利用ANSYS有限元分析软件对三杆组成的桁架结构进行数值模拟.

合集下载

ANSYS桁架优化分析实例

ANSYS桁架优化分析实例
11.在 Type of Data to be Retrieved 菜单左列单击 Results Data,在右列单击 Elem Table Sums。
12.单击 OK 关闭对话框并打开 Get Element Table Sum Results 对话框。 13.在 Name of Parameter to be Defined 域输入 VTOT。 14.单击 OK 关闭对话框。 15 . 选 择 菜 单 Utility Menu>Parameters>Scalar Parameters 打 开 Scalar Parameters 对话框。 16.在 Selection 域输入 RHO=2.85E-4 并按 ENTER 键。本信息应显示在菜 单上。
第五步:定义实参 1. 选择 Main Menu>Preprocessor>Real Constants,打开实参对话框。 2. 单击 Add,打开实参对话框中单元类型。 3. 单击 OK,打开 LINK1 实参对话框。 4. 在实参序列号区域中键入 1。 5. 在横截面区域中键入 A1。 6. 单击 Apply。这将确认 LINK1 的实参并将 1000 输入实参 1 的横截面 区域。 7. 在实参序列号区域键入 2。 8. 在横截面面积区域键入 A2。 9. 单击 Apply。这将确认 LINK1 的实参并将 1000 输入实参 1 的横截面 区域。 10.在实参序列号区域键入 3。 11.在横截面面积区域键入 A3。 12.在 LINK1 实参对话框中单击 OK。 13.在实参对话框中单击 Close。
2. 单击 Add 定义单元表格并打开 Define Additional Elementary Table Items 对话框。
3. 在 User Label 域中输入 EVOL。 4. 在 Item,Comp Results Data Item 菜单的左列单击 Geometry,在右列单 击 Elem Volume VOLU。 5. 单击 OK 关闭对话框。 6. 在 Element Table Data 对话框中单击 Close。 7. 选择菜单 Main Menu>General Postproc>Element Table>Sum of Each Item 打开 Tabular Sum of Each Element Table Item 对话框。 8. 单击 OK 计算总和。SSUM 命令窗口将显示总和为 0.382842E+07。 9. 单击菜单条上的 Close 关闭 SSUM 命令窗口。 10.选择菜单 Utility Menu>Parameters>Get Scalar Data 打开 Get Scalar Data 对话框。

基于ANSYS?WORKBENCH的桁架结构的分析

基于ANSYS?WORKBENCH的桁架结构的分析

基于ANSYS WORKBENCH的桁架结构的分析有不少朋友经常问到在WB中的桁架分析问题。

例如下面的桁架,有两个端点被固定,而在C处施加一个向下的集中力,如何计算该问题?在ANSYS APDL中,计算该问题非常简单。

但是在WB中,则比较麻烦。

对于线体模型,WB中默认的单元类型是BEAM188,如果直接使用默认单元会带来一些出乎意料的结果。

本文使用LINK180建模,这样就需要插入命令流。

下面说明使用LINK180的建模方法。

1. 创建静力学结构分析系统。

2. 创建几何模型(1)创建草图(2)根据草图生成线体模型创建圆形截面,其半径为10mm(该尺寸随便设置,后面会被覆盖)将截面属性赋予给线体模型3. 设置杆的单元类型在线体模型下添加命令在命令文件编辑窗口输入下列命令、上述命令的含义是:第1行,设置单元类型是LINK180第2-3行,设置截面类型是实心圆,且其横截面积是10mm24. 划分网格在MESH下添加一个单元尺寸控制,设置给所有边划分1等份。

网格划分结果如下图5. 施加边界条件该下面两个关键点施加固定支撑,给上面点施加数值向下的力100N,结果如下图6. 求解并进行后处理进行求解。

然后进行后处理。

可以发现应力,应变,能量等按钮均不可使用。

使用BEAM TOOL。

但是ANSYS表明,该梁工具不能使用。

添加BEAM RESULTS但是ANSYS表明,该梁工具也不能使用。

使用WORKSHEET所提供的自定义数据类型,选择其中的总位移结果、得到位移如下图读者可尝试使用WORKSHEET中的其它用户自定义结果,【评论】1. 通过在几何体模型后面添加命令,并编辑命令文本,可以设定单元为杆单元LINK180.2. 可以在MESH后添加尺寸控制,而对各根杆件设置网格划分份数。

3. 在后处理时,WB所提供的大多数后处理按钮均不可使用,此时只能使用WORKSHEET中提供的用户自定义变量。

例1 ANSYS桁架结构计算示例

例1 ANSYS桁架结构计算示例
例1 ANSYS桁架结构计算示例
L110 =1m;
桁架结构示意图
L109 =1m; 材料为Q235;
桁架各单元横截面图
在结点8上施加竖直向下的集中载荷F=60000N, 约 束为结点1处约束X,Y方向自由度,结点5处约束Y方 向自由度。
(1)选择单元类型 运行Preprocessor>Element Type>Add/Edit/Delete
单元类型对话框
单元类型库对话框
(2)设置材料属性 运行Preprocessor>Material Props>Material Models
选择材料属性对话框
设置材料1属性对话
(3)设置单元截面形式 选择菜单Preprocessor>Sections> Beam>Common Sections
通过结点建立单元
桁架的有限元模型
(6)施加约束 运行主菜单 Solution> Define Loads > Apply> Structural> Displacem7)施加载 荷 运行主菜单 Solution> Define Loads> Apply> Structural> Force/Moment> On Nodes
云图显示对话框
轴向应力云图 桁架的轴向应力云图可知,最大应力发生在2单元。最大应力45.9MPa。
选择Stress> von Mises stress,
则出现桁架位移云 图
桁架的位移云图可知,最大位移发生在桁架 3 的中部,最大位移为 1.3 10 m。
梁截面设置对话框
(4)定义实常数 运行Real Constants>Add/Edit/Delete

钢桁架桥梁结构的ANSYS分析

钢桁架桥梁结构的ANSYS分析

钢桁架桥梁结构的ANSYS分析摘要本文中采用有限元分析法,在大型有限元分析软件ANSYS平台上分析桥梁工程结构,很好地模拟桥梁的受力、应力情况等。

在静力分析中,通过加载各种载荷,得出结构变形图,找出桥梁的危险区域。

1、问题描述下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。

该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1-1。

桥长L=32m,桥高H=5.5m。

桥身由8段桁架组成,每段长4m。

该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N,见图1。

1图1桥梁的简化平面模型(取桥梁的一半)2、模型建立在桥梁结构模拟分析中,最常用的是梁单元和壳单元,鉴于桥梁的模型简化,采用普通梁单元beam3。

实体模型的建立过程为先生成关键点,再形成线,从而得到桁架桥梁的简化模型。

3、有限元模型3.1单元属性整个桥梁分成三部分,分别为顶梁及侧梁、弦杆梁、底梁,三者所使用的单元都为beam3单元,因其横截面积和惯性矩不同,所以设置3个实常数。

此外,他们材料都为型钢,材料属性视为相同,取为弹性模量EX为2.1e11 ,泊松比prxy为0.3,材料密度dens为7800。

3.2网格划分线单元尺寸大小为2,即每条线段的1/2。

4、计算4.1约束根据问题描述的要求,该桁架桥梁在x=0处的边界条件为全约束,x=32处的边界条件为y方向位移为0(即UY=0)。

如下图所示。

4.2载荷卡车对桥梁的压力视为3个集中载荷,因为模型只取桥梁的一般,所以3个集中载荷的力之和为20000N,分别为p1=5000N,p2=10000N,p3=5000N。

并将载荷施加在底梁的关键点4,5,6上。

如下图所示。

5、静力分析的计算结果5.1查看结构变形图显示y方向位移显示x方向位移5.2结论从加载后的结构变形图中可以看出,在载荷作用下,桁架桥的中间位置向下发生弯曲变形最为明显而两侧的侧梁变形最小,载荷引起的位移最大处在桥中间位置,随跨中间向两侧递减。

ansys三根杆桁架优化问题命令流

ansys三根杆桁架优化问题命令流

ansys三根杆桁架优化问题命令流问题描述:⼀个由三根杆组成的桁架承受纵向和横向载荷,桁架的重量在最⼤应⼒不超过400PSI最⼩化(因此重量为⽬标函数)。

三根梁的横截⾯⾯积和基本尺⼨B在指定范围内变化。

结构的重量初始设计为109.10磅。

缺省允差(由程序计算)为初始重量的1%(11磅)。

分析中使⽤如下材料特性:E=2.1E6psiRHO=2.85E-41b/in3 (⽐重)最⼤许⽤应⼒=400psi分析中使⽤如下⼏何特性:横截⾯⾯积变化范围=1到1000in2(初始值为1000)基本尺⼨B变化范围=400到1000in(初始值为1000)命令流如下:/filnam,truss/title, optimization of a three-bar truss!初始化设计变量参数B=1000 !基本尺⼨A1=1000 !第⼀个⾯积A2=1000 !第⼆个⾯积A3=1000 !第三个⾯积!!进⼊PREP7并建模/prepet,1,link1 !⼆维单元r,1,A1 !以参数形式的实参r,2,A2r,3,A3mp,ex,1,2.1E6 !杨⽒模量n,1,-B,0,0n,2,0,0,0n,3,B,0,0n,4,0,-1000,0e,1,4real,2e,2,4real,3e,3,4finish!!进⼊求解器,定义载荷和求解/solud,1,all,0,,3f,4,fx,200000f,4,fy,-20000solvefinish!!进⼊POST1并读出状态变量数值/post1set,lastetable,evol,volu !将每个单元的体积放⼊ETABLE ssum !将单元表格内数据求和*get,vtot,ssum,,item,evol !VTOT=总体积rho=2.85e-4wt=tho*vtot !计算总体积etable,sig,ls,1 !将轴向应⼒放⼊ETABLE!*get,sig,elem,1,etab,sig !SIG1=第⼀个单元的轴向应⼒*get,sig,elem,2,etab,sig !SIG2=⼆单元的轴向应⼒*get,sig,elem,3,etab,sig !SIG3=三单元的轴向应⼒!sig1=abs(sig1) !计算轴向应⼒的绝值sig2=abs(sig2)sig3=abs(sig3)!/eshape,2 !以实体单元模式显⽰壳单元/view,1,1,1,1 !轴测视图eplot!/opt !进⼊优化处理器opanl,truss,lgw !指定分析⽂件(批处理⽅式中不⽤这个命令)!opvar,B,dv,400,2000 !定义设计变量opvar,A1,dv,1,1000opvar,A2,dv,1,1000opvar,A3,dv,1,1000opvar,sig1,sv,,400 !定义状态变量opvar,sig2,sv,,400opvar,sig3,sv,,400!opsave,trussvar,opt !存储数据!opvar,wt,obj,,,2, !定义⽬标函数!optype,first !定义⼀阶⽅法opfrst,45 !最⼤45次迭代opexs !开始优化分析!oplist,16 !列出最佳设计序列,号为16oplist,all!/view,1,,,1 !前视图!/axlab,x,iteration number !画重量对迭代数图形/axlab,y,structure weightplvaropt,wt!/axlab,y,base dimension !画B对迭代数图形plvaropt,B!/axlab,y,max stress !画最⼤应⼒对迭代图形plvaropt,sig1,sig2,sig3!/axlab,y,cross-sectional area !画⾯积对迭代图形plavaropt,A1,A2,A3!finish/exit。

有限元上机实验:ANSYS桁架分析

有限元上机实验:ANSYS桁架分析

机电工程学院有限元法课程设计学号:专业:学生姓名:任课教师:2016年5月桁架有限元分析本问题研究针对机器人腿部机体的受力变形研究。

在机器人的所有结构中,该结构受力较复杂,强度要求较高,需要对其进行受力分析并进行结构优化。

一、研究对象由等直杆构成的平面桁架如图1所示,等直杆的截面积为30cm2,弹性模量为E=2.1e5 Mpa,泊松比为μ=0.3,密度为7800kg/m3,所受的集中力载荷为2.0N。

分析该桁架的强度是否符合要求,给出约束节点的支反力、杆件受力以及受力节点的位移。

载荷:1.0e8 N图1 超静定桁架二、分析过程1.打开软件,更改文件名称和存储位置:File>Change Jobname and Change Directory 。

图2 更改文件名图3 更改存储位置2.选取有限元单元:Preprocessor > Element Type > Add/Edit/Delete > Add > Link > 3D finit stn180 > OK > Close。

图4 选取有限元单元3.定义截面积:Preprocessor > Real Constants > Add/Edit/Delete > Add > 输入截面面积“0.03”> Ok > Close。

图5定义截面积4.输入材料弹性参数:Preprocessor > Material Props > Material Models > Structural > Linear >Elastic > Isotripic > 输入弹性模量> 输入泊松比>Ok > 关闭窗口> SA VE_DB 保存数据。

图6 输入材料弹性参数5.建立节点,坐标分别为(0,1) (1,0) (1,1) (2,1) :Preprocessor >Modeling>Create>Nodes>On working Plane>选取点。

基于ANSYS的桁架桥简单的力学分析

基于ANSYS的桁架桥简单的力学分析

基于ANSYS的桁架桥简单的力学分析姓名戴航学号20120680203专业工程力学班级2班二〇一五年六月一、桁架桥的工程背景及用途桁架桥简介:桁架桥是桥梁的一种形式,一般多见于铁路和高速公路,指的是以桁架作为上部结构主要承重构件的桥梁。

桁架桥为空腹结构,因而对双层桥面有很好的适应性。

桁架是由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,节约材料,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。

本文通过分析在卡车过桥时,对桁架桥进行ansys静力分析和模态分析,给出危险截面,从而为优化设计提供理论依据。

桁架桥实物如下:桥梁的简化平面模型(取桥梁的一半):二、研究对象简介在本文的分析中,分析模型为:桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表3-6。

桥长L=32m,桥高H=5.5m。

桥身由8段桁架组成,每段长4m。

该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N。

材料性能为:弹性模量E=2.10e10Pa,泊松比为0.3,密度7800kg/m3。

表3-6 桥梁结构中各种构件的几何性能参数三、单元类型:共选用三种单元:1、顶梁及侧梁(beam1),定义1号是实常数用于beam1,截面参数见上表;2、桥身弦梁(beam2),定义2号实常数用于beam2,截面数据见上表;3、底梁(beam3),定义3号实常数用于beam3,截面数据见上表。

四、主要建模过程1、定义单元类型2、定义实常数以确定梁单元的截面参数,,定义材料参数3、构造桁架桥模型生成桥体几何模型:ANSYS Main Menu:Preprocessor → Modeling → Create → Keypoints → In Active CS → NPT Keypoint number:1,X,Y,Z Location in active CS:0,0 → Apply→同样输入其余15个特征点坐标(最左端为起始点,坐标分别为 (4,0), (8,0), (12,0), (16,0), (20,0), (24,0), (28,0), (32,0), (4,5.5), (8,5.5), (12,5.5), (16.5.5), (20,5.5), (24,5.5), (28,5.5))→ Lines → Lines → Straight Line →依次分别连接特征点→ OK网格划分:ANSYS Main Menu: Preprocessor → Meshing → Mesh Attributes → Picked Lines →选择桥顶梁及侧梁→OK → select REAL: 1, TYPE: 1 → Apply →选择桥体弦杆→OK → select REAL: 2, TYPE: 1 → Apply →选择桥底梁→ OK → select REAL: 3, TYPE:1 → OK → ANSYS Main Menu:Preprocessor → Meshing → MeshTool →位于Size Controls下的Lines:Set → Element Size on Picked → Pick all →Apply → NDIV:1 → OK → Mesh → Lines → Pick all → OK (划分网格)3、给模型加约束和施加载荷4、计算分析,显示结果五、工况分析:1、加载工况施加载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment → On Keypoints →选取底梁上卡车两侧关键点(X坐标为12及20)→OK → select Lab: FY,Value: -5000 → Apply →选取底梁上卡车中部关键点(X 坐标为16)→ OK → select Lab: FY,Value: -10000 → OK→ ANSYS Utility Menu:→ Select → Everything图形显示结构Y方向的位移(a)桥梁中部最大挠度值为0.003 374m等效应力云图(b)桥梁中部轴力最大值为25 380N2、自重工况。

ANSYS求解桁架问题实例

ANSYS求解桁架问题实例
4
4 定义实常数 ANSYS Main Menu: Preprocessor →Real Constants… →Add…
→select Type 1→ OK→input AREA:0.25 →OK →Close (the Real Constants Window) 5 定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 → OK 6 生成节点 ANSYS Main Menu: Preprocessor →Modeling →Create →Nodes →In Active CS →依次输入四个点的坐标:input:1(0,0),2(1,0),3(1,1),4(0,1) →OK 7 生成单元 ANSYS Main Menu: Preprocessor →Modeling →Create →elements →Auto Numbered →Thru Nodes →依次连接节点2,3;节点1,2;节 点2,4;→OK 打开节点号:Utility Menu:Plotctrls→Numbering →选项NODE Node numbers为On →在Elem/Attrib numbering选择Element numbers →OK 显示元素: Utility Menu:Plot→emements
ANSYS求解桁架问题实例
由3根杆组成的静不定桁架模型如下图所示,材料 E=2.1e11Pa,μ=0.3,杆的横截面积均为A=0.25m2。
根据结构的特点及所受载荷的情况,正确选取单元类型,构 造桁架的有限元模型;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用 ANSYS 有限元分析软件对三杆组成的桁架结构进行数值模拟,并根据计算结果,建立优化设计数学模型,在优化处理器指定分析文件, 对三根横截面积为
A1A2A3基本尺寸 B 为变量进行分析对比, 通过数值迭代模拟主要的到如下结论
(1横截面积迭代进行 ANSYS 优化分析时,在分析得到的重量,应力,横截面,三个图中当寻优迭代进行到第 16次主动变量被调整到相同的优化效率时 A1为 1
10
7056
. 4-
⨯A2为 4
10
0000
. 6-
⨯A3为 2
10
3055
. 3-
⨯, 桁架重量取得最小值 130370kg 与初始设计重量 481520.422kg 相比,得到了很大程度的减轻。

符合最优化准则 (2根据计算结果,改进的桁架明显好于其他情况, ansys 软件数值模拟得到最优解,其计算误差很小,完全能满足工程精度要求
ANSYS 程序中进行优化的方法是成功的 , 方法本身收敛速度快 , 精度高 , 稳定性强。

本文使用迭代法得到的最优解都非常接近于或优于所求问题的最优解 , 这表明将迭代法一类的高效优化方法用 APDL 语言嵌套到 AnSYS 程序中来求解优化问题的方法既可行又简便 , 结构优化设计领域具有很好的应用前景。

相关文档
最新文档