⎪⎧a k ≥a k -1a k ≥a k +1对任意的k ∈N +且k≥2都成立.即⎩⎪⎨⎪⎧(k +1)(1011)k≥k (1011)k -1,(k +1)(1011)k≥(k +2)(1011)k +1,∴⎩⎪⎨⎪⎧1011(k +1)≥k ,k +1≥1011(k +2),解得9≤k ≤10. 又k ∈N +,∴数列{a n }中存在的最大项是第9项和第10项, 且a 9=a 10=1010119.1.解答探索性题目的方法:首先假设存在,然后在此前提下,利用已知条件进行推理,若推出合理的结论,则说明存在;若推出矛盾的结论,则说明不存在.2.求数列的最大(小)项的两种方法:(1)利用判断函数增减性的方法,先判断数列的增减情况,再求数列的最大项或最小项. (2)设a k 是最大项,则有⎩⎪⎨⎪⎧a k ≥a k -1a k ≥a k +1对任意的k ∈N +且k ≥2都成立,解不等式组即可.已知数列{a n }的通项公式为a n =4n -122n -7,求数列{a n }的最大项和最小项.【解】 ∵a n +1-a n =4n -82n -5-4n -122n -7=(4n -8)(2n -7)-(4n -12)(2n -5)(2n -5)(2n -7)=(8n 2-44n +56)-(8n 2-44n +60)(2n -5)(2n -7)=-4(2n -5)(2n -7)=-1(n -52)(n -72)当n ≤2时,a n +1-a n <0,即a n +1<a n ; 当n =3时,a n +1-a n >0,即a n +1>a n ; 当n ≥4时,a n +1-a n <0,即a n +1<a n . 又当n ≤3时,a n <2;当n ≥4时,a n >2. ∴a 4>a 5>…>a n >…>2>a 1>a 2>a 3. 故a 3最小为0,a 4最大为4.(对应学生用书第6页)忽视n 的范围致误设数列{a n }的通项公式为:a n =n 2+kn (n ∈N +),若数列{a n }是单调递增数列,求实数k 的取值范围 .【错解】 ∵a n =n 2+kn ,其图像对称轴方程为n =-k2,又数列{a n }是单调递增数列, ∴-k2≤1,得k ≥-2.故实数k 的取值范围为[-2,+∞).【错因分析】 导致上述错解的原因是仅考虑了数列{a n }为单调递增数列时的一种情形,而没考虑到n ∈N +,n 的值是离散的.【防范措施】 数列是特殊函数,一定要注意其定义域是N +(或它的有限子集). 【正解】 法一 ∵数列{a n }是单调递增数列, ∴a n +1-a n >0(n ∈N +)恒成立. 又∵a n =n 2+kn (n ∈N +),∴(n +1)2+k (n +1)-(n 2+kn )>0恒成立. 即2n +1+k >0.∴k >-(2n +1)(n ∈N +)恒成立.而n ∈N +时,-(2n +1)的最大值为-3(n =1时), ∴k >-3.即k 的取值范围为(-3,+∞).法二 结合二次函数y =x 2+kx 的图像,要使{a n }是递增数列,只要a 1<a 2,即可, 即1+k <4+2k ,得k >-3, 所以k 的取值范围为(-3,+∞).1.数列的三种表示方法各有优缺点:(1)用通项公式表示数列,简洁明了,便于计算.公式法是常用的数学方法.(2)列表法的优点是不经过计算,就可以直接看出项数与项的对应关系.(3)图像能直观形象地表示出随着序号的变化,相应项变化的趋势.2.判断一个数列的增减性,可以借助于图像的升、降趋势进行判断,也可以利用递增数列、递减数列、常数列的定义进行判断,即通过判断一个数列的任意相邻两项之间的大小关系来确定数列的增减性.(对应学生用书第7页)1.已知数列{a n }的通项公式a n =a ⎝ ⎛⎭⎪⎫12n(a <0),则该数列是( )A .递减数列B .递增数列C .常数列D .以上都不是【解析】 ∵a n +1-a n =a ⎝ ⎛⎭⎪⎫12n +1-a ⎝ ⎛⎭⎪⎫12n= -a ⎝ ⎛⎭⎪⎫12n +1>0,即a n +1>a n ,∴该数列是递增数列.【答案】 B2.递减数列{a n }中,a n =kn (k 为常数),则实数k 的取值范围是( ) A .R B .(0,+∞) C .(-∞,0) D .(-∞,0]【解析】 a n +1-a n =k (n +1)-kn =k <0. 【答案】 C3.若数列{a n }的通项公式为a n =k3n (k >0,且k 为常数),则该数列是________(填“递增”、“递减”)数列.【解析】 a n +1a n =k 3n +1·3n k =13<1.∵k >0,∴a n >0,∴a n +1<a n ,∴{a n }是递减数列. 【答案】 递减4.写出数列1,24,37,410,513,…的通项公式,并判断其增减性.【解】 通项公式为a n =n 3n -2. ∵a n +1-a n =n +13(n +1)-2-n 3n -2=-2(3n +1)(3n -2)<0,∴a n +1<a n ,∴{a n }是递减数列.(对应学生用书第81页)一、选择题1.已知数列{a n }中,a n +1=a n +2,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列 D .以上都不对【解析】 ∵a n +1=a n +2,∴a n +1-a n =2>0, ∴a n +1>a n ,故数列{a n }为递增数列. 【答案】 A2.已知数列{a n }满足a 1>0,且a n +1=nn +1a n ,则数列{a n }的最大项是( ) A .a 1 B .a 9 C .a 10 D .不存在 【解析】 ∵a 1>0且a n +1=nn +1a n ,∴a n >0,a n +1a n =nn +1<1, ∴a n +1<a n ,∴此数列为递减数列,故最大项为a 1. 【答案】 A3.(2013·西安高二检测)已知数列{a n }的通项公式是a n =2nn +1,那么这个数列是( ) A .递增数列 B .递减数列C .摆动数列D .常数列【解析】 a n +1-a n =2(n +1)n +2-2n n +1=2(n +1)2-2n 2-4n (n +1)(n +2)=2(n +1)(n +2)>0,∴{a n }是递增数列.【答案】 A4.已知a n =-2n 2+9n +3,则数列{a n }中的最大项为( ) A .a 1=10 B .a 2=13 C .a 3=12 D .以上均不正确【解析】 a n =-2(n -94)2+1058,由于n ∈N +,∴当n =2时,a 2=13最大. 【答案】 B5.(2013·沈阳高二检测)函数y =f (x )的图像在下列图中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1>a n (n ∈N +),则该函数的图像可能是( )【解析】 由a n +1=f (a n )及a n +1>a n 可知,f (a n )>a n ,即图像上每一点的纵坐标大于其横坐标,∴函数y =f (x )的图像应在直线y =x 上方,故选A.【答案】 A 二、填空题6.(2013·黄冈高二检测)已知数列{a n }满足a 1=2,a n +1=1+a n1-a n(n ∈N +),则a 2 012=________.【解析】 ∵a 1=2由a n +1=1+a n 1-a n 得a 2=-3,a 3=-12,a 4=13,a 5=2,∴{a n }为周期为4的数列,∴a 2 012=a 4×503=a 4=13.【答案】 137.已知数列{a n },a n =2n 2-10n +3,它的最小项是________.【解析】 a n =2n 2-10n +3=2(n -52)2-192.故当n =2或3时,a n 最小.【答案】 2或3项8.已知数列{a n }的通项公式为a n =4n -102,则数列从第________项开始值大于零.【解析】 令4n -102>0得n >2512,∴数列{a n }从第26项开始大于零. 【答案】 26 三、解答题9.已知数列{a n }的通项公式为a n =-n 2+10n +11,试作出其图像,并判断数列的增减性.【解】 列表:n 1 2 3 4 5 6 7 8 9 10 11 … a n20273235363532272011…图像如图所示:由数列的图像知,当1≤n ≤5时数列递增;当n ≥5时数列递减. 10.已知函数f (x )=x -1x,设a n =f (n )(n ∈N +), (1)求证:a n <1;(2){a n }是递增数列还是递减数列?为什么? 【解】 (1)证明 a n =f (n )=n -1n =1-1n<1. (2)∵a n +1-a n =(n +1)-1n +1-n -1n =(1-1n +1)-(1-1n )=1n (n +1)>0,∴a n +1>a n , ∴{a n }是递增数列.11.(2013·广州高二检测)已知数列{a n }的通项公式为a n =n 2-5n +4. (1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值. 【解】 (1)由n 2-5n +4<0,解得1<n <4. ∵n ∈N +,∴n =2,3. ∴数列中有两项是负数.(2)法一 ∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,可知对称轴方程为n =52.又因n ∈N +,故n =2或3时,a n 有最小值,其最小值为a 2=a 3=22-5×2+4=32-5×3+4=-2.法二 设第n 项最小,由⎩⎪⎨⎪⎧a n ≤a n +1a n ≤a n -1,得⎩⎪⎨⎪⎧n 2-5n +4≤(n +1)2-5(n +1)+4,n 2-5n +4≤(n -1)2-5(n -1)+4. 解这个不等式组得2≤n ≤3, ∴n =2,3,∴a 2=a 3且最小,∴a 2=a 3=22-5×2+4=32-5×3+4=-2.(教师用书独具)已知函数f (x )=2x -2-x,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)证明数列{a n }是递减数列.【思路探究】 首先建立关于a n 的一元二次方程求解,再证明a n >a n +1即可证明数列{a n }是递减数列.【自主解答】 (1)∵f (x )=2x-2-x,f (log 2a n )=-2n , ∴2log 2a n -2-log 2a n =-2n , ∴a n -1a n=-2n ,∴a n 2+2na n -1=0,解得a n =-n ±n 2+1. ∵a n >0,∴a n =n 2+1-n ,n ∈N +.(2)a n +1a n =(n +1)2+1-(n +1)n 2+1-n=n 2+1+n(n +1)2+1+(n +1)<1. ∵a n >0,∴a n +1<a n , ∴数列{a n }是递减数列.本题是函数、方程与数列的典型结合与运用,要比较a n 与a n +1的大小,可以用作差法或作商法,即若a n +1-a n >0,则a n +1>a n ,可以判断数列{a n }是递增数列;当a n >0时,若a n +1a n>1,则a n +1>a n ,也能判断数列{a n }是递增数列.对于递减数列,同理可以给出判断.若数列{a n }的通项公式为a n =-2n 2+13n (n ∈N +),画出它在x 轴上方的图像,并根据图像求出a n 的最大值,并在同一坐标系中画出函数f (x )=-2x 2+13x 的图像,根据图像求出f (x )的最大值.若用函数来求a n =-2n 2+13n 的最大值,应如何处理?【解】 由-2n 2+13n >0,可得0<n <132.又因为n ∈N +,所以n =1,2,3,4,5,6,分别代入通项公式,可得a 1=11,a 2=18,a 3=21,a 4=20,a 5=15,a 6=6,图像如图所示,为6个点.最大值为21.函数f (x )=-2x 2+13x 的图像如图所示(图中曲线).f (x )=-2x 2+13x =-2(x -134)2+1698,所以当x =134时,f (x )max =1698. 用函数来求{a n }的最大值时, 因为3<134<4,且314离3较近,所以最大值为a 3=21.§2等差数列2.1 等差数列 第1课时 等差数列(教师用书独具)●三维目标 1.知识与技能掌握等差数列通项公式及推导,掌握判断等差数列的方法. 2.过程与方法通过对等差数列图像的应用进一步渗透数形结合思想,通过等差数列通项公式的运用,渗透方程思想.3.情感、态度与价值观通过对等差数列的研究,使学生明白等差数列与一般数列的内在联系,从而渗透特殊与一般的辨证唯物主义观点.●重点难点重点:等差数列的判定.难点:求等差数列的通项公式及其应用.(教师用书独具)●教学建议问题:数列:1,3,( ),7,9,…2,5,8,( ),14,…-2,3,8,( ),18,…师:先根据数列的特点填空,再思考一下这些数列的共同特点?生:后一项减前一项都等于常数.师:对这样的数列,如何表示相邻两项的关系(a n+1与a n)?生:a n+1-a n=d(d为常数).师:这样的数列就是我们这节课要讲的等差数列.(板书课题)●教学流程创设情境,提出了2个问题⇒引导学生根据问题引入等差数列⇒通过例1及互动探究,使学生掌握等差数列的判定⇒通过例2及变式训练,使学生掌握如何求通项公式⇒通过例3及变式训练,使学生掌握等差数列通项公式的应用⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正(对应学生用书第7页)课标解读1.理解等差数列的概念(重点).2.掌握等差数列的判断方法(重点).3.掌握等差数列的通项公式及其应用(重点、难点).等差数列的概念【问题导思】对于数列2,4,6,8,…该数列相邻两项的差(后项减去前项)有什么特点?怎样表示相邻两项间的关系?【提示】等于同一常数.a n+1-a n=2或a n-a n-1=2(n≥2).文字语言从第2项起,每一项与它前一项的差等于同一个常数,这样的数列就叫做等差数列.称这个常数为等差数列的公差,通常用字母d表示.符号语言若a n-a n-1=d(n≥2),则数列{a n}为等差数列.等差数列的通项公式【问题导思】你能观察出数列2,4,6,8,…的通项公式吗?能否给予证明?【提示】a n=2n,证明如下:由a n+1-a n=2,。
新教材北师大版高中数学选择性必修第一册全册各章节知识点考点重点难点解题规律归纳总结

北师大版高中数学选择性必修第一册知识点第一章直线与圆.................................................................................................................... - 2 - 1直线与直线的方程.................................................................................................... - 2 - 2圆与圆的方程.......................................................................................................... - 29 - 第二章圆锥曲线.................................................................................................................. - 46 - 1椭圆 ......................................................................................................................... - 46 - 2双曲线 ..................................................................................................................... - 55 - 3抛物线 ..................................................................................................................... - 63 - 4直线与圆锥曲线的位置关系.................................................................................. - 72 - 第三章空间向量与立体几何.............................................................................................. - 77 - 1空间直角坐标系...................................................................................................... - 77 - 2空间向量与向量运算.............................................................................................. - 85 - 3空间向量基本定理及向量的直角坐标运算.......................................................... - 98 - 4向量在立体几何中的应用.................................................................................... - 107 - 5数学探究活动(一):正方体截面探究 ................................................................. - 127 - 第四章数学建模活动(三)............................................................................................ - 130 - 第五章计数原理................................................................................................................ - 134 - 1计数原理 ............................................................................................................... - 134 - 2排列 ....................................................................................................................... - 139 - 3组合 ....................................................................................................................... - 144 - 4二项式定理............................................................................................................ - 148 - 第六章概率 ....................................................................................................................... - 157 - 1随机事件的条件概率............................................................................................ - 157 - 2离散型随机变量及其分布列................................................................................ - 165 - 3离散型随机变量的均值与方差............................................................................ - 172 - 4二项分布与超几何分布........................................................................................ - 180 - 5正态分布 ............................................................................................................... - 186 - 第七章统计案例................................................................................................................ - 190 - 1一元线性回归........................................................................................................ - 190 - 2成对数据的线性相关性........................................................................................ - 194 - 3独立性检验............................................................................................................ - 199 -第一章 直线与圆 1 直线与直线的方程1.1 一次函数的图象与直线的方程 1.2 直线的倾斜角、斜率及其关系1.直线的倾斜角定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,把x 轴(正方向)按逆时针方向绕着交点旋转到和直线l 首次重合时所成的角,称为直线l 的倾斜角.规定:当直线l 和x 轴平行或重合时,它的倾斜角为0. 范围:倾斜角α的取值范围为[)0,π. 2.直线的斜率(1)直线过不同两点P 1(x 1,y 1),P 2(x 2,y 2),其斜率k =y 2-y 1x 2-x 1(x 1≠x 2). (2)直线的斜率表示直线的倾斜程度. 3.直线的斜率与倾斜角、方向向量的关系(1)从函数角度看,k 是α的函数,其中k =tan α⎝ ⎛⎭⎪⎫其中α≠π2,图象如图所示.当α∈⎣⎢⎡⎭⎪⎫0,π2时,斜率k ≥0,且k 随倾斜角α的增大而增大;当α∈⎝ ⎛⎭⎪⎫π2,π时,斜率k <0,且k 随倾斜角α的增大而增大;当α=π2时,直线l 与x 轴垂直,此时直线l 的斜率不存在.(2)如图,在直线l 上任取两个不同的点P 1(x 1,y 1),P 2(x 2,y 2).由平面向量的知识可知,向量P 1P 2→是直线l 的方向向量,它的坐标是(x 2-x 1,y 2-y 1),直线的倾斜角α、斜率k 、方向向量P 1P 2→分别从不同角度刻画一条直线相对于平面直角坐标系中x 轴的倾斜程度.它们之间的关系是k =y 2-y 1x 2-x 1=tan α(其中x 1≠x 2).若k 是直线l 的斜率,则v =(1,k )是它的一个方向向量;若直线l 的一个方向向量的坐标为(x ,y ),其中x ≠0,则它的斜率k =yx .任意一条直线都有倾斜角和斜率吗?若存在,唯一吗?[提示] 直线都有倾斜角且唯一,但并不是所有的直线都有斜率.当倾斜角是π2时,直线的斜率不存在,此时,直线垂直于x 轴;当倾斜角不是π2时,直线的斜率存在且唯一.疑难问题类型1 直线的倾斜角【例1】 求图中各直线的倾斜角.(1) (2) (3)[解] (1)如图(1),可知∠OAB 为直线l 1的倾斜角.易知∠ABO =30°, ∴∠OAB =60°,即直线l 1的倾斜角为60°.(1)(2)(3)(2)如图(2),可知∠xAB为直线l2的倾斜角,易知∠OBA=45°,∴∠OAB=45°,∴∠xAB=135°,即直线l2的倾斜角为135°.(3)如图(3),可知∠OAC为直线l3的倾斜角,易知∠ABO=60°,∴∠BAO=30°,∴∠OAC=150°,即直线l3的倾斜角为150°.求直线的倾斜角的两点注意(1)直线倾斜角的取值范围是[)0,π.(2)当直线与x轴平行或重合时,倾斜角为0;当直线与x轴垂直时,倾斜角为π2.类型2直线的斜率【例2】(1)已知两条直线的倾斜角分别为60°,135°,求这两条直线的斜率;(2)已知A(3,2),B(-4,1),求直线AB的斜率;(3)已知直线l的一个方向向量是()3,1,求该直线的斜率.(4)求经过两点A(2,3),B(m,4)的直线的斜率.[解](1)直线的斜率分别为k1=tan 60°=3,k2=tan 135°=-1.(2)直线AB的斜率k AB=1-2-4-3=17.(3)直线l的斜率k=13=33.(4)当m=2时,直线AB的斜率不存在;当m≠2时,直线AB的斜率为k AB=4-3 m-2=1m-2.求直线斜率的三种方法(1)已知直线的倾斜角α(α≠90°)时,可利用斜率与倾斜角的关系,即k =tan α求得;(2)已知直线上两点的坐标时,可利用直线斜率的定义求.要注意,其前提条件是x 1≠x 2,若x 1=x 2时,直线斜率不存在;(3)已知直线的方向向量v =(m ,n )时,可利用k =nm 来求,但要注意,当m =0时,直线的斜率不存在.类型3 直线的倾斜角、斜率的应用三点共线问题【例3】 如果三点A (2,1),B (-2,m ),C (6,8)在同一条直线上,求m 的值.[解] k AB =m -1-2-2=1-m 4,k AC =8-16-2=74,∵A ,B ,C 三点共线, ∴k AB =k AC ,即1-m 4=74, ∴m =-6.斜率是反映直线相对于x 轴正方向的倾斜程度的.任意两点所确定的直线的方向不变,即同一直线上任何不同的两点所确定的斜率相等,这正是利用斜率相等可证点共线的原因.数形结合法求倾斜角或斜率范围【例4】 直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,求直线l 的斜率和倾斜角的范围.[解]如图所示.∵k AP=1-02-1=1,k BP=3-00-1=-3,∴k∈(-∞,-3]∪[1,+∞),∴45°≤α≤120°.直线与线段有交点求斜率问题,常用数形结合思想求解,先确定临界位置直线的斜率,再让直线从一个临界位置转动到另一个临界位置,并考察斜率的变化规律,最后确定是取“中间”,还是取“两边”.归纳总结1.直线的斜率与倾斜角是刻画直线位置的两个基本量,决定了这条直线相对于x轴的倾斜程度.2.倾斜角是90°的直线没有斜率,倾斜角不是90°的直线都有斜率,即直线的倾斜角不为90°时,斜率公式才成立.3.斜率公式是以后研究直线方程的基础,需熟记并会灵活运用.1.3直线的方程第1课时直线方程的点斜式1.直线l的方程如果一条直线l上的每一点的坐标都是一个方程的解,并且以这个方程的解为坐标的点都在直线l上,那么这个方程称为直线l的方程.2.直线的点斜式方程和斜截式方程名称点斜式斜截式已知条件点P(x0,y0)和斜率k 斜率k和直线在y轴上的截距b 图示方程y-y0=k(x-x0)y=kx+b 适用范围斜率存在3.直线l在y轴上的截距定义:直线l与y轴交点(0,b)的纵坐标b叫作直线l在y轴上的截距.(1)斜截式方程应用的前提是什么?(2)纵截距一定是距离吗?[提示](1)直线的斜率存在.(2)纵截距不一定是距离,它是直线与y轴交点的纵坐标,可取一切实数.疑难问题类型1直线方程的点斜式【例1】根据条件写出下列直线的方程,并画出图形.(1)经过点A(-1,4),斜率k=-3;(2)经过坐标原点,倾斜角为45°;(3)经过点B(3,-5),倾斜角为90°;(4)经过点C(2,8),D(-3,-2).[解](1)y-4=-3[x-(-1)],即y=-3x+1.如图(1)所示.(2)k=tan 45°=1,∴y-0=x-0,即y=x.如图(2)所示.(1)(2)(3)斜率k不存在,∴直线方程为x=3.如图(3)所示.(4)k=8-(-2)2-(-3)=2,∴y-8=2(x-2),即y=2x+4.如图(4)所示.(3)(4)求直线方程的点斜式的步骤类型2直线方程的斜截式【例2】求满足下列条件的直线l的方程:(1)过点P(0,1),斜率为2;(2)与直线y=-x+1在y轴上的截距相等,且过点Q(2,2);(3)倾斜角为60°,与y轴的交点到坐标原点的距离为3.[解](1)y=2x+1.(2)由题意知,该直线过点(0,1)和Q(2,2),故k=2-12-0=12,∴直线l的方程为y=12x+1.(3)∵直线的倾斜角为60°,∴其斜率k=tan 60°=3,∵直线与y轴的交点到原点的距离为3,∴直线在y轴上的截距b=3或b=-3;∴所求直线方程为y=3x+3或y=3x-3.直线方程的斜截式求解策略(1)直线的斜截式方程是点斜式方程的特殊形式,其适用前提是直线的斜率存在,只要点斜式中的点在y轴上,就可以直接用斜截式表示.(2)直线的斜截式方程y =kx +b 中只有两个参数,因此要确定某直线,只需两个独立的条件.(3)利用直线的斜截式求方程时,如果已知斜率k ,只需引入参数b ;同理如果已知截距b ,只需引入参数k .类型3 直线过定点问题【例3】 求证:不论m 为何值时,直线l :y =(m -1)x +2m +1恒过定点. [证明] 法一:直线l 的方程可化为y -3=(m -1)(x +2), ∴直线l 过定点(-2,3).法二:直线l 的方程可化为m (x +2)-(x +y -1)=0. 令⎩⎨⎧ x +2=0,x +y -1=0, 解得⎩⎨⎧x =-2,y =3. ∴无论m 取何值,直线l 总经过点(-2,3).本例两种证法是证明直线过定点的基本方法,法一体现了点斜式的应用,法二体现了代数方法处理等式恒成立问题的基本思想.归纳总结直线方程的点斜式和斜截式的关系与使用条件第2课时直线方程的两点式直线方程的一般式1.直线方程的两点式与截距式两点式截距式条件P1(x1,y1)和P2(x2,y2)其中x1≠x2,y 1≠y2在x轴上截距a,在y轴上截距b其中ab≠0图形方程y-y1y2-y1=x-x1x2-x1xa+yb=1适用范围不表示垂直于坐标轴的直线不表示垂直于坐标轴的直线及过原点的直线1.直线的方程一定能用两点式表示吗?[提示]当直线与坐标轴垂直时,直线的方程不能用两点式表示.2.直线方程的一般式(1)直线与二元一次方程的关系①在平面直角坐标系中,对于任何一条直线,都可以用一个关于x,y的二元一次方程表示.②每个关于x,y的二元一次方程都表示一条直线.(2)直线方程的一般式的定义我们把关于x,y的二元一次方程Ax+By+C=0(其中A,B不全为0)叫作直线方程的一般式,简称一般式.2.在直线方程的一般式Ax+By+C=0中,为什么规定A,B不同时为0?[提示]当A,B同时为0时,方程Ax+By+C=0表示的不是直线.疑难问题类型1直线方程的两点式和截距式直线方程的两点式【例1】已知△ABC三个顶点坐标A(2,-1),B(2,2),C(4,1),求三角形三条边所在的直线方程.[解] A ,B 两点横坐标相同,直线AB 与x 轴垂直,故其方程为x =2. 由直线方程的两点式可得,AC 的方程为y -1-1-1=x -42-4,即x -y -3=0. 同理可由直线方程的两点式得,直线BC 的方程为y -21-2=x -24-2,即x +2y -6=0.∴三边AB ,AC ,BC 所在的直线方程分别为x =2,x -y -3=0,x +2y -6=0.(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不垂直于坐标轴,若满足,则考虑用两点式求方程.(2)一般用两点式求直线方程时,由于减法的顺序性,必须注意坐标的对应关系,即x 2与y 2是同一点坐标,而x 1与y 1是另一点坐标.直线方程的截距式【例2】 求过点A (5,2),且在坐标轴上截距互为相反数的直线l 的方程. [解] 法一:当直线l 在坐标轴上的截距均为0时,方程为y =25x ,即2x -5y =0;当直线l 在坐标轴上的截距不为0时,可设方程为x a +y-a =1,即x -y =a ,又∵l 过点A (5,2),∴5-2=a ,a =3, ∴l 的方程为x -y -3=0,综上所述,直线l 的方程是2x -5y =0,或x -y -3=0.法二:由题意知直线的斜率一定存在.设直线方程的点斜式为y -2=k (x -5), x =0时,y =2-5k ,y =0时,x =5-2k .根据题意得2-5k =-⎝ ⎛⎭⎪⎫5-2k ,解方程得k =25或1.当k =25时,直线方程为y -2=25(x -5),即2x -5y =0; 当k =1时,直线方程为y -2=1×(x -5),即x -y -3=0.求解此类问题常用待定系数法,其求解步骤有两步:(1)根据题中条件设出直线方程,如在x轴、y轴上的截距分别为a,b(a≠0,b≠0)的直线方程常设为xa+yb=1.(2)根据已知条件,寻找关于参数的方程(组),解方程(组),得参数的值.类型2直线方程的一般式【例3】设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0.(1)若直线l在x轴上的截距为-3,则m=________;(2)若直线l的斜率为1,则m=________.(1)-53(2)-2[(1)令y=0,则x=2m-6m2-2m-3,∴2m-6m2-2m-3=-3,得m=-53或m=3.当m=3时,m2-2m-3=0,不合题意,舍去.∴m=-5 3.(2)由题意知,2m2+m-1≠0,即m≠-1且m≠1 2,由直线l化为斜截式方程,得y=m2-2m-32m2+m-1x+6-2m2m2+m-1,则m2-2m-32m2+m-1=1,得m=-2或m=-1(舍去).∴m=-2.]直线方程的几种形式的转化类型3 直线方程的综合应用【例4】 已知直线l :5ax -5y -a +3=0. (1)求证:不论a 为何值,直线l 总经过第一象限; (2)为使直线l 不经过第二象限,求a 的取值范围. [解] (1)证明:法一:将直线方程变形为y =ax +3-a5, 当a >0时,直线一定经过第一象限; 当a =0时,y =35,直线显然经过第一象限;当a <0时,3-a5>0,因此直线经过第一象限.综上可知,不论a 为何值时,直线5ax -5y -a +3=0一定经过第一象限. 法二:将直线方程变形为y -35=a ⎝ ⎛⎭⎪⎫x -15,它表示经过点A ⎝ ⎛⎭⎪⎫15,35,斜率为a的直线.∵点A ⎝ ⎛⎭⎪⎫15,35在第一象限,∴直线l 必经过第一象限.(2)如图,直线OA 的斜率k =35-015-0=3.∵直线l 不经过第二象限, ∴直线l 的斜率k ≥3,∴a ≥3,即a 的取值范围为{a |a ≥3}.含有一个参数的直线方程,一般表示无穷多条直线,称为直线系.若这无穷多条直线过同一个点.则求该点时,将一般式方程变形为点斜式方程,便可求出该点的坐标.归纳总结1.截距式方程应用的注意事项(1)如果问题中涉及直线与坐标轴相交,则可考虑选用截距式直线方程,用待定系数法确定其系数即可.(2)选用截距式直线方程时,首先考虑直线是否过原点以及是否与两坐标轴垂直.(3)要注意截距式直线方程的逆向应用.2.直线方程的其他形式都可以化成一般式,一般式也可以化为斜截式.一般式化斜截式的步骤:(1)移项,By =-Ax -C ; (2)当B ≠0时,得y =-A B x -CB .3.在一般式Ax +By +C =0(A 2+B 2≠0)中,若A =0,则y =-CB ,它表示一条与y 轴垂直的直线;若B =0,则x =-CA ,它表示一条与x 轴垂直的直线.1.4 两条直线的平行与垂直1.两条直线平行设两条不重合的直线l 1,l 2,倾斜角分别为α1,α2,斜率存在时斜率分别为k 1,k 2.则对应关系如下:图示1.(1)如图,设直线l1与l2的倾斜角分别为α1与α2,斜率分别为k1与k2,若l1∥l2,则α1与α2之间有什么关系?k1与k2之间有什么关系?(2)对于两条不重合的直线l1与l2,若k1=k2,是否一定有l1∥l2?为什么?[提示](1)若l1∥l2,α1与α2之间的关系为α1=α2;对于k1与k2之间的关系,当α1=α2≠90°时,k1=k2,当α1=α2=90°时,k1与k2不存在.(2)一定有l1∥l2.因为k1=k2,所以tan α1=tan α2,所以α1=α2,所以l1∥l2.2.两条直线垂直类型斜率存在其中一条斜率不存在前提条件|α2-α1|=90°α1=0°,α2=90°对应关系l1⊥l2⇔k1·k2=-1l1斜率为0,l2斜率不存在图示2.(1)当两条直线垂直时,它们的倾斜角有什么关系?(2)当两条直线垂直时,它们的斜率之积一定是-1吗?[提示](1)设两直线的倾斜角分别为α1,α2,若两直线垂直,则|α1-α2|=90°.(2)不一定.若一条直线的斜率为0,则与其垂直的直线斜率不存在.疑难问题类型1两直线平行、垂直的判定【例1】(1)已知两条直线y=ax-2和y=(a+2)x+1互相垂直,则实数a=________.(2)“ab=4”是直线2x+ay-1=0与直线bx+2y-2=0平行的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件[思路点拨](1)利用k1·k2=-1解题.(2)先求出两直线平行的充要条件,再判断.(1)-1(2)C[(1)由题意知(a+2)a=-1,所以a2+2a+1=0,则a=-1.(2)直线2x+ay-1=0与直线bx+2y-2=0平行的充要条件是-2a=-b2且-1a≠-1,即ab=4且a≠1,则“ab=4”是“直线2x+ay-1=0与直线bx+2y-2=0平行”的必要而不充分条件.]判断两条不重合直线是否平行的步骤类型2利用两直线平行、垂直求直线方程【例2】已知点A(2,2)和直线l:3x+4y-20=0,求:(1)过点A和直线l平行的直线方程;(2)过点A和直线l垂直的直线方程.[思路点拨]利用两条直线的位置关系,设出直线的方程,然后由另一条件确定直线方程.[解]法一:∵直线l的方程为3x+4y-20=0,∴k l=-3 4.(1)设过点A与直线l平行的直线为l1,∵k l =k l 1,∴k l 1=-34.∴l 1的方程为y -2=-34(x -2),即3x +4y -14=0. (2)设过点A 与直线l 垂直的直线为l 2, ∵k l ·k l 2=-1,∴(-34)·k l 2=-1,∴k l 2=43.∴l 2的方程为y -2=43(x -2),即4x -3y -2=0. 法二:(1)设所求直线方程为3x +4y +C =0, ∵点(2,2)在直线上,∴3×2+4×2+C =0,∴C =-14. ∴所求直线方程为3x +4y -14=0. (2)设所求直线方程为4x -3y +λ=0, ∵点(2,2)在直线上, ∴4×2-3×2+λ=0,∴λ=-2,即所求直线方程为4x -3y -2=0.1.根据两直线的位置关系求出所求直线的斜率,点斜式求解,或利用待定系数法求解.2.直线方程的常用设法①过定点P (x 0,y 0),可设点斜式y -y 0=k (x -x 0); ②知斜率k ,设斜截式y =kx +b ;③与直线Ax +By +C =0平行,设为Ax +By +m =0; ④与直线Ax +By +C =0垂直,设为Bx -Ay +n =0.类型3 两条直线平行与垂直的综合应用求直线方程中参数的值【例3】 已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0. (1)若这两条直线垂直,求k 的值; (2)若这两条直线平行,求k 的值.[解](1)根据题意,得(k-3)×2(k-3)+(4-k)×(-2)=0,解得k=5±5 2.∴若这两条直线垂直,则k=5±5 2.(2)根据题意,得(k-3)×(-2)-2(k-3)×(4-k)=0,解得k=3或k=5.经检验,均符合题意.∴若这两条直线平行,则k=3或k=5.1.利用斜率研究两直线的平行和垂直关系时,要分斜率存在、不存在两种情况进行讨论.2.当直线是一般式方程时,也可利用以下结论研究两直线的平行和垂直关系:直线l1:A1x+B1y+C1=0,直线l2:A2x+B2y+C2=0.①l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0);②l1⊥l2⇔A1A2+B1B2=0.求点的坐标【例4】已知四边形ABCD的顶点B(6,-1),C(5,2),D(1,2).若四边形ABCD为直角梯形,求A点坐标.[解]①若∠A=∠D=90°,如图(1),由已知AB∥DC,AD⊥AB,而k CD=0,故A(1,-1).(1)②若∠A=∠B=90°,如图(2).(2)设A (a ,b ),则k BC =-3,k AD =b -2a -1,k AB =b +1a -6. 由AD ∥BC ⇒k AD =k BC ,即b -2a -1=-3; ① 由AB ⊥BC ⇒k AB ·k BC =-1,即b +1a -6·(-3)=-1. ② 解①②,得⎩⎪⎨⎪⎧a =125,b =-115,故A ⎝ ⎛⎭⎪⎫125,-115.综上所述,A 点坐标为(1,-1)或⎝ ⎛⎭⎪⎫125,-115.此类题目应用数形结合法求解较为方便、简单.归纳总结1.两直线平行或垂直的判定方法斜率 直线 斜率均不存在平行或重合一条直线的斜率为0,另一条直线的斜率不存在 垂直 斜率均存在相等 平行或重合积为-1垂直0平行的直线可设为Ax +By +D =0(D ≠C ).3.设直线l 1:y =k 1x +b 1,直线l 2:y =k 2x +b 2.若l 1⊥l 2,则k 1·k 2=-1;反之,若k 1·k 2=-1,则l 1⊥l 2;已知两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.1.5 两条直线的交点坐标1.两条直线的交点坐标 几何元素及关系代数表示 点A A (a ,b ) 直线l l :Ax +By +C =0 点A 在直线l 上 Aa +Bb +C =0直线l 1与l 2的交点是A方程组⎩⎨⎧ A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0 的解是⎩⎨⎧x =a y =b2.方程组的解的组数与两直线的位置关系方程组的解 交点个数 直线的位置关系无解 0个 平行 有唯一解 1个 相交 有无数组解无数个重合方程组⎩⎨⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0 有唯一一组解的充要条件是什么? [提示] A 1B 2-A 2B 1≠0.疑难问题类型1 两直线的交点问题【例1】 判断下列各对直线的位置关系.如果相交,求出交点坐标. (1)l 1:x -y =0,l 2:3x +3y -10=0; (2)l 1:3x -y +4=0,l 2:6x -2y -1=0; (3)l 1:3x +4y -5=0,l 2:6x +8y -10=0. [解] (1)解方程组⎩⎨⎧x -y =0,3x +3y -10=0,得⎩⎪⎨⎪⎧x =53,y =53.所以l 1与l 2相交,交点坐标是⎝ ⎛⎭⎪⎫53,53.(2)⎩⎨⎧3x -y +4=0,①6x -2y -1=0,②①×2-②得9=0,矛盾,方程组无解,所以两直线无公共点,又9≠0,所以l 1∥l 2.(3)⎩⎨⎧3x +4y -5=0,①6x +8y -10=0,②①×2得6x +8y -10=0, 因此,①和②可以化成同一个方程,有无数组解,故①和②表示同一条直线,所以l 1与l 2重合.方程组解的个数与两直线的位置关系.一般地,若方程组有一解,则两直线相交;若方程组无解,则两直线平行;若方程组有无数多组解,则两直线重合.这体现了“以形助数,以数释形”的数形结合思想.类型2 由交点求直线方程【例2】 求经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x -y -1=0平行的直线l 的方程.[思路点拨] 思路一求出两直线2x -3y -3=0和x +y +2=0的交点坐标,由平行关系得到l 的斜率,利用点斜式方程求解;思路二利用过两直线的交点的直线系方程求解.[解] 法一:由方程组⎩⎨⎧2x -3y -3=0x +y +2=0,得两直线交点坐标为⎝ ⎛⎭⎪⎫-35,-75, ∵直线l 和直线3x -y -1=0平行, ∴直线l 的斜率k =3,∴根据点斜式有y -⎝ ⎛⎭⎪⎫-75=3⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-35.即所求直线方程为15x -5y +2=0.法二:∵直线l 过两直线2x -3y -3=0和x +y +2=0的交点,∴可设直线l 的方程为:2x -3y -3+λ(x +y +2)=0,即(λ+2)x +(λ-3)y +2λ-3=0.∵直线l与直线3x-y-1=0平行,∴λ+23=λ-3-1≠2λ-3-1,解得λ=74.从而所求直线方程为15x-5y+2=0.1.本题法一是基本方法,求解交点坐标和斜率是解题关键.2.经过两直线交点的直线系方程①与直线Ax+By+C=0平行的直线系方程为Ax+By+C′=0(C′≠C);②与直线Ax+By+C=0垂直的直线系方程为Bx-Ay+C′=0;③过两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0的交点的直线系方程为λ1(A1x+B1y+C1)+λ2(A2x+B2y+C2)=0(λ1,λ2为参数).当λ1=1,λ2=0时,方程即为直线l1;当λ1=0,λ2=1时,方程即为直线l2.类型3直线过定点问题[探究问题]1.不论k取什么值,直线y=kx+2恒过定点,试求出此定点.[提示]由直线的方程可知当x=0时,y=2,此时与k的取值无关.故直线恒过点(0,2).2.不论m取什么值,直线y-2=m(x+3)恒过定点.求出此定点.[提示]由直线方程可知当x=-3时,y=2,与m的取值无关,故直线恒过定点(-3,2).【例3】求证:无论k取何值时,直线l:(k+1)x-(k-1)y-2k=0必过定点,并求出该定点坐标.[思路点拨]法一:令k=0,k=1→解方程组求交点→验证交点总在直线上法二:化直线方程为点斜式→令k=1或k≠1→得定点法三:变形方程,提取参数→列方程组→解方程组求出定点[证明] 法一:令k =1,得到直线l 1:x =1, 令k =0,得到直线l 2:x +y =0, 由⎩⎨⎧x =1x +y =0,得l 1与l 2交点M (1,-1), 把M (1,-1)的坐标代入方程(k +1)x -(k -1)y -2k =0恒成立,∴无论k 取何值时,直线(k +1)x -(k -1)y -2k =0必过定点,且定点为M (1,-1).法二:由已知直线l 的方程得(k +1)x =(k -1)y +2k ,整理可得y +1=k +1k -1(x-1)(k ≠1),因此当k ≠1时,直线l 必过定点M (1,-1);当k =1时,原直线l 的方程为x =1,也过点M (1,-1). 综上所述,不论k 取任何实数值时,直线l 必过定点M (1,-1). 法三:方程(k +1)x -(k -1)y -2k =0可化为k (x -y -2)+(x +y )=0, 由⎩⎨⎧x -y -2=0x +y =0, 可得点⎩⎨⎧x =1y =-1.显然⎩⎨⎧x =1y =-1,使方程(k +1)x -(k -1)y -2k =0恒成立,∴无论k 取任何实数值时,直线l 必过定点M (1,-1).1.法一是特殊到一般的转化,法二是利用点斜式方程的特点,法三是利用直线系.2.处理动直线过定点问题的常用的方法: (1)将直线方程化为点斜式;(2)从特殊入手,先求其中两条直线的交点,再验证动直线恒过交点; (3)从“恒成立”入手,将动直线方程看作对参数恒成立,即将原方程化为f (x ,y )+mg (x ,y )=0的形式,欲使此式成立与m 的取值无关,则⎩⎨⎧f (x ,y )=0,g (x ,y )=0.由此方程组求得定点坐标.类型4 对称问题【例4】 △ABC 的一个内角的平分线所在的直线方程是y =2x ,若A ,B 两点的坐标分别为A (-4,2),B (3,1),则点C 的坐标为________.(2,4) [把A ,B 两点的坐标分别代入y =2x 知,点A ,B 都不在直线y =2x 上,∴直线y =2x 是∠C 的平分线所在的直线.设点A (-4,2)关于直线y =2x 的对称点为A ′(a ,b ), 则k AA ′=b -2a +4,线段AA ′的中点坐标为⎝ ⎛⎭⎪⎫a -42,b +22, 则⎩⎪⎨⎪⎧b -2a +4×2=-1,b +22=2×a -42,解得⎩⎨⎧a =4,b =-2,即A ′(4,-2).∵直线y =2x 是∠C 的平分线所在的直线, ∴A ′在直线BC 上, ∴直线BC 的方程为y +21+2=x -43-4,即3x +y -10=0. 由⎩⎨⎧ y =2x ,3x +y -10=0,解得⎩⎨⎧x =2,y =4, ∴点C 的坐标为(2,4).]有关对称问题的两种主要类型 (1)中心对称:①点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎨⎧x ′=2a -x y ′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决. (2)轴对称:①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),,则有⎩⎪⎨⎪⎧n -b m -a ×⎝ ⎛⎭⎪⎫-A B =-1A ·a +m 2+B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.归纳总结1.解含有参数的直线过定点问题,将含有一个参数的二元一次方程常整理为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(其中λ为常数)形式,可通过⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0求解定点. 2.方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0有唯一解的等价条件是A 1B 2-A 2B 1≠0,亦即两条直线相交的等价条件是A 1B 2-A 2B 1≠0,直线A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R )是过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0交点的直线(不含l 2).1.6 平面直角坐标系中的距离公式1.两点间的距离公式(1)平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(2)两点间距离的特殊情况①原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. ②当P 1P 2∥x 轴时,|P 1P 2|=|x 2-x 1|.③当P 1P 2∥y 轴时,|P 1P 2|=|y 2-y 1|.1.如何推导平面上的两点间的距离公式?[提示] 因为两点为P 1(x 1,y 1),P 2(x 2,y 2),所以P 1P 2→=(x 2-x 1,y 2-y 1),⎪⎪⎪⎪P 1P 2→=(x 2-x 1)2+(y 2-y 1)2,即|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.2.点到直线的距离公式(1)概念:过一点向直线作垂线,则该点与垂足之间的距离,就是该点到直线的距离.(2)公式:点P (x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B2. 2.在使用点到直线距离公式时,对直线方程有什么要求? [提示] 要求直线的方程应化为一般式. 3.两条平行直线间的距离公式(1)概念:夹在两条平行直线间的公垂线段的长度就是两条平行直线间的距离. (2)公式:两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0之间的距离d =|C 1-C 2|A 2+B 2(其中A 、B 不全为0,且C 1≠C 2).3.在应用两条平行线间的距离公式时,对直线方程有什么要求? [提示] 两条平行直线的方程都是一般式,且x , y 对应的系数应分别相等.疑难问题类型1 两点间的距离公式【例1】 已知△ABC 三顶点坐标分别为A (-3,1),B (3,-3),C (1,7),试判断△ABC 的形状.[解] 法一:∵|AB |=(3+3)2+(-3-1)2=213, |AC |=(1+3)2+(7-1)2=213, |BC |=(1-3)2+(7+3)2=226, ∴|AB |2+|AC |2=|BC |2,且|AB |=|AC |, ∴△ABC 是等腰直角三角形.法二:∵k AC=7-11-(-3)=32,k AB=-3-13-(-3)=-23,∴k AC·k AB=-1,∴AC⊥AB.又|AC|=(1+3)2+(7-1)2=213,|AB|=(3+3)2+(-3-1)2=213,∴|AC|=|AB|.∴△ABC是等腰直角三角形.1.判断三角形的形状,要采用数形结合的方法,大致明确三角形的形状,以确定证明的方向.2.在分析三角形的形状时,要从两方面考虑:一是要考虑角的特征,主要考察是否为直角或等角;二是要考虑三角形的长度特征,主要考察边是否相等或是否满足勾股定理的逆定理.类型2点到直线(或平行直线间)的距离公式【例2】若O(0,0),A(4,-1)两点到直线ax+a2y+6=0的距离相等,则实数a=________.[思路点拨]由点到直线的距离公式列出等式求a.-2或4或6[由题意,得6a2+a4=|4a-a2+6|a2+a4,即4a-a2+6=±6,解之得a=0或-2或4或6.检验得a=0不合题意,所以a=-2或4或6.]1.用点到直线的距离公式时,直线方程要化为一般式.2.求解两平行直线的距离问题也可以在其中一条直线上任取一点,再求这一点到另一直线的距离.类型3解析法证明几何问题【例3】已知四边形ABCD为矩形,M是任一点.求证:|AM|2+|CM|2=|BM|2+|DM|2.[思路点拨]建立坐标系,设出点的坐标,代入已知化简即可.[证明]分别以AB、AD所在直线为x轴,y轴建立直角坐标系(如图),设M(x,y),B(a,0),C(a,b),则D(0,b),又A(0,0).则|AM|2+|CM|2=x2+y2+(x-a)2+(y-b)2,|BM|2+|DM|2=(x-a)2+y2+x2+(y -b)2.∴|AM|2+|CM|2=|BM|2+|DM|2.1.解析法证明几何问题的步骤:(1)建立适当的坐标系,用坐标表示几何条件;(2)进行有关的代数运算;(3)把代数运算结果“翻译”成几何关系.2.坐标法证明几何问题,如果题目中没有坐标系,则需要先建立坐标系.建立坐标系的原则是:尽量利用图形中的对称关系.归纳总结1.两点间距离公式与两点的先后顺序无关,即公式可以写成|P1P2|=(x1-x2)2+(y1-y2)2.2.应用点到直线的距离公式时,若给出的方程不是一般式,则应先把方程化为一般式,再利用公式求距离.3.利用解析(坐标)法来解决几何问题,其解题思路几何问题――――→坐标系代数问题 ↑ ↓ 几何结论―→代数结论2 圆与圆的方程2.1 圆的标准方程1.圆的标准方程圆心为()a ,b ,半径是r 的圆的方程为(x -a )2+(y -b )2=r 2. 特别地,当圆心在坐标原点时,圆的方程为x 2+y 2=r 2.确定圆的几何要素是什么?[提示] 确定圆的几何要素有两个,即圆心的位置与半径的大小. 2.圆x 2+y 2=r 2(r >0)的简单几何性质 (1)范围||x ≤r ,||y ≤r .(2)对称性圆x 2+y 2=r 2既是轴对称图形,过原点的任意一条直线都是它的对称轴,又是中心对称图形,其对称中心是坐标原点.3.点与圆的位置关系圆的标准方程为C :(x -a )2+(y -b )2=r 2(r >0),设所给点为点P (x 0,y 0),||PC =d ,则判断方法几何法 代数法d <r ⇔点P 在圆C 内 (x 0-a )2+(y 0-b )2<r 2⇔点P 在圆C 内 d =r ⇔点P 在圆C 上(x 0-a )2+(y 0-b )2=r 2⇔点P 在圆C 上d >r ⇔点P 在圆C 外(x 0-a )2+(y 0-b )2>r 2⇔点P 在圆C 外疑难问题类型1 求圆的标准方程【例1】 求过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的方程.[解] 法一:设所求圆的标准方程为(x -a )2+(y -b )2=r 2,由已知条件知⎩⎨⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解此方程组,得⎩⎨⎧a =1,b =1,r 2=4.故所求圆的标准方程为(x -1)2+(y -1)2=4.法二:由已知可得线段AB 的中点坐标为(0,0),k AB =1-(-1)-1-1=-1,所以弦AB 的垂直平分线的斜率为k =1,所以AB 的垂直平分线的方程为y -0=1·(x -0),即y =x . 则圆心是直线y =x 与x +y -2=0的交点, 由⎩⎨⎧ y =x ,x +y -2=0, 得⎩⎨⎧x =1,y =1,即圆心为(1,1),圆的半径为(1-1)2+[1-(-1)]2=2, 故所求圆的标准方程为(x -1)2+(y -1)2=4.确定圆的标准方程的方法:一是待定系数法,如法一,建立关于a ,b ,r 的方程组,进而求得圆的方程; 二是借助圆的几何性质直接求得圆心坐标和半径,如法二.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.类型2 点与圆的位置关系。
北师大版高中数学必修1知识点总结

高中数学必修1知识点第一章集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{|x x x ∈A A =∅=∅ B A ⊆A B B ⊆B{|x x x ∈A A =A ∅=B A ⊇B B ⊇⑷⑼ 集合的运算律:交换律:结合律:分配律: 0-1律:等幂律:求补律:A ∩ A ∪ =U 反演律: (A ∩B)=( A)∪( B) (A ∪B)=( A)∩( B)第二章函数§1函数的概念及其表示一、映射1.映射:设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的 元素,在集合B 中都有 元素和它对应,这样的对应叫做 到 的映射,记作 .2.象与原象:如果f :A →B 是一个A 到B 的映射,那么和A 中的元素a 对应的 叫做象, 叫做原象。
二、函数1.定义:设A 、B 是 ,f :A →B 是从A 到B 的一个映射,则映射f :A →B 叫做A 到B 的 ,记作 .2.函数的三要素为 、 、 ,两个函数当且仅当 分别相同.;A B B A A B B A ==)()();()(C B A C B A C B A C B A ==)()()();()()(C A B A C B A C A B A C B A ==,,,A A A UA A UA U Φ=ΦΦ===.,A A A A A A ==时,二者才能称为同一函数。
北师大版高中数学必修5第一章数列知识点及方法总结

数列知识点知识清单1.数列的概念(1)数列定义:按一定次序排列的一列数叫做数列;数列中的每个数都叫这个数列的项。
记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。
(2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
说明:①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式;②同一个数列的通项公式的形式不一定唯一。
例如,n a = (1)n -=1,21()1,2n k k Z n k-=-⎧∈⎨+=⎩;③不是每个数列都有通项公式。
例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图像表示:序号:1 2 3 4 5 6 项 :4 5 6 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图像是一群孤立点。
(4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。
(5)递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
(6 )数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥注意:此公式较重要!!!等差数列知识点1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
高中数学北师大版必修1 全册 知识点总结

高中数学必修1知识点第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集⑼ 集合的运算律:交换律:结合律:分配律: 0-1律: 等幂律:求补律:A ∩∁uA =∅ A ∪CuA =U ∁uU =∅∁u∅=U 反演律:∁u (A ∩B)=(∁u A)∪(∁u B) ∁u (A ∪B)=(∁u A)∩(∁u B)第二章函数§1函数的概念及其表示一、映射1.映射:设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的 元素,在集合B 中都有 元素和它对应,这样的对应叫做 到 的映射,记作 .2.象与原象:如果f :A →B 是一个A 到B 的映射,那么和A 中的元素a 对应的 叫做象, 叫做原象。
二、函数1.定义:设A 、B 是 ,f :A →B 是从A 到B 的一个映射,则映射f :A →B 叫做A 到B 的 ,记作 .2.函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数。
北师大版高中数学必修1-知识点总结

北师大版高中数学必修1-知识点总结(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高中数学必修1知识点第一章集合与函数概念 【】集合的含义与表示(1)集合的概念把某些特定的对象集在一起就叫做集合. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【】集合间的基本关系(6)子集、真子集、集合相等A B =真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B = A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集 A B {|,x x A ∈且}x B ∈ (1)AA A =(2)A ∅=∅ (3)A B A ⊆A B B ⊆BA并集 A B {|,x x A ∈或}x B ∈ (1)AA A =(2)A A ∅= (3)A B A ⊇A B B ⊇BA补集{|,}x x U x A∈∉且⑴(⑵⑶⑷⑸⑼集合的运算律:交换律:.;ABBAABBA==结合律:)()();()(CBACBACBACBA==分配律:)()()();()()(CABACBACABACBA==0-1律:,,,A A A U A A U A UΦ=ΦΦ===等幂律:.,AAAAAA==求补律:A∩ A∪=U反演律:(A∩B)=(A)∪(B) (A∪B)=(A)∩(B)第二章函数§1函数的概念及其表示一、映射1.映射:设A、B是两个集合,如果按照某种对应关系f,对于集合A中的元素,在集合B中都有元素和它对应,这样的对应叫做到的映射,记作 .2.象与原象:如果f:A→B是一个A到B的映射,那么和A中的元素a对应的叫做象,叫做原象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念、方法、题型、易误点及应试技巧总结数列一.数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。
如(1)已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__ (答:125); (2)数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围 (答:3λ>-);(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是( ) (答:A )A B C D二.等差数列的有关概念:1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
如设{}n a 是等差数列,求证:以b n =na a a n +++ 21 *n N ∈为通项公式的数列{}nb 为等差数列。
2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a =(答:210n +);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ (答:833d <≤) 3.等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
如 (1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a =_,n =_(答:13a =-,10n =);(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T(答:2*2*12(6,)1272(6,)n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩). 4.等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a b A +=。
提醒: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )三.等差数列的性质:1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
3.当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.如(1)等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____(答:27);(2)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则A 、1210,S S S 都小于0,1112,S S 都大于0B 、1219,S S S 都小于0,2021,S S 都大于0C 、125,S S S 都小于0,67,S S 都大于0D 、1220,S S S 都小于0,2122,S S 都大于0(答:B )4.若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、232,,n n n n n S S S S S -- ,…也成等差数列,而{}n a a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列. 如等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。
(答:225)5.在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-⋅中(这里a 中即n a );:(1):奇偶S S k k =+。
如 (1)在等差数列中,S 11=22,则6a =______(答:2);(2)项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).6.若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()n nA f nB =,则2121(21)(21)(21)n n n n n n a n a A f n b n b B ---===--.如 设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若3413-+=n n T S n n ,那么=nn b a ___________ (答:6287n n --) 7.“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。
法一:由不等式组⎪⎪⎭⎫ ⎝⎛⎩⎨⎧≥≤⎩⎨⎧≤≥++000011n n n n a a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。
上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?如(1)等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。
(答:前13项和最大,最大值为169);(2)若{}n a 是等差数列,首项10,a >200320040a a +>, 200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是(答:4006)8.如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =.四.等比数列的有关概念:1.等比数列的判断方法:定义法1(n n a q q a +=为常数),其中0,0n q a ≠≠或11n n n n a a a a +-= (2)n ≥。
如(1)一个等比数列{n a }共有21n +项,奇数项之积为100,偶数项之积为120,则1n a +为____ (答:56); (2)数列{}n a 中,n S =41n a -+1 (2n ≥)且1a =1,若n n n a a b 21-=+ ,求证:数列{n b }是等比数列。
2.等比数列的通项:11n n a a q -=或n m n m a a q -=。
如设等比数列{}n a 中,166n a a +=,21128n a a -=,前n 项和n S =126,求n 和公比q . (答:6n =,12q =或2) 3.等比数列的前n 和:当1q =时,1n S na =;当1q ≠时,1(1)1n n a q S q-=-11n a a q q -=-。
如(1)等比数列中,q =2,S 99=77,求9963a a a +++(答:44);(2))(1010∑∑==n n k k n C的值为__________(答:2046);特别提醒:等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对q 分1q =和1q ≠两种情形讨论求解。
4.等比中项:若,,a A b 成等比数列,那么A 叫做a 与b 的等比中项。
提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个,()a b a b ≠的等差中项为A ,等比中项为B ,则A 与B 的大小关系为______(答:A >B )提醒:(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为…,22,,,,a a a aq aq q q …(公比为q );但偶数个数成等比时,不能设为…33,,,aq aq qa q a ,…,因公比不一定为正数,只有公比为正时才可如此设,且公比为2q 。
如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。
(答:15,,9,3,1或0,4,8,16)5.等比数列的性质:(1)当m n p q +=+时,则有m n p q a a a a = ,特别地,当2m n p +=时,则有2m n p a a a = .如(1)在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___ (答:512);(2)各项均为正数的等比数列{}n a 中,若569a a ⋅=,则3132310l og l o g l o g a a a +++=(答:10)。
(2) 若{}n a 是等比数列,则{||}n a 、*{}(,)p nq a p q N +∈、{}n ka 成等比数列;若{}{}n n a b 、成等比数列,则{}n n a b 、{}n na b 成等比数列; 若{}n a 是等比数列,且公比1q ≠-,则数列232,,n n n n n S S S S S -- ,…也是等比数列。
当1q =-,且n 为偶数时,数列232,,n n n n n S S S S S -- ,…是常数数列0,它不是等比数列. 如(1)已知0a >且1a ≠,设数列{}n x 满足1log 1log a n a n x x +=+(*)n N ∈,且12100100x x x +++= ,则101102200x x x +++= .(答:100100a );(2)在等比数列}{n a 中,n S 为其前n 项和,若140,1330101030=+=S S S S ,则20S 的值为______(答:40)(3)若10,1a q >>,则{}n a 为递增数列;若10,1a q <>, 则{}n a 为递减数列;若10,01a q ><< ,则{}n a 为递减数列;若10,01a q <<<, 则{}n a 为递增数列;若0q <,则{}n a 为摆动数列;若1q =,则{}n a 为常数列.(4) 当1q ≠时,b aq qa q q a S n n n +=-+--=1111,这里0ab +=,但0,0a b ≠≠,这是等比数列前n 项和公式的一个特征,据此很容易根据n S ,判断数列{}n a 是否为等比数列。